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Abstract

For an engineering design, tolerances in design parameters are selected
so that within these tolerances, we guarantee the desired functionality.
Feasible algorithms are known for solving the corresponding computa-
tional problems: the problem of finding tolerances that guarantee the
given functionality, and the problem of checking whether given tolerances
guarantee this functionality.

In this paper, we show that in many practical problems, the problem of
choosing the optimal tolerances can also be solved by a feasible algorithm.
We prove that a slightly different problem of finding the optimal tolerance
revision is, in contrast, computationally difficult (namely, NP-hard). We
also show that revision programming algorithms can be used to check
whether a given combination of tolerance changes is optimal under given
constraints – and even to find a combination that is optimal under given
constraints.

1 Formulation of the Problem

The notion of the tolerances. One of the main purposes of engineering is to
design objects with given functionality, be it computer chips or tall buildings.
By solving the corresponding optimization problem, we can find the optimal
values x1, . . . , xn of the corresponding parameters.
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In practice, it is not possible to exactly maintain the values of the design
parameters. As a result, we must find tolerances for these parameters xi, i.e.,
ranges xi = [xi, xi] of possible values of these parameters, so that an arbitrary
combination of values xi ∈ xi from these ranges xi still guarantees the design’s
functionality.

The notion of the tolerance solution. In precise terms, functionality usu-
ally means that certain quantities y1, . . . , ym depending on the parameters xi

must lie within given ranges [y
j
, yj ]. For example, for all possible regimes of

a computer chip, its temperature cannot exceed the given heat threshold, and
its overall current cannot exceed the capacity of the related battery; for a tall
building, for all winds within a given range, the deviation of the upper floor
from its nominal position should be bounded from both sides by given bounds,
etc.

Tolerances are usually reasonably narrow; as a result, within the correspond-
ing ranges, we can safely ignore quadratic and higher order terms in the depen-
dence yj = fj(x1, . . . , xn) of the quantities yj on the design parameters xi.
Thus, we can safely assume that the dependence of yj on xi is linear:

yj = y
(0)
j +

n
∑

i=1

aji · xi.

In these terms, the requirement that y
j
≤ yj ≤ yj can be rewritten as follows:

y
j
≤ y

(0)
j +

n
∑

i=1

aji · xi ≤ yj . (1)

Just like we cannot manufacture objects with the exactly given values of
design parameters, we also do not know the exact values of the coefficients
describing the dependence between physical quantities. In particular, usually,

we do not know the exact values of the coefficients y
(0)
j and aji; we only know

the intervals y
(0)
j and aji of possible values of these parameters. To guarantee

the desired functionality, we must make sure that the condition (1) holds for all

possible values y
(0)
j ∈ y

(0)
j and aji ∈ aji of these coefficients.

Definition 1

• By a tolerance problem, we mean a tuple consisting of positive integers n

and m and intervals y
(0)
j (1 ≤ j ≤ m) and aji (1 ≤ j ≤ m, 1 ≤ i ≤ n).

• By the tolerance solution set of a tolerance problem, we mean the set of all

the vectors x that satisfy the condition (1) for all y
(0)
j ∈ y

(0)
j and aji ∈ aji.

Historical comment. The notion of a tolerance solution set was first considered
and analyzed in [20, 21, 22]; it was also analyzed, e.g., in [1, 5, 7, 8, 9, 15, 25,
26, 27].
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Tolerance intervals xi must be selected in such a way that the above condition
holds for all xi ∈ xi. Intervals that satisfy this requirement are called tolerance
solution to the interval-valued system (1).

Definition 2 We say that intervals x1, . . . , xn form a tolerance solution to a
given tolerance problem if for every element x = (x1, . . . , xn) ∈ x1 × . . . × xn,

the condition (1) is satisfied for all y
(0)
j ∈ y

(0)
j and aji ∈ aji.

In other words, intervals xi form a tolerance solution if and only if the
corresponding box x1 × . . .× xn is a subset of the tolerance solution set X .

Computational complexity of the corresponding computational prob-

lem: known results. One of the main computational problems related to
design is to check whether there are values x1, . . . , xn that satisfy given con-
straints – and if there are such values, to find some such values. It is known
that there exist feasible (polynomial-time) algorithms for solving both problems.

