
Annotated revision programsVictor Marek, Inna Pivkina, and Miros law Truszczy�nskiDepartment of Computer Science, University of Kentucky, Lexington, KY 40506-0046marek|inna|mirek@cs.engr.uky.eduAbstract. Revision programming was introduced as a formalism to de-scribe and enforce updates of belief sets and databases. Revision pro-gramming was extended by Fitting who assigned annotations to revisionatoms. Annotations provide a way to quantify certainty (likelihood) thata revision atom holds. The main goal of our paper is to reexamine thework of Fitting, argue that his semantics does not always provide resultsconsistent with intuition and to propose an alternative treatment of an-notated revision programs. Our approach di�ers from that proposed byFitting in two key aspects: we change the notion of a model of a programand we change the notion of a justi�ed revision. We show that under thisnew approach fundamental properties of justi�ed revisions of standardrevision programs extend to the case of annotated revision programs.1 IntroductionRevision programming is a formalism to specify and enforce constraints ondatabases, belief sets and, more generally, on arbitrary sets of elements. Revisionprogramming was introduced and studied in [MT95,MT98]. The formalism wasshown to be closely related to logic programming with stable model semantics[MT98,PT97]. In [MPT99], a simple correspondence of revision programmingwith the general logic programming system of Lifschitz and Woo [LW92] was dis-covered. Roots of another recent formalism of dynamic programming [ALP+98]can also be traced back to revision programming.Revision rules come in two forms of in-rules and out-rules:in(a) in(a1); : : : ; in(am);out(b1); : : : ;out(bn) (1)and out(a) in(a1); : : : ; in(am);out(b1); : : : ;out(bn): (2)Expressions in(a) and out(a) are called revision atoms. Informally, the atomin(a) stands for \a is in the current set" and out(a) stands for \a is not in thecurrent set." The rules (1) and (2) have the following imperative, or computa-tional, interpretation: whenever elements ak, 1 � k � m, belong to the currentset (database, belief set) and none of the elements bl, 1 � l � n, belongs to thecurrent set then, in the case of rule (1), the item a must be added to the set (if itis not there already), and in the case of rule (2), a must be eliminated from the

database (if it is there). The rules (1) and (2) have also an obvious declarativeinterpretation.To provide a precise semantics to revision programs, that is, collections ofrevision rules, the concept of a justi�ed revision was introduced in [MT95,MT98].Informally, given an initial set BI and a revision program P , a justi�ed revisionof BI with respect to P (or, simply, a P -justi�ed revision of BI) is obtainedfrom BI by adding some elements to BI and by removing some other elementsfrom BI so that each change is, in a certain sense, justi�ed by the program.The formalism of revision programs was extended by Fitting [Fit95] to thecase when revision atoms are assigned annotations. These annotations can beinterpreted as the degree of con�dence that a revision atom holds. For instance,an annotated atom (in(a):0:2) can be regarded as the statement that a is in theset with probability 0:2. In his paper, Fitting described the concept of a justi�edrevision of an annotated program and studied properties of that notion.The main goal of our paper is to reexamine the work of Fitting, argue thathis semantics does not always provide results consistent with intuition, and topropose an alternative treatment of annotated revision programs. Our approachdi�ers from that proposed by Fitting in two key aspects: we change the notion ofa model of a program and we change the notion of a justi�ed revision. We showthat under this new approach all fundamental properties of justi�ed revisions ofstandard revision programs extend to the case of annotated revision programs.We also show that annotated revision programming can be given a more uni-form treatment if the syntax of revision programs is somewhat modi�ed. Thenew syntax yields a formalism that is equivalent to the original formalism