Revision programming = logic programming -+
integrity constraints

Victor Marek, Inna Pivkina, and Mirostaw Truszczynski

Department of Computer Science, University of Kentucky, Lexington, K'Y 40506-0046
marek|inna|mirek@cs.engr.uky.edu

Abstract. We study revision programming, a logic-based mechanism for
enforcing constraints on databases. The central concept of this approach
is that of a justified revision based on a revision program. We show that
for any program P and for any pair of initial databases J and J' we can
transform (shift) the program P to a program P’ so that the size of the
resulting program does not increase and so that P-justified revisions of J
are shifted to P’-justified revisions of J'. Using this result we show that
revision programming is closely related to a subsystem of general logic
programming of Lifschitz and Woo. This, in turn, allows us to reduce
revision programming to logic programming extended by the concept of
a constraint with a suitably modified stable model semantics. Finally,
we use the connection between revision programming and general logic
programming to introduce a disjunctive version of our formalism.

1 Introduction

Revision programming was introduced in [MT98] as a formalism to describe
and study the process of database updates. In this formalism, the user specifies
updates by means of revision rules, that is, expressions of the following two

types:
in(a) « in(a;),...,in(ay),out(hy),...,out(db,) (1)

or
out(a) « in(ay),...,in(ay),out(b),...,out(db,), (2)

where a, a; and b; are data items from some finite universe, say U. Rules of the
first type are called in-rules and rules of the second type are called out-rules.

Revision rules have a declarative interpretation as constraints on databases.
For instance, an in-rule (1) imposes on a database the following condition: a is
in the database, or at least one a;, 1 <i < m, is not in the database, or at least
one b;, 1 < j <n,is in the database.

Revision rules also have a computational interpretation that expresses a
preferred way to enforce a constraint. Namely, assume that all data items a;,
1 <i < m, belong to the current database, say J, and none of the data items
b;j, 1 < j < n, belongs to J. Then, to enforce the constraint (1), the item a must
be added to the database (removed from it, in the case of the constraint (2)),
rather than some item a; removed or some item b; added.

In [MT98], a precise semantics for revision programs (collections of revision
rules) was defined. Given a revision program P and a database J, this semantics
specifies a family of databases, each of which might be chosen as an update of J by
means of the program P. These revised databases are called P-justified revisions
of J. In [MT98] (and in the earlier papers [MT94] and [MT95]), basic properties
of justified revisions were established. Subsequently, revision programming was
studied in the context of situation calculus [Bar97] and reasoning about actions
[McCT95,Tur97].

Revision programming has also been investigated from the perspective of its
close relationship with logic programming. In [MT98], it was argued that revi-
sion programming extends logic programming with stable semantics by showing
that revision programs consisting of in-rules only can be identified with logic
programs. A converse embedding — an encoding of revision programs as logic
programs — was constructed in [PT97]. The techniques from this paper are now
being exploited in the study of the problem of updating logic programs [AP97]
and resulted in a new paradigm of dynamic logic programming [ALP*98]. Well-
founded semantics for a formalism closely related to revision programming was
discussed in [BM97].

The key property of revision programming is the duality of in and out liter-
als. The duality theorem (Theorem 3.8 from [MT98]) demonstrated that every
revision program P has a counterpart, a dual revision program PP such that
P-justified revisions of a database J are precisely the complements of the PP-
justified revisions of the complement of J.

The key result of this paper, the shifting theorem (Theorem 4), is a general-
ization of the duality theorem from [MT98]. It states that P-justified revisions
of a database J can be computed by revising an arbitrarily chosen database I’ by
means of a certain “shifted” revision program P’. This program P’ is obtained
from P by uniformly replacing some literals in P by their duals. The choice of
literals to replace depends on J and J'. In addition, J and J’' determine also a
method to reconstruct P-justified revisions of J from P’-justified revisions of 7.