Proposition 1 There exist feasible (polynomial-time) algorithms for checking
whether the tolerance solution set X is non-empty and, in case it is non-empty,
for producing an element x ∈ X of this set.

Proof. Let us show that our tolerance-related problem can be reduced to linear
programming (i.e., to solving systems of linear inequalities). We want to find

the values xi for which y
j
≤ y

(0)
j +

∑

aji · xi ≤ yj for all y
(0)
j ∈ [y(0)

j
, y

(0)
j ] and

aij ∈ [aij , aij ]. For every j, the largest possible value tji of each linear term aji·xi

is attained on one of the endpoints of the interval aji, and a similar property
is true for the smallest possible values tji of these terms. Therefore, the above
inequality is equivalent to the following system of linear inequalities, with new
variables tji and tji: tji ≤ aji · xi ≤ tji, tji ≤ aji · xi ≤ tji, y

j
≤ y(0)

j
+

∑

i

tji,

and y
(0)
j +

∑

i

tji ≤ yj . Thus, we can use known polynomial-time algorithms

for solving linear programming problems; see, e.g., [2, 23]. The proposition is
proven.

Comment. As a corollary of this proof, we conclude that the tolerance solution
set X is a solution set to a linear programming problem and is, thus, a convex
polyhedron.

Most problem have many different tolerance solutions. We have al-
ready mentioned that from the geometrical viewpoint, finding a tolerance so-
lution xi means finding a box x1 × . . . × xn that is contained in the tolerance
solution set X . We have also mentioned that the tolerance solution set X is a
convex polyhedron determined by the system of linear inequalities.

For every convex polyhedron X , there are many boxes contained in X and
thus, many possible tolerance solutions x1, . . . ,xn.
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For example, we can narrow each interval; since the tolerance solution con-
sists of all the values xi that satisfy the given constraint, subintervals also form
a tolerance solution. Of course, selecting such subintervals makes no practical
sense: the narrower the tolerance intervals, the costlier it is to maintain them,
so we must make our tolerance intervals as wide as possible.

Even if we ignore subintervals, and consider only tolerance solutions which
are Pareto optimal – in the sense that none of the intervals xi can be enlarged
without going outside X – there are still many such tolerance solutions.

We must select an optimal tolerance solution. Theoretically, there exist
many possible tolerance solutions; in practice, we must select one of them. How
can we make this selection? Strictly speaking, tolerances are part of the design,
so the problem of selecting tolerances can be viewed as a particular case of the
general problem of selecting a design.

In general, when we select a design, we must guarantee the desired func-
tionality; since there are usually several designs with a given functionality, we
usually select the least expensive of these designs. When we select tolerances,
all functionality requirements are already incorporated in the definition of a
tolerance solution, so the only remaining criterion is cost. In other words, we
must select the least expensive tolerance solution.

To formulate this problem in precise terms, we must analyze how the design
cost depends on the selected tolerances.

How expensive are the tolerances? To answer this question, we will con-
sider two reasonable practical design situations that represent two extreme cases
of design.

On the one hand, we have design situations in which manufacturing is reason-
ably cheap, and checking the constraints is also reasonably cheap. As example
of such situations is the design and manufacturing of computer chips. In such
situations, since manufacturing is cheap, if one of the manufactured objects
does not satisfy one of the constraints, it is cheaper to simply throw it away and
manufacture a new one.

Manufacturing of computer chips is an extreme case of such situation, in
which – at least in the beginning of the chip’s lifetime – the throughput (per-
centage of satisfactory objects) can be as low as a few percents. In such situa-
tions, we can estimate the effect of tolerance on cost as follows. Let us assume
that the manufacturing process produces designs for which the values xi take
values from the intervals Xi = [X i, Xi]. Since we have no information about the
relative frequency of different values within the resulting box X1 × . . .×Xn, it
is natural to assume that all these values are, in some reasonable sense, equally
probable – i.e., that the probabilities of different values x within this box are
described by a uniform distribution, for which the probability of x being within
an arbitrary subbox x = x1 × . . . × xn is proportional to the volume V (x) of
this subbox.