ofannotated revision programs. The advantage of the new syntax is that it allowsus to generalize the shifting theorem proved in [MPT99] and used there to es-tablish the equivalence of revision programming with general logic programmingof Lifschitz and Woo [LW92].Finally, in the paper we also address briey the issue of disjunctive annotatedprograms and other possible research directions.2 PreliminariesThroughout the paper we consider a �xed universe U whose elements are referredto as atoms. Expressions of the form in(a) and out(a), where a 2 U , are calledrevision atoms. In the paper we assign annotations to revision atoms. Theseannotations are members of a complete distributive lattice with the de Morgancomplement (an order reversing involution). Throughout the paper this lattice isdenoted by T . The partial ordering on T is denoted by � and the correspondingmeet and join operations by ^ and _, respectively. The de Morgan complementof a 2 T is denoted by �a.An annotated revision atom is an expression of the form (in(a):�) or (out(a):�), where a 2 U and � 2 T . An annotated revision rule is an expression of theform p q1; : : : ; qn;

where p, q1; : : : ; qn are annotated revision atoms. An annotated revision programis a set of annotated revision rules.A T -valuation is a mapping from the set of revision atoms to T . A T -valuation v describes our information about the membership of the elementsfrom U in some (possibly unknown) set B � U . For instance, v(in(a)) = �can be interpreted as saying that a 2 B with certainty �. A T -valuation vsatis�es an annotated revision atom (in(a):�) if v(in(a)) � �. Similarly, v sat-is�es (out(a):�) if v(out(a)) � �. The T -valuation v satis�es a list or a setof annotated revision atoms if it satis�es each member of the list or the set.A T -valuation satis�es an annotated revision rule if it satis�es the head of therule whenever it satis�es the body of the rule. Finally, a T -valuation satis�es anannotated revision program (is a model of the program) if it satis�es all rules inthe program.Given a revision program P we can assign to it an operator on the set of allT -valuations. Let tP (v) be the set of the heads of all rules in P whose bodiesare satis�ed by v. We de�ne an operator TP as follows:TP (v)(l) =_f�j(l:�) 2 tP (v)g(note that ? is the join of an empty set of lattice elements). The operatorTP is a counterpart of the well-know van Emden-Kowalski operator from logicprogramming and it will play an important role in our paper.It is clear that under T -valuations, the information about an element a 2 Uis given by a pair of elements from T that are assigned to revision atoms in(a)and out(a). Thus, in the paper we will also consider an algebraic structure T 2with the domain T � T and with an ordering �k de�ned by:h�1; �1i �k h�2; �2i if �1 � �2 and �1 � �2:If a pair h�1; �1i is viewed as a measure of our information about membershipof a in some unknown set B then �1 � �2 and �1 � �2 imply that the pairh�2; �2i represents higher degree of knowledge about a. Thus, the ordering �kis often referred to as the knowledge or information ordering. Since the latticeT is complete, T 2 is a complete lattice with respect to the ordering �k1.The operations of meet, join, top, and bottom under �k are denoted
, �,>, and ?, respectively. In addition, we make use of an additional operation,conation. Conation is de�ned as �h�; �i = h��; ��i. An element A 2 T 2 isconsistent if A �k �A.A T 2-valuation is a mapping from atoms to elements of T 2. If B(a) = h�; �iunder some T 2-valuation B, we say that under B the element a is in a set withcertainty � and it is not in the set with certainty �. We say that a T 2-valuationis consistent if it assigns a consistent element of T 2 to every atom in U .1 There is another ordering that can be associated with T 2. We can de�ne h�1; �1i �th�2; �2i if �1 � �2 and �1 � �2. This ordering is often called the truth ordering.Since T is a distributive lattice, T 2 with both orderings �k and �t forms a bilattice(see [Gin88,Fit99] for a de�nition). In this paper we will not use the ordering �t northe fact that T 2 is a bilattice.