As a special case, the shifting theorem tells us that justified revisions of
arbitrary databases are determined by revisions, via shifted programs, of the
empty database. This result implies two quite surprising facts. First, it means
that although a revision problem is defined as pair (P,J) (revision program
and a database), full information about any revision problem can be recovered
from revision problems of very special type that deal with the empty database.
Moreover, the reduction does not involve any growth in the size of the revi-
sion program. Second, the shifting theorem implies the existence of a natural
equivalence relation between the revision problems: two revision problems are
equivalent if one can be shifted onto another.

The first of these two observations (the possibility to project revision prob-
lems onto problems with the empty database) allows us to establish a direct
correspondence between revision programming and a version of logic program-
ming proposed by Lifschitz and Woo [LW92]. We will refer to this latter system
as general disjunctive logic programming or, simply, general logic programming.

In general logic programming both disjunction and negation as failure opera-
tors are allowed in the heads of rules. In this paper we study the relationship
between revision programming and general logic programming. First, in Section
3, we show that revision programming is equivalent to logic programming with
stable model semantics extended by a concept of a constraint. Second, in Section
4, we extend revision programming to the disjunctive case.

2 Preliminaries

In this section we will review main concepts and results concerning revision
programming that are relevant to the present paper. The reader is referred to
[MT98] for more details.

Elements of some finite universe U are called atoms. Subsets of U are called
databases. Expressions of the form in(a) or out(a), where a is an atom, are
called literals. Literals will be denoted by greek letters a, etc. For a literal in(a),
its dual is the literal out(a). Similarly, the dual of out(a) is in(a). The dual of
a literal « is denoted by aP.

For a set of atoms R C U, we define

R = {in(a) : a € R} U {out(a) : a ¢ R}.

A set of literals is coherent if it does not contain a pair of dual literals. Given
a database J and a coherent set of literals L, we define

J®& L= (JU{a:in(a) € L}) \ {a:out(a) € L}.

Let P be a revision program. The necessary change of P, NC(P), is the least
model of P, when P is treated as a Horn program built of independent propo-
sitional atoms of the form in(a) and out(b). The necessary change describes all
insertions and deletions that are enforced by the program, independently of the
initial database.

In the transition from a database J to a database R, the status of some
elements does not change. A basic principle of revision programming is the rule
of inertia according to which, when specifying change by means of rules in a
revision program, no explicit justification for not changing the status is required.
Explicit justifications are needed only when an atom must be inserted or deleted.
The collection of all literals describing the elements that do not change the status
in the transition from a database J to a database R is called the inertia set for
J and R, and is defined as follows:

I(3,R) = {in(a):a € IN R} U {out(a):a ¢ TU R}.

By the reduct of P with respect to a pair of databases (J,R), denoted by
Py ¢, we mean the revision program obtained from P by eliminating from the
body of each rule in P all literals in I(J, R).

The necessary change of the program Py ¢ provides a justification for some
insertions and deletions. These are exactly the changes that are (a posteriori)

justified by P in the context of the initial database J and a (putative) revised
database R. The database R is a P-justified revision of J if the necessary change
of Py q is coherent and if R =7 @ NC(Py.q).

The following example illustrates the notion of justified revision.

Ezxample 1. Assume that we need to form a committee. There are four people
which can be on the committee: Ann, Bob, Tom and David. There are four
conditions on the committee members which need to be satisfied.

First, Ann and Bob are experienced employees, and we want to see at least
one of them on the committee. That is, if Ann is not on the committee, Bob must
be there, and if Bob is not on the committee, Ann must be there. Second, Tom
is an expert from another country and does not speak English well enough yet.
So, if Tom is on the committee, David should be on the committee too, because
David can serve as an interpreter. If David is not on the committee, Tom should
not be there, too. Third, David asked not to be on the same committee with
Ann. Fourth, Bob asked not to be on the same committee with David.

The initial proposal is to have Ann and Tom in the committee.