Thus, for each tolerance solution x, the probability p that the manufacturing
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process produces a satisfactory object is equal to p = const · V (x). This means
that to produce a single satisfactory object, we must, on average, manufacture
1/p such objects. Thus, in such situations, the cost of producing a satisfactory
object is proportional to 1/V (x). So, minimizing the cost (∼ 1/V (x)) means
producing a solution set with the largest possible volume V (x).

On the other hand, we have situations like car manufacturing, buildings
design, etc., where manufacturing is very expensive. So, once we manufactured
an object and it turned out to be somewhat outside the desired range, we should
try to repair and/or fine-tune it.

This distinction occurs not only in engineering design and manufacturing, it
is reflected in real life. Some objects are cheap so we simply throw them away if
something is wrong with them. For example, if a sheet of paper from a packet
has a flaw (e.g., a hole), it is natural to throw it away and to use the next one.
On the other hand, other objects are expensive: e.g., if a computer breaks down
we try to repair it first.

How does the cost of such repairable objects depend on tolerances? Ev-
ery time we perform a repair or tuning, we need to measure the corresponding
design parameter. So, the resulting cost is roughly proportional to the num-
ber of measurements performed during this process. According to statistics,
in general, after we perform N independent measurements of the same quan-
tity, we can estimate its value with an accuracy ∼ 1/

√
N . Our objective is to

achieve accuracy proportional to the widths wi = xi − xi of the corresponding
tolerance intervals. To achieve this accuracy, we need to perform Ni measure-
ments, where 1/

√
Ni ≈ wi – i.e., Ni ∼ 1/w2

i measurements. To measure all

the desired parameters x1, . . . , xn, we must therefore perform
n
∑

i=1

Ni ∼
n
∑

i=1

w−2
i

measurements. So, in this repairable case, the cost of a tolerance solution is

proportional to S(x) =
n
∑

i=1

w−2
i . Thus, the least expensive tolerance solution is

the one for which this sum S(x) is the smallest possible.
How can we solve the corresponding optimization problems?

Analysis of the problem. Both cost characteristics – the (maximized) vol-
ume V (x) and the (minimized) sum S(x) – have a common feature: the volume
is a concave function of its variables, while the sum S(x) (as one can easily
check) is convex.

Resulting algorithm for computing the least expensive tolerances.

Theorem 1 There exist a feasible (polynomial-time) algorithm that, given a
tolerance problem and a convex objective function F (x1, . . . ,xn), produces an
F -optimal tolerance solution to the given tolerance problem.

Proof. We know that the tolerance solution set X is convex. Thus, if we
have two tolerance solutions x = (x1, . . . ,xn) and x′ = (x′

1, . . . ,x
′

n), then their
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convex combination

(α · x1 + (1− α) · x′

1, . . . , α · xn + (1− α) · x′

n)

is also a tolerance solution. In other words, the class of all tolerance solutions
is also convex.

There exist efficient algorithms for minimizing a convex function (or max-
imizing a concave function) on a convex set; see, e.g., [28]. Thus, in both
situations, we can efficiently find the c-optimal tolerance set. The theorem is
proven.

Problem of optimal tolerance revision: formulation. Suppose that we
already have found a tolerance solution that satisfies given design constraints.
In general, if we have a different design-related problem, we must solve it anew.

Often, the new problem is largely similar to the already solved one – e.g., we
want to design a similar building or a similar chip, but for a slightly different
environment and thus, for slightly different constraints. In such situations,
instead of designing “from scratch”, it is desirable to modify (revise) the previous
tolerance solution. The fewer modifications we need to make, the less expensive
the resulting implementation is. Thus, it is desirable, given a combination
of intervals and a design problem, among all possible revisions of the given
combination of intervals that turn this collection into a tolerance solution, to
find a one which is minimal (in some reasonable sense).

A natural description of minimality comes from the fact that in many prac-
tical situations, an implementation of each of the tolerances xi ≤ xi and xi ≤ xi

requires that we implement objects with the values xi and xi. For example:

• When xi is weight, we may implement two objects with weights xi and xi

and compare the weight xi of the object with the weights of these standard
objects.

• When xi is an electric current, we may implement standard currents of
size xi and xi and compare the current xi with these standard currents.