In the paper, T 2-valuations will be used to represent current informationabout sets (databases) as well as change that needs to be enforced. Let B bea T 2-valuation representing our knowledge about a certain set and let C be aT 2-valuation representing change that needs to be applied to B. We de�ne therevision, B0, of B by C by B0 = (B
�C)� C:The intuition is as follows. After the revision, the new valuation must containat least as much knowledge about atoms being in and out as C. On the otherhand, this amount of knowledge must not exceed implicit bounds present inC and expressed by �C, unless C directly implies so (if C(a) = h�; �i, thenevidence for in(a) must not exceed �� and the evidence for out(a) must notexceed ��, unless C directly implies so). Since we prefer explicit evidence of Cto implicit evidence expressed by �C, we perform the change by �rst using �Cand then applying C (however, let us note here that the order matters only ifC is inconsistent; if C is consistent, (B
 �C) � C = (B � C)
 �C). Thisspeci�cation of how a change modeled by a T 2-valuation is enforced plays a keyrole in our de�nition of justi�ed revisions in Section 4.There is a one-to-one correspondence � between T -valuations (of revisionatoms) and T 2-valuations (of atoms). For a T -valuation v, the T 2-valuation�(v) is de�ned by: �(v)(a) = hv(in(a)); v(out(a))i. The inverse mapping of � isdenoted by ��1. Clearly, using the mapping �, the notions of satisfaction de�nedearlier for T -valuations can be extended to T 2-valuations. Similarly, the operatorTP gives rise to a related operator T bP . The operator T bP is de�ned on the set ofall T 2-valuations by T bP = � � TP � ��1. The key property of the operator T bP isits �k-monotonicity.Theorem 1. Let P be an annotated revision program and let B and B0 be twoT 2-valuations such that B �k B0. Then, T bP (B) �k T bP (B0).By Tarski-Knaster Theorem it follows that the operator T bP has a least �x-point in T 2 [KS92]. This �xpoint is an analogue of the concept of a least Her-brand model of a Horn program. It represents the set of annotated revision atomsthat are implied by the program and, hence, must be satis�ed by any revisionunder P of any initial valuation. Given an annotated revision program P wewill refer to the least �xpoint of the operator T bP as the necessary change of Pand will denote it by NC(P). The present concept of the necessary change gen-eralizes the corresponding notion introduced in [MT95,MT98] for the originalunannotated revision programs.To illustrate concepts and results of the paper, we will consider two speciallattices. The �rst of them is the lattice with the domain [0; 1] (interval of reals)and with the standard ordering � and the standard complement operation. Wewill denote this lattice by T[0;1]. Intuitively, the annotated revision atom (in(a):x), where x 2 [0; 1], stands for the statement that a is \in" with likelihood(certainty) x.

The second lattice is the Boolean algebra of all subsets of a given set X . It willbe denoted by TX . We will think of elements from X as experts. The annotatedrevision atom (out(a):Y), where Y � X , will be understood as saying that a isbelieved to be \out" by those experts that are in Y (the atom (in(a):Y) has asimilar meaning).3 Models and c-modelsThe semantics of annotated revision programs will be based on the notion of amodel as de�ned in the previous section. The following result provides a char-acterization of the concept of a model in terms of the operator T bP .Theorem 2. A T 2-valuation B of an annotated revision program P is a modelof P (satis�es P) if and only if B �k T bP (B).Given an annotated revision program P , its necessary changeNC(P) satis�esNC(P) = T bP (NC(P)). Hence, NC(P) is a model of P .As we will argue now, not all models are appropriate for describing the mean-ing of an annotated revision program. The problem is that T 2-valuations maycontain inconsistent information about elements from U . When studying themeaning of an annotated revision program we will be interested in those modelsonly whose inconsistencies are limited by the information explicitly or implicitlypresent in the program.Consider the annotated revision program P , consisting of the following rule:(in(a):fqg) (out(a):fpg)(the literals are annotated with elements of the lattice Tfp;qg). Some models ofthis program are consistent (for instance, the T 2-valuation that assigns hfqg; fpgito a). However, P also has inconsistent models. Let us consider �rst the T 2-valuation B1 such that B1(a) = hfp; qg; fpgi. Clearly, B1 is a model of P . More-over, it is an inconsistent model | the expert p believes both in(a) and out(a).Let us notice though that this inconsistency is not disallowed by the program.The rule (in(a) : fqg) (out(a) : fpg) is applicable with respect to B1 and,thus, provides an explicit evidence that q believes in in(a). This fact implicitlyprecludes q from believing in out(a). However, this rule does not preclude thatexpert p believes in out(a). In addition, since no rule in the program providesany information about out(a), it prevents neither p nor q from believing in in(a).To summarize, the program allows for p to have inconsistent beliefs (however,q's beliefs must be consistent).Next, consider the T 2-valuation B2 such that B2(a) = hfp; qg; fp; qgi. Thisvaluation is also a model of P . In B2 both p and q are inconsistent in theirbeliefs. As before, the inconsistent beliefs of p are not disallowed by P . However,reasoning as before we see that the program disallows q to believe in out(a). Thusthe inconsistent beliefs of expert q cannot be reconciled with P . In our study ofannotated revision programs we will restrict ourselves only to consistent models

