

INTRODUCTION

Decision Trees:

- Relatively simple knowledge formalism.
- Lacks expressive power of semantic networks (or other-first order representations).
- Learning Methodologies comparatively less complex.
- Capable of solving difficult problems of practical considerations.

Decision Tree Algorithms:

- Greedy algorithm.
- Composed of internal decision nodes and terminal leaves.
- Decision nodes implement Discriminant functions for classification.
- Value of the leaf node constitutes the output.

UNIVARIATE DECISION TREE ALGORITHM

ID3 Algorithm:

- Simple Iterative Algorithm.
- No guarantee of optimal solution.
- Large trees and poor generalization.
- Best split selected on basis of Impurity measure (Entropy).
- Noise can cause attributes to become inadequate or give rise to complex decision trees.

Complexity:

- At each node, its O (|C|.|A|), where |C| is the size of the training set and |A| is the number of attributes.
- Total computation requirement is: O (|C|.|A|.|non-leaf nodes|).

Desci	ription of the D	ata Sai			
Desci	ription of the D	ata Sai			
Desci	rintion of the D	oto Col			
2000		ala Se	<u>ts:</u>		
	Ster	CLASSES	INSTA MORE	FEATURES	
	551	CLASSES	INS IANCES	PEATORES	
	Cylinder	2	541	-36	
	DerMATOLOGY	6	366	35	
		8	336	8	
	Ecoli	· ·			
	Ecoli Flare	3	323	11	
	$\mathbf{E}_{\mathrm{Coll}}$ $\mathbf{F}_{\mathrm{laRE}}$ $\mathbf{G}_{\mathrm{lass}}$	$\frac{3}{7}$	$\begin{array}{c} 323\\214\end{array}$	$11 \\ 10$	
	Ecoli Flare Glass Hepatifis	3 7 2	$323 \\ 214 \\ 155 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 11 \\ 10 \\ 20 \end{array}$	
	Ecoli Flare Glass Hepatitis Horse	3 7 2 2	$323 \\ 214 \\ 155 \\ 368$	$ \begin{array}{c} 11 \\ 10 \\ 20 \\ 27 \end{array} $	
	Ecoli Flare Glass HepATITIS Horse	3 7 2 2	$323 \\ 214 \\ 155 \\ 368$	$ \begin{array}{c} 11 \\ 10 \\ 20 \\ 27 \end{array} $	
	Ecoli Flare Glass Hepathiis Horse	$\frac{3}{7}$ $\frac{2}{2}$	$323 \\ 214 \\ 155 \\ 368$	11 10 20 27	

Comparison	of De	cision tre	e metho	ods, d	cont			
Accuracy:							ID- PCA	L DA A WITH
	Set	ID3	CARI	Ш)-LP	LMDT	e	= 0.99
	CYL DER	68.7 ± 2.0 92.8 ± 2.4	$59.5{\pm}4.0$ $80.9{\pm}4.6$	70.2∃ 85.7∃	4.5 7.1	$68.6{\pm}2.9$ $96.4{\pm}1.3$	$69.80 \\ 96.17$	$\pm 3.01 \\ \pm 1.59$
	ECO	78.1 ± 3.6	74.6 ± 3.8	82.6∃	- 4.1	81.2 ± 3.5	83.75	± 2.53
	FLA	85.3 ± 2.0	81.5 ± 3.6 53 0±4 2	88.4±	2.4	86.7 ± 3.1 59.3 ± 4.7	88.17	± 2.83
	HEP	78.4 ± 3.7	79.0 ± 4.0	84.1±	2.9	81.3 ± 3.7	$\frac{57.29}{82.06}$	$\pm 4.10 \\ \pm 5.60$
Pair v	Pair wise comparison of accuracies			ID3 C	ART	ID-LP LM	DT II	D-LDA
			ID3		4	4	1	3
			CART	0		2	1	1
			ID-LP LMDT	4	6	1	0	1
			ID-LDA	5	8	2	2	1
Observation:								
	ID-L	P ≈ ID-LD	A ≈ LME)T < _{(?}) CA	RT ≈ _(?) ID	3	