• When xi is length, we may implement two bodies with lengths xi and xi

and compare the length xi of an object with these two standard lengths.

One may ask: why not simply measure xi and compare the measurement result
with the numbers xi and xi? The reason is that for most quantities, measure-
ment consists of repeated comparisons with standard values; see, e.g., [19]. If we
simply compare the value xi with two standard signals xi and xi, then we only
need two comparisons. However, if we actually measure xi, this measurement
involves many different comparisons. It is therefore less expensive to implement
pure comparisons.

From this viewpoint, changing an endpoint xi or xi requires re-designing the
corresponding standard object. So, the fewer endpoints we must change, the
least expensive is the design revision.

Thus, we arrive at the following problem:
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Definition 3 Let P be a given tolerance problem, let x1 = [x1, x1], . . . , xn =
[xn, xn] be intervals, and let c be a positive integer. We say that a tolerance
set x′

1, . . . ,x
′

n is obtained from xi by c revisions, if we can get this set from the
given intervals by ≤ c changes of endpoints.

Problem of optimal tolerance revision: computational complexity.

Let us prove that this problem is computationally intractable (to be more pre-
cise, NP-hard):

Theorem 2 The problem of checking whether a given tolerance problem has a
tolerance solution which is obtained form a given collection of intervals by a
given number of revisions is NP-hard.

Proof. To prove NP-hardness of our problem, we will reduce, to this new
problem, a known NP-complete partition problem (see, e.g., [4, 7]). The partition
problem is as follows: given n positive integers s1, . . . , sn, check whether there

exist values εi ∈ {−1, 1} such that
n
∑

i=1

si · εi = 0.

For every instance of the subset problem, we take:

• the initial intervals x1 = . . . = xn = [−1, 1],

• the following tolerance problem: m = 1, a1i = si, and y
(0)
1 = y1 = [0, 0],

and

• c = n.

For this problem, the tolerance set X consists of all the vectors x = (x1, . . . , xn)

for which
n
∑

i=1

si ·xi = 0. This set is defined by a single linear equation and thus,

it forms a hyperplane in n-dimensional space. Therefore, no non-degenerate
box x1 × . . . × xn can be a subset of this set X . Thus, for this problem, the
only possible tolerance solutions are fully degenerate ones, for which, for every
i, we have xi = [xi, xi] = {xi} for some real number xi. So, finding a tolerance
set means finding the values xi (or, equivalently, intervals [xi, xi]) for which
n
∑

i=1

si · xi = 0.

For each i, we go from the original non-degenerate interval [−1, 1] to a de-
generate one. Thus, for each i, at least one endpoint has to be revised. So,
overall, at least n endpoints have to be revised. The only way to get a tolerance
solution after ≤ c = n revisions is to make sure that for every i, there is exactly
one revision. In other words, the only way to get a tolerance solution in a given
number of revisions is to make sure that for every i, xi coincides with one of
the endpoints of the original interval [−1, 1], i.e., that xi = 1 or xi = −1.

Thus, we have
n
∑

i=1

si · xi = 0 for some xi ∈ {−1, 1}. So, if the tolerance

revision problems has a solution in ≤ c revisions, then the original instance of
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the partition problem has a solution. Conversely, if this instance has a solution
εi ∈ {−1, 1}, then the intervals [εi, εi] form a tolerance solution that can be
obtained from the original intervals by c = n revisions.

The reduction is proven. This completes the proof of the theorem.

Problem of optimal tolerance revision under constraints: formulation.

In general, revising a tolerance set [x1, x1], . . . , [xn, xn] means changing some
of the 2n thresholds x1, x1, . . . , xn, xn.

The fact that we need changes means that we cannot keep all the thresholds,
we must change some of them. For example, for some quantity xi, we may know
that we cannot keep both original thresholds xi and xi, at least one of these
thresholds must be changed. In other words:

• if we do not change the lower threshold xi, then we must change the upper
threshold xi, and

• if we do not change the upper threshold xi, then we must change the lower
threshold xi.