and to those inconsistent models whose all inconsistencies are not disallowed bythe program.Speaking more formally, by direct (or explicit) evidence we mean evidenceprovided by heads of program rules applicable with respect to B. It can bedescribed as T bP (B). The implicit bound on allowed annotations is given by aversion of the closed world assumption: if the evidence for a revision atom lprovided by the program is � then, the evidence for the dual revision atom lD(in(a), if l = out(a), or out(a), otherwise) must not exceed �� (unless explicitlyforced by the program). Thus, the implicit upper bound on allowed annotationsis given by �T bP (B). Hence, a model B of a program P contains no more ev-idence than what is implied by P given B if B �k T bP (B) � (�T bP (B)). Thisdiscussion leads us to a re�nement of the notion of a model of an annotatedrevision program.De�nition 1. Let P be an annotated revision program and let B be a T 2-valuation. We say B is a c-model of P ifT bP (B) �k B �k T bP (B)� (�T bP (B)):Thus, coming back to our example, the T 2-valuation B1 is a c-model of Pand B2 is not.The \c" in the term c-model is to emphasize that c-models are \as consistentas possible", that is, inconsistencies are limited to those that are not explicitlyor implicitly disallowed by the program. The notion of a c-model will play animportant consideration in our considerations.Clearly, by Theorem 2, a c-model of P is a model of P . In addition, it is easyto see that the necessary change of an annotated program P is a c-model of P(it follows directly from the fact that NC(P) = T bP (NC(P))).The distinction between models and c-models appears only in the context ofinconsistent information. This observation is formally stated below.Theorem 3. Let P be an annotated revision program. A consistent T 2-valu-ation B is a c-model of P if and only if B is a model of P .4 Justi�ed revisionsIn this section, we will extend to the case of annotated revision programs thenotion of a justi�ed revision introduced for revision programs in [MT95]. Thereader is referred to [MT95,MT98] for the discussion of motivation and intuitionsbehind the concept of a justi�ed revision and of the role of the inertia principle(a version of the closed world assumption).There are several properties that one would expect to hold when the no-tion of justi�ed revision is extended to the case of programs with annotations.Clearly, the extended concept should specialize to the original de�nition if anno-tations can be dropped. Next, all main properties of justi�ed revisions studied in[MT98,MPT99] should have their counterparts in the case of justi�ed revisions

of annotated programs. In particular, justi�ed revisions of an annotated logicprogram should satisfy it. Finally, there is one other requirement that naturallyarises in the context of programs with annotations.Consider two annotated revision rules r and r0 that are exactly the sameexcept that the body of r contains two annotated revision atoms l:�1 and l:�2,while the body of r0 instead of l:�1 and l:�2 contains annotated revision atoml:�1 _ �2: r = : : : : : : ; (l:�1); : : : ; (l:�2); : : :r0 = : : : : : : ; (l:�1 _ �2); : : :It is clear, that for any T 2-valuation B, B satis�es (l:�1) and (l:�2) if and onlyif B satis�es (l:�1 _ �2). Consequently, replacing rule r by rule r0 (or vise versa)in an annotated revision program should have no e�ect on justi�ed revisionsIn fact, any reasonable semantics for annotated revision programs should beinvariant under such operation, and we will refer to this property of a semanticsof annotated revision programs as invariance under join.In this section we introduce the notion of the justi�ed revision of an annotatedrevision program and contrast it with an earlier proposal by Fitting [Fit95]. Inthe following section we show that our concept of a justi�ed revision satis�es allthe requirements listed above.Let a T 2-valuation BI represent our current knowledge about some subset ofthe universe U . Let an annotated revision program P describe an update thatBI should be subject to. The goal is to identify a class of T 2-valuations thatcould be viewed as representing updated information about the subset, obtainedby revising BI by P . As argued in [MT95,MT98], each appropriately \revised"valuation BR must be grounded in P and in BI , that is, any di�erence betweenBI and the revised T 2-valuation BR must be justi�ed by means of the programand the information available in BI .To determine whether BR is grounded in BI and P , we use the reduct of Pwith respect to the two valuations. The construction of reduct consists of twosteps and mirrors the original de�nition of the reduct of an unannotated revisionprogram [MT98]. In the �rst step, we eliminate from P all rules whose bodiesare not satis�ed by BR (their use does not have an a posteriori justi�cation withrespect to BR). In the second step, we take into account the initial valuation BI .How can we use the information about the initial T 2-valuation BI at thisstage? Assume that BI provides evidence � for a revision atom l. Assume alsothat an annotated revision atom (l:�) appears in the body of a rule r. In orderto satisfy this premise of the rule, it is enough to derive, from the programresulting from step 1, an annotated revision atom (l:), where � _ � �. Theleast such element exists (due to the fact that T is complete and distributive).Let us denote it by pcomp(�; �)2.Thus, in order to incorporate information about a revision atom l containedin the initial T 2-valuation BI , which is given by � = (��1(BI))(l), we proceed2 The operation pcomp(�; �) is known in the lattice theory as the relative pseudocom-plement, see [RS70].

as follows. In the bodies of rules of the program obtained after step 1, we replaceeach annotated revision atom of the form (l:�) by the annotated revision atom(l:pcomp(�; �)).Now we are ready to formally introduce the notion of reduct of an annotatedrevision program P with respect to the pair of T 2-valuations, initial one, BI ,and a candidate for a revised one, BR.De�nition 2. The reduct PBR jBI is obtained from P by1. removing every rule whose body contains an annotated atom that is not sat-is�ed in BR,2. replacing each annotated atom (l:�) from the body of each remaining rule bythe annotated atom (l:), where = pcomp((��1(BI))(l); �).We now de�ne the concept of a justi�ed revision. Given an annotated revisionprogram P , we �rst compute the reduct PBR jBI of the program P with respectto BI and BR. Next, we compute the necessary change for the reduced program.Finally we apply the change thus computed to the T 2-valuation BI . A T 2-valuation BR is a justi�ed revision of BI if the result of these three steps is BR.Thus we have the following de�nition.De�nition 3. BR is a P -justi�ed revision of BI if BR = (BI
�C)�C, whereC = NC(PBR jBI) is the necessary change for PBR jBI .We will now contrast the above approach with one proposed by Fitting in[Fit95]. In order to do so, we recall the de�nitions introduced in [Fit95]. The keydi�erence is in the way Fitting de�nes the reduct of a program. The �rst stepis the same in both approaches. However, the second steps, in which the initialvaluation is used to simplify the bodies of the rules not eliminated in the �rststep of the construction, di�er.De�nition 4 (Fitting). Let P be an annotated revision program and let BIand BR be T 2-valuations. The F-reduct of P with respect to (BI ; BR) (denotedPFBR jBI) is de�ned as follows:1. Remove from P every rule whose body contains an annotated revision atomthat is not satis�ed in BR.2. From the body of each remaining rule delete any annotated revision atomthat is satis�ed in BI .The notion of justi�ed revision as de�ned by Fitting di�ers from our notiononly in that the necessary change of the F-reduct is used. We call the justi�edrevision using the notion of F -reduct, the F-justi�ed revision.In the remainder of this section we show that the notion of the F-justi�edrevision does not in general satisfy some basic requirements that we would likejusti�ed revisions to have. In particular, F-justi�ed revisions under an annotatedrevision program P are not always models of P .

Example 1. Consider the lattice Tfp;qg. Let P be a program consisting of thefollowing rules: (in(a):fpg) (in(b):fp; qg) and (in(b):fqg) and let BI be an initial valuation such that BI(a) = h;; ;i and BI(b) = hfpg; ;i.Let BR be a valuation given by BR(a) = h;; ;i and BR(b) = hfp; qg; ;i. Clearly,PFBR jBI = P , and BR is an F -justi�ed revision of BI (under P). However, BRdoes not satisfy P .The semantics of F -justi�ed revisions also fails to satisfy the invariance underjoin property.Example 2. Let P be a revision program consisting of the following rules:(in(a):fpg) (in(b):fp; qg) and (in(b):fqg) and let P 0 consist of(in(a):fpg) (in(b):fpg); (in(b):fqg) and (in(b):fqg) Let the initial valuation BI be given by BI(a) = h;; ;i and BI(b) = hfpg; ;i. Theonly F-justi�ed revision of BI (under P) is a T 2-valuation BR, where BR(a) =h;; ;i and BR(b) = hfp; qg; ;i. The only F-justi�ed revision of BI (under P 0)is a T 2-valuation B0R, where B0R(a) = hfpg; ;i and B0R(b) = hfp; qg; ;i. Thus,replacing in the body of a rule annotated revision atom (in(b):fp; qg) by (in(b):fpg) and (in(b):fqg) a�ects F-justi�ed revisions.However, in some cases the two de�nitions of justi�ed revision coincide. Thefollowing result provides a complete characterization of those cases.Theorem 4. F-justi�ed revisions and justi�ed revisions coincide if and only ifthe lattice T is linear (that is, for any two elements a; b 2 T either a � b orb � a).Theorem 4 explains why the di�erence between the justi�ed revisions and F -justi�ed revisions is not seen when we limit our attention to revision programsas those considered in [MT98]. Namely, the lattice T WO = ff ; tg of booleanvalues is linear. Similarly, the lattice of reals from the segment [0; 1] is linear,and there the di�erences cannot be seen either.5 Properties of justi�ed revisionsIn this section we study basic properties of justi�ed revisions. We show thatkey properties of justi�ed revisions in the case of revision programs withoutannotations have their counterparts in the case of justi�ed revisions of annotatedrevision programs.