In some cases, for two quantities xi and xj , we can keep thresholds for one
of these quantities at the expense of tightening the thresholds for the other
quantity. In other words, out of the four thresholds xi, xi, xj , and xj , at least
one must change:

• if we do not change the thresholds xi, xi, and xj , then we must change
the threshold xj ;

• if we do not change the thresholds xi, xi, and xj , then we must change
the threshold xj ;

• if we do not change the thresholds xi, xj , and xj , then we must change
the threshold xi;

• if we do not change the thresholds xi, xj , and xj , then we must change
the threshold xi.

In the previous section, we implicitly assumed that all the thresholds are
implemented independently of each other. This is indeed true in some practical
situations. In such situations, threshold changes can be also done independently
for different thresholds. In these cases, any combination of threshold changes
is possible, and to find the optimal tolerance revision, we can simply minimize
the number of such changes.

In many other practical situations, however, the implementations of the
threshold correlations are dependent on each other. In such situations, not all
combinations of threshold changes make sense, we may have additional con-
straints on the corresponding changes.

For example, for some quantities xi, changing the value of the corresponding
threshold can be very expensive. In such situations, we would like to avoid
changing both thresholds, i.e.,
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• if we change the lower threshold xi, we should not change the upper thresh-
old xi, and

• if we change the upper threshold xi, we should not change the lower thresh-
old xi.

If we have several expensive-to-change quantities, then we may have constraints
that restrict how many of the corresponding thresholds we can change. For
example, if we have two expensive-to-change quantities xi and xj , with a total
of four thresholds, and we can only afford to change no more than three of them,
then we end up with the following four constraints:

• if we change xi, xi, and xj , then we should not change xj ;

• if we change xi, xi, and xj , then we should not change xj ;

• if we change xi, xj , and xj , then we should not change xi;

• if we change xi, xj , and xj , then we should not change xi.

In the above examples, we implicitly assumed that for each quantity xi, the
thresholds xi and xi are implemented independently. For some quantities xi,
when the thresholds xi and xi are very close, an implementation of xi can be
obtained as a simple (and thus, reasonably inexpensive) modification of the
implementation of xi, and vice versa. In such situations, once we change one
of these thresholds, it may be beneficial to change the other one so that the
resulting combination [xi, xi] remains optimal: we may pay a little bit for this
change, but we may also gain a lot in terms of the optimality. In such situations,
we have the following two constraints:

• if we change the lower threshold xi, we should also change the upper
threshold xi, and

• if we change the upper threshold xi, we should also change the lower
threshold xi.

In general, we may have a lot of constraints of this type. In such situation, it
is not immediately clear how to find a combination of threshold changes that
satisfies all these constraints.

In general, there are usually several different combinations of threshold
changes that satisfy given constraints. Since there is an expense associated
with each change, we should select, among such combinations, the optimal one
– i.e., the one in which the changes are minimal (in some reasonable sense).

Often, specialists have already planned some changes and prepared their
implementation. Their expertise may not be perfect, hence the prepared set
of changes may not satisfy all the required constraints. In this case, since
we have already prepared the implementations of the planned thresholds, it
is reasonable to look for a plan that represents the minimal change from the
prepared imperfect plan of changes.

A natural interpretation of “minimal change” is when every change is justi-
fied – i.e., if without this change, we will not be able to satisfy all the constraints.
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Revision programming: a brief reminder. To design an efficient algo-
rithm for producing the desired combination of threshold changes, we will use
revision programming [12, 13, 14, 17].

Let us start by briefly describing the main notions of revision programming.
The knowledge forming a general database or knowledge base can be described
as a finite collection of atomic statements (“atoms”).

For example, in our case, it is natural to consider atomic statements of two
types:

• statements of the type “the threshold xi is changed”; we will denote these
atomic statements by ci; and

• statements of the type “the threshold xi is changed”; we will denote these
atomic statements by ci.

For most databases, the set U of all possible atomic statements is usually
(large but) finite. This finite set is called a Universe of discourse, or Universe,
for short. Formally, we can simply say that we have a finite set U ; its elements
are called atomic statements, or simply atoms. Subsets of U are called databases.

To describe changes in databases, we will use the following notations: in(a)
means that the atom a is a part of the database, and out(a) means that the
atom a is not a part of the database. Expressions of the form in(a) or out(a)
are called revision literals.