First, we will observe that revision programs as de�ned in [MT95] can beencoded as annotated revision programs (with annotations taken from the latticeT WO = ff ; tg). Namely, a revision rulep q1; : : : qm(where p and all qis are revision atoms) can be encoded as(p:t) (q1:t); : : : ; (qm:t)In [Fit95], Fitting argued that under this encoding the semantics of F-justi�edrevisions generalizes the semantics of justi�ed revisions introduced in [MT95].Since for lattices whose ordering is linear the approach by Fitting and the ap-proach presented in this paper coincide, and since the ordering of T WO is linear,the semantics of justi�ed revisions discussed here extends the semantics of jus-ti�ed revisions from [MT95].Next, let us recall that in the case of revision programs without annotations,justi�ed revisions under a revision program P are models of P . In the case ofannotated revision programs we have a similar result.Theorem 5. Let P be an annotated revision program and let BI and BR beT 2-valuations. If BR is a P -justi�ed revision of BI then BR is a c-model of P(and, hence, also a model of P).In the case of revision programs without annotations, a model of a programP is its unique P -justi�ed revision. In the case of programs with annotations,the situation is slightly more complicated. The next result characterizes thosemodels of an annotated revision program that are their own justi�ed revisions.Theorem 6. Let a T 2-valuation BI be a model of an annotated revision programP . Then, BI is a P -justi�ed revision of itself if and only if BI is a c-model ofP . As we observed above, in the case of programs without annotations, modelsof a revision program are their own unique justi�ed revisions. This property doesnot hold, in general, in the case of annotated revision programs.Example 3. Consider an annotated revision program P (with annotations be-longing to Tfp;qg) consisting of the clauses:(out(a):fqg) and (in(a):fqg) (in(a):fqg)Consider a T 2-valuation BI such that BI(a) = hfqg; fqgi. It is easy to see thatBI is a c-model of P . Hence, BI is its own justi�ed revision (under P).However, BI is not the only P -justi�ed revision of BI . Consider the T 2-valuation BR such that BR(a) = h;; fqgi. We have PBR jBI = f(out(a):fqg) g.Let us denote the corresponding necessary change, NC(PBR jBI), by C. Then,C(a) = h;; fqgi. Hence, �C = hfpg; fp; qgi and ((BI
�C)�C)(a) = h;; fqgi =BR(a). Consequently, BR is a P -justi�ed revision of BI .

The same behavior can be observed in the case of programs annotated withelements from other lattices.Example 4. Let P be an annotated revision program (annotations belong to thelattice T[0;1]) consisting of the rules:(out(a):1) and (in(a):0:4) (in(a):0:4)Let BI be a valuation such that BI(a) = h0:4; 1i. Then, BI is a c-model ofP and, hence, it is its own P -justi�ed revision. Consider a valuation BR suchthat BR(a) = h0; 1i. We have PBR jBI = f(out(a) :1) g. Let us denote thenecessary change NC(PBR jBI) by C. Then C(a) = h0; 1i and �C = h0; 1i.Thus, ((BI
�C)�C)(a) = h0; 1i = BR(a). That is, BR is a P -justi�ed revisionof BI .Note that in both examples the additional justi�ed revision BR of BI issmaller than BI with respect to the ordering �k. It is not coincidental as demon-strated by our next result.Theorem 7. Let BI be a model of an annotated revision program P . Let BR bea P -justi�ed revision of BI . Then, BR �k BI .Finally, we observe that if a consistent T 2-valuation is a model (or a c-model;these notions coincide in the class of consistent valuations) of a program then,it is its unique justi�ed revision.Theorem 8. Let BI be a consistent model of an annotated revision program P .Then, BI is the only P -justi�ed revision of itself.To summarize, when we consider inconsistent valuations (they appear natu-rally, especially when we measure beliefs of groups of independent experts), weencounter an interesting phenomenon. An inconsistent valuation BI , even whenit is a model of a program, may have di�erent justi�ed revisions. However, allthese additional revisions must be less informative than BI . In the case of con-sistent models this phenomenon does not occur. If a valuation B is consistentand satis�es P then it is its unique P -justi�ed revision.6 An alternative way of describing annotated revisionprograms and order-isomorphism theoremWe will now provide an alternative description of annotated revision programs.Instead of evaluating separately revision atoms (i.e. expressions of the form in(a)and out(a)) we will evaluate atoms. However, instead of evaluating revisionatoms in T , we will evaluate atoms in T 2 (i.e. T � T). This alternative presen-tation will allow us to obtain a result on the preservation of justi�ed revisionsunder order isomorphisms of T 2. This result is a generalization of the \shifttheorem" of [MPT99].