For a revision literal α of the type in(a), its dual αD is the revision literal
out(a). Similarly, the dual of out(a) is in(a). A set of revision literals L is
coherent if it does not contain a pair of dual literals.

For any set of atoms B ⊆ U , we denote the corresponding set of revision
literals by Bc = {in(a) : a ∈ B} ∪ {out(a) : a /∈ B}.

A revision rule is an expression of one of the following two types:

in(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn) (2)

or
out(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn), (3)

where a, ai, and bj are atoms. The revision literal on the left hand side of ← is
called the head of the rule r and denoted by head(r). The set of all the literals
on the right hand side of ← is called the body of the rule r and denoted by
body(r).

Each rule has two possible interpretations.
In declarative interpretation, a revision rule is viewed as a constraint on the

database. For instance, rule (2) imposes the following condition: if the database
contains all m atoms a1, . . . , am, and does not contain any of the n elements
b1, b2, . . . , bn, then the database must contain a.

In computational (imperative) interpretation, a revision rule expresses a way
to enforce a constraint. Assume that all atoms ai, 1 ≤ i ≤ m, belong to the
current database B, and none of the atoms bj , 1 ≤ j ≤ n belongs to B. Then,
to enforce the constraint (2), the atom a must be added to the database.

10



Similarly, in the case of the constraint (3), the atom a must be removed from
the database. A collection of revision rules is also called a revision program.

It is worth mentioning that in the declarative interpretation, when we for-
mulate a rule of the type (2), what we are saying, in effect, is that either a is
in the database B, or at least one of the atoms ai, 1 ≤ i ≤ m, is not in the
database, or at least one bj, 1 ≤ j ≤ n, is in the database. From the declarative
viewpoint, there is no difference between the rule (2) and, e.g., the rule

out(a1)← in(a2), . . . , in(am),out(a),out(b1), . . . ,out(bn) (4)

However, from the computational viewpoint, there is a difference between
the rules (2) and (4).

Indeed, in principle, if the original database B does not satisfy the rule,
then we make this rule true in two possible ways: we can force the conclusion
head(r) of the implication r to be true (as we did), or we can make the premise
body(r) of the rule r to be false, by removing one of the atoms ai or by adding
one of the atoms bj. In revision programming, the rule specifies not only what
constraint we want to be satisfied, but also how exactly we want this rule to be
enforced. The rule (2) says that if the implication expressed by the rule is not
true, i.e., if the premise is true and a is not in the database, we should add a to
the database. If, in a similar situation, we want to delete a1 from the databases,
then we should formulate the corresponding rule in the form (4).

Revision programming also enables us to describe the situations in which we
allow several different ways of revising the database. For example, in the above
case, if we want to allow both adding the atom a and deleting the atom a1,
then we can describe this by adding both rules (2) and (4) to the corresponding
collection of revision rules.

Let us now describe this formally. For a database B ⊆ U and an atom
a ∈ U , the revision literal in(a) is true if a ∈ B and false if a /∈ B. Similarly,
the revision literal out(a) is true if a /∈ B and false if a ∈ B. We say that
a collection P of revision rules is satisfied by B (or, alternatively, that B is a
model of P ) if all the implications r ∈ P are true in this interpretation.

Revision programming formalizes the notion of a “minimal” revision as a
revision in which every change must be justified, so that there are no unneces-
sary, unjustified changes. The main idea behind the corresponding definition of
a justified revision (see, e.g., [12, 14]) is as follows.

• Let I ⊆ U be an initial database, i.e., the initial set of atoms.

• Let P be a collection of revision rules, i.e., a set of rules (of the type (2)
or (3)) that the revised database must satisfy.

• Let R ⊆ U be a revised database that satisfies all all the rules from P .

When is R a “justified” revision of I?
As we have mentioned, from the viewpoint of revision literals, the initial

database I can be described as a collection Ic of statements in(a) corresponding
to all a ∈ I and statements out(a) corresponding to all atoms a 6∈ I. Similarly,
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the revised database R can be described as a collection Rc of statements in(a)
corresponding to all a ∈ R and statements out(a) corresponding to all atoms
a 6∈ R. We want to define a reasonable notion of the minimal update. Intuitively,
the word “minimal” means that many of the statements in(a) and out(a) that
were initially true remain true in the revised database, in other words, that the
set Rc should be “close” to the set Ic.

Specifically, we would like to require that every difference between these sets
Ic and Rc is justified by the rules from P . Once we fix the literals in(a) and
out(a) that do not change – they form the set Ic ∩Rc – we can then apply the
rules from P and deduce other revision literals. Let us describe this deduction
is detail. We want to describe the set S of all the revision literals that can be
deduced from Ic ∩Rc by using the rules P .

This set can be obtained by using the following natural algorithm. At each
stage k of this algorithm, we have a set Sk that contains both the original revision
literals from Ic∩Rc and some literals that we deduced from the original ones by
using the rules. At each stage of the algorithm, this set will grow until we get
all the literals that can be thus deduced. We start with the set S0 = Ic ∩ Rc.
Once we have Sk, we proceed as follows: For each rule r, we check that all the
literals from the body (premise) of this rule are already derived, i.e., are already
in the set Sk. If they are, we check that the head head(r) (conclusion) of this
rule is in Sk; if head(r) is not in Sk, we mark this literal head(r) as deducible.

• If after reviewing all the rules, it turns out that we did not mark anything,
we stop and return Sk as the desired set S of all literals that can be deduced
from the original ones by using the rules from P .

• Otherwise, if some new literals were marked, we add the marked (de-
ducible) literals to the set Sk. The resulting enlarged set will be the set
Sk+1.

We want every literal from Rc to be thus justified. In other words, we want the
resulting set S to coincide with Rc.

The above algorithm for computing what can be deduced is well known in
logic programming (see, e.g., [10, 11]); the resulting set S is called the least
model of the collection consisting of the rules P and of the facts Ic ∩Rc. If we
denote the least model of a collection P of rules and facts by L(P ), then we
arrive at the following definition:

Definition 4 Let I, R ⊆ U be databases, and let P be the set of rules of type
(2) and (3). We say that R is a P -justified revision of I (or simply justified
revision, for short) if Rc = L(P ∪ (Ic ∩Rc)).

By definition of the least model L, one can easily see that if Rc is a justified
revision, then it satisfies all the rules from the original collection P .

An efficient algorithm for checking whether a given revision is jus-

tified. It is known that the above algorithm requires polynomial (actually
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quadratic) time. Indeed, at each stage, we either stop, or add at least one new
literal from the head (conclusion) of one of the rules. Thus, the overall number
of stages cannot exceed the number of rules in the collection P , hence it cannot
exceed the length n of the original description of the problem.

On each stage, we check each literal from each rule. This checking cannot
take longer than the the size of the rules; thus, each stage requires O(n) com-
putational steps. Therefore, the algorithm consists of O(n) stages with O(n)
steps each, to the total of O(n) ·O(n) = O(n2) computational steps.

Thus, with this new definition of update minimality, we not only get a rea-
sonable definition of a justified revision, but we also get a polynomial-time
algorithm for checking whether a given revision is indeed justified.

Comments.

• It is worth mentioning that by using a more sophisticated algorithm, we
can actually compute the least model in linear time [3, 6, 24].

• It is known [12, 14] that every justified revision R is also minimal in the
sense of the above straightforward definition: there exists no set R′ 6= R
that satisfies all the rules from P and for which R′ − I ⊆ R − I and
I −R′ ⊆ I −R.

An efficient algorithm for checking whether a given combination of

tolerance revisions is optimal under constraints. Let us show that the
problem of finding the optimal tolerance revision under constraints can be nat-
urally reformulated in terms of revision programming. To describe this refor-
mulation, we will use the above atomic statements ci (meaning “the threshold
xi is changed”) and ci (meaning “the threshold xi is changed”).

The initial database I is the description of all the thresholds which are
changed according to the original (imperfect) plan. The above constraints can
then be naturally reformulated as rules of revision programming.

For example, the constraints that at least one of the two thresholds xi and
xi must be changed take the following form:

in(ci)← out(ci);

in(ci)← out(ci).