An expression of the form ah�; �i, where h�; �i 2 T 2, will be called an anno-tated atom (thus, annotated atoms are not annotated revision atoms). Intuitively,an atom ah�; �i stands for both (in(a):�) and (out(a):�). An annotated ruleis an expression of the form p q1; : : : ; qn where p; q1; : : : ; qn are annotatedatoms. An annotated program is a set of annotated rules.A T 2-valuation B satis�es an annotated atom ah�; �i if h�; �i �k B(a).This notion of satisfaction can be extended to annotated rules and annotatedprograms.We will now de�ne the notions of reduct, necessary change and justi�edrevision for the new kind of program. The reduct of a program P with respectto two valuations BI and BR is de�ned in a manner similar to De�nition 2.Speci�cally, we leave only the rules with bodies that are satis�ed by BR, andin the remaining rules we reduce the annotated atoms (except that now thetransformation � is no longer needed!). Next, we compute the least �xpoint ofthe operator associated with the reduced program. Finally, as in De�nition 3,we de�ne the concept of justi�ed revision of a valuation BI with respect to arevision program P .It turns out that this new syntax does not lead to a new notion of justi�edrevision. Since we talk about two di�erent syntaxes, we will use the term \oldsyntax" to denote the revision programs as de�ned in Section 2, and \new syn-tax" to describe programs introduced in this section. Speci�cally we now exhibittwo mappings. The �rst of them, tr1, assigns to each \old" in-rule(in(a):�) (in(b1):�1); : : : ; (in(bm):�m); (out(s1):�1); : : : ; (out(sn):�n);a \new" ruleah�;?i b1h�1;?i; : : : ; bmh�m;?i; s1h?; �1i; : : : ; snh?; �ni:Encoding of an \old" out-rule(out(a):�) (in(b1):�1); : : : ; (in(bm):�m); (out(s1):�1); : : : ; (out(sn):�n)is analogous:ah?; �i b1h�1;?i; : : : ; bmh�m;?i; s1h?; �1i; : : : ; snh?; �ni:Translation tr2, in the other direction, replaces a revision \new" rule by onein-rule and one out-rule. Speci�cally, a \new" ruleah�; �i a1h�1; �1i; : : : ; anh�n; �niis replaced by two \old" rules (with identical bodies but di�erent heads)(in(a):�) (in(a1):�1); (out(a):�1); : : : ; (in(an):�n); (out(an):�n)and (out(a):�) (in(a1):�1); (out(a):�1); : : : ; (in(an):�n); (out(an):�n):The translations tr1 and tr2 can be extended to programs. We then have thefollowing theorem.