The constraints that out of the four thresholds xi, xi, xj , and xj , at least one
must change, take the following form:

in(cj)← out(ci),out(ci),out(cj);

in(cj)← out(ci),out(ci),out(cj);

in(ci)← out(ci),out(cj),out(cj);

in(ci)← out(ci),out(cj),out(cj).
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The constraint that no more than one of the two thresholds xi and xi should
be updated takes the form:

out(ci)← in(ci);

out(ci)← in(ci).

The constraints that we should change at most three of four thresholds xi, xi,
xj , and xj take the following form:

out(cj)← in(ci), in(ci), in(cj);

out(cj)← in(ci), in(ci), in(cj);

out(ci)← in(ci), in(cj), in(cj);

out(ci)← in(ci), in(cj), in(cj).

The constraint that once we change one of the threshold xi and xi, we should
change the other one as well, is described as follows:

in(ci)← in(ci);

in(ci)← in(ci).

We have already described an efficient revision programming algorithm for
checking whether a given revision is justified. Since we have reformulated our
tolerance-related problems in terms of revision programming, we can thus use
this algorithm to check whether a given combination of threshold changes is
optimal under given constraints.

Therefore, we have an efficient algorithm for checking whether a given com-
bination of tolerance revisions is optimal under constraints.

Revision programming can be also used to find a combination of tol-

erance revisions which is optimal under given constraints. In the pre-
vious section, we described how revision programming can be used to check
whether a given combination of tolerance revisions is indeed optimal under
given constraints.

It is also possible to use revision programming to also find such optimal com-
binations of tolerance revisions. Of course, as we have mentioned, the problem
of finding an optimal combination of tolerance revisions is, in general, NP-hard,
so we cannot hope that the resulting algorithm will always work fast; however,
for small size problems, this algorithm is usually reasonable efficient.

This algorithm is based on the fact that certain transformations (called
shifts) preserve justified revisions [12]. For each set W ⊆ U , a W -transfor-
mation is defined as follows:

• For every revision literal α (i.e., a literal of the form in(a) or out(a)), we
define

TW (α)
def
=

{

αD when a ∈W
α when a /∈W .
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• For every set L of revision literals, we define TW (L) as the result of ap-
plying the transformation TW to all the literals from this set L, i.e., as

TW (L)
def
= {TW (α) |α ∈ L}.

• Similarly, for every set A of atoms, we define TW (A) as follows:

TW (A) = {a | in(a) ∈ TW (Ac)}.

• Finally, for a collection P of revision rules, we define TW (P ) as the result
of applying TW to every literal in P .

The Shifting Theorem [12] states that for any two databases I and J , database
R is a P -justified revision of I if and only if TI∆J(R) is a TI∆J(P )-justified

revision of J , where I∆J
def
= (I − J) ∪ (J − I).

Let I be the initial database, and let P be a given collection of revision rules.
Then, the resulting algorithm for finding a justified revision of I is as follows:

1. Apply the transformation TI to P to obtain TI(P ) (corresponding to the
empty initial database J = ∅).

2. Convert TI(P ) into a logic program with constraints by replacing revision
rules of the type (2) by

a← a1, . . . , am, not b1, . . . , not bn (5)

and replacing revision rules of the type (3) by constraints

← a, a1, . . . , am, not b1, . . . , not bn. (6)

We will denote the resulting logic program with constraints by lp(TI(P )).

3. Apply an “answer set” programming engine (e.g., smodels [16]) to the
program lp(TI(P )). These engines return a collection of sets of atoms
called answer sets.

4. Finally, apply the transformation TI to the answer sets produced by the
engine.

As shown in [12], the resulting sets will be exactly P -justified revisions of I.
Since we have shown that our problem – finding a combination of tolerance

revisions which is optimal under given constraints – can be described in terms
of revision rules, we can therefore use this algorithm to find a combination of
tolerance revisions which is optimal under given constraints.
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Comment. In the above text, we considered only constraints that have to be
satisfied. In addition to such constraints, there are usually constraints that are
desirable but not necessary. There can be several different levels of desirability,
e.g., the user may consider some constraints more important than the others.
In other words, instead of a set of equally important constraints, we have a set
of constraints with user-defined preferences between these constraints.

An extension of revision programming to such situations is presented in
[18]; by using algorithms presented in [18], we can therefore incorporate such
preferences into our tolerance-related problems.
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