Theorem 9. Both transformations tr1, and tr2 preserve justi�ed revisions. Thatis, if BI ; BR are valuations in T 2 and P is a program in the \old" syntax, thenBR is a P -justi�ed revision of BI if and only if BR is a tr1(P)-justi�ed revi-sion of BI . Similarly, if BI ; BR are valuations in T 2 and P is a program in the\new" syntax, then BR is a P -justi�ed revision of BI if and only if BR is atr2(P)-justi�ed revision of BI .In the case of unannotated revision programs, the shifting theorem proved in[MPT99] shows that for every revision program P and every two initial databasesB and B0 there is a revision program P 0 such that there is a one-to-one corre-spondence between P -justi�ed revisions of B and P 0-justi�ed revisions of B0. Inparticular, it follows that the study of justi�ed revisions (for unannotated pro-grams) can be reduced to the study of justi�ed revisions of empty databases. Wewill now present a counterpart of this result for annotated revision programs.The situation here is more complex. It is no longer true that a T 2-valuation canbe \shifted" to any other T 2-valuation. However, the shift is possible if the twovaluations are related to each other by an order isomorphism of the lattice of allT 2-valuations.There are many examples of order isomorphisms on the lattice of T 2-valua-tions. For instance, the mapping : T 2 ! T 2 de�ned by (h�; �i) = h�; �iis an order isomorphism of T 2. In the case of a speci�c lattice TX , other orderisomorphisms of T 2X are generated by permutations of the set X . An order iso-morphism on T 2 can be extended to annotated atoms, programs and valuations.The extension to valuations is again an order isomorphism, this time on thelattice of all T 2-valuations.The following result generalizes the shifting theorem of [MPT99].Theorem 10. Let be an order-isomorphism on the set of T 2-valuations. Then,BR is a P -justi�ed revision of BI if and only if (BR) is a (P)-justi�ed revisionof (BI).7 Conclusions and further researchThe main contribution of our paper is a new de�nition of the reduct (and hence ofjusti�ed revision) for the annotated programs considered by Fitting in [Fit95].This new de�nition eliminates some anomalies (speci�cally the fact that thejusti�ed revisions of [Fit95] do not have to be models of the program). We alsofound that in cases where the intuition of [Fit95] is very clear (for instance in casewhen annotations are numerical degrees of belief), the two concepts coincide.Due to the limited space of the extended abstract, some results were notincluded. Below we briey mention two research areas that are not discussedhere but that will be discussed in the full version of the paper.First, the annotation programs can be generalized to disjunctive case, thatis to programs admitting \nonstandard disjunctions" in the heads of rules. Itturns out that a de�nition of justi�ed revisions by means of such programs is

possible, and one can prove that the disjunctive revisions for programs that havethe head consisting of just one literal reduce to the formalism described above.Second, one can extend the formalism of annotated revision programs to thecase when the lattice of annotations is not distributive. However, in such caseonly some of the results discussed here still hold.8 AcknowledgmentsThis work was partially supported by the NSF grants CDA-9502645 and IRI-9619233.References[ALP+98] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T.C. Przy-musinski. Dynamic logic programming. In Proceedings of KR'98: Sixth InternationalConference on Principles of Knowledge Representation and Reasoning, Trento, Italy,pages 98 { 110. Morgan Kaufmann, 1998.[Fit95] M. C. Fitting. Annotated revision speci�cation programs. In Logic program-ming and nonmonotonic reasoning (Lexington, KY, 1995), volume 928 of LectureNotes in Computer Science, pages 143{155. Springer-Verlag, 1995.[Fit99] M. C. Fitting. Fixpoint semantics for logic programming { a survey. TheoreticalComputer Science, 1999. To appear.[Gin88] M.L. Ginsberg. Multivalued logics: a uniform approach to reasoning in arti�cialintelligence. Computational Intelligence, 4:265{316, 1988.[KS92] M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic pro-grams and its applications. Journal of Logic Programming, 12:335{367, 1992.[LW92] V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmonotonic reasoning.In Proceedings of the 3rd international conference on principles of knowledge rep-resentation and reasoning, KR '92, pages 603{614, San Mateo, CA, 1992. MorganKaufmann.[MPT99] W. Marek, I. Pivkina, and M. Truszczy�nski. Revision programming = logicprogramming + integrity constraints. In Computer Science Logic, 12th InternationalWorkshop, CSL'98, volume 1584 of Lecture Notes in Computer Science, pages 73{89. Springer, 1999.[MT95] W. Marek and M. Truszczy�nski. Revision programming, database updatesand integrity constraints. In Proceedings of the 5th International Conference onDatabase Theory | ICDT 95, volume 893 of Lecture Notes in Computer Science,pages 368{382. Springer-Verlag, 1995.[MT98] W. Marek and M. Truszczy�nski. Revision programming. Theoretical ComputerScience, 190(2):241{277, 1998.[PT97] T. C. Przymusinski and H. Turner. Update by means of inference rules. Journalof Logic Programming, 30(2):125{143, 1997.[RS70] H. Rasiowa and R. Sikorski. The Mathematics of metamathematics. PWN|Polish Scienti�c Publishers, Warsaw, 1970.