We want to form a committee which satisfies the four conditions and differs
minimally from the initial proposal. This is a problem of computing justified
revisions of initial database J = {Ann,Tom} with respect to revision program
P:

in(Bob
in(Ann
in(David

out(Tom

+ out(Ann)
+ out(Bob)
+ in(Tom)

+ out(David)
+ in(David)
+ in(Bob)

out(Ann
out(David

o — — — ~— —

Let us show that R = {Ann} is a P-justified revision of J . Clearly, U =
{Ann, Bob, Tom, David}. Thus,

I(3,R) = {in(Ann), out(Bob), out(David)}.
Therefore, Pj g is the following.

in(Bob
in(Ann
in(David

out(Tom

+ out(Ann)
(_
+ in(Tom)

out(Ann

<_
+ in(David)
out(David) +

in(Bob)

o O —

Hence, NC(Py x) = {in(Ann),out(Tom)}. It is coherent and R = IO NC(Py x).
Consequently, R is a P-justified revision of J (in fact, unique). |

In the paper we will use the following characterizations of justified revisions
given in [MT98].

Theorem 1. ([MT98]) The following conditions are equivalent:
1. A database R is a P-justified revision of a database J,

2. NC(PU{a+:a€elI(I,R)}) =R,

3. NC(P;) UI(J,R) = R".

Two results from [MT98] are especially pertinent to the results of this paper.
Given a revision program P, let us define the dual of P (P in symbols) to be the
revision program obtained from P by simultaneously replacing all occurrences
of all literals by their duals. The first of the two results we will quote here,
the duality theorem, states that revision programs P and PP are, in a sense,
equivalent. Our main result of this paper (Theorem 4) is a generalization of the
duality theorem.

Theorem 2. (Duality Theorem [MT98]) Let P be a revision program and
let J be a database. Then, R is a P-justified revision of I if and only if U \ R is
a PP -justified revision of U \ J.

The second result demonstrates that there is a straightforward relationship
between revision programs consisting of in-rules only and logic programs. Given
a logic program clause ¢

P Q... ,Qm,not S1,...,n0t Sy,
we define the revision rule rp(c) as

in(p) < in(q1),...,in(gn),out(sy),...,out(sy).

For a logic program P, we define the corresponding revision program rp(P) by:
rp(P) = {rp(c):c € P}.

Theorem 3. ([MT98]) A set of atoms M is a stable model of a logic program
P if and only if M is an rp(P)-justified revision of ().

It is also possible to represent revision programming in logic programming.
This observation is implied by complexity considerations (both the existence of a
justified revision and the existence of a stable model problems are NP-complete).
An explicit representation was discovered in [PT97]. In addition to representing
revision rules as logic program clauses, it encodes the initial database by means
of new variables and encodes the inertia rule as logic program clauses. As a
consequence to our main result (Theorem 4), we obtain an alternative (and
in some respects, simpler) connection between revision programming and logic
programming. Namely, we establish a direct correspondence between revision
programs and general logic programs of [LW92].

3 Shifting initial databases and programs

In this section we will introduce a transformation of revision programs and
databases that preserves justified revisions. Our results can be viewed as a gen-
eralization of the results from [MT98] on the duality between in and out in
revision programming.

Let W be a subset of U. We define a W -transformation on the set of all
literals as follows (below, a = in(a) or a = out(a)):

D
TW(a)z{a , whenaeW

a, whena¢W.

Thus, Tw replaces some literals by their duals and leaves other literals un-
changed. Specifically, if a belongs to W then literals in(a) and out(a) are re-
placed by their duals.

The definition of Ty naturally extends to sets of literals and sets of atoms.
Namely, for a set L of literals, we define Tw (L) = {Tw (a):« € L}. Similarly,
for a set A of atoms, we define

Ty (A) = {a : in(a) € Ty (A°)}.

The operator Ty has several useful properties. In particular, for a suitable
set W, Tw allows us to transform any database J; into another database J,.
Specifically, we have:

Ty, 9,(J1) = T2,

where + denotes the symmetric difference operator. Thus, it also follows that
Ty =0 and Ty(J)=U\7J.
Some other properties of the operator Ty are gathered in the following lemma.

Lemma 1. Let S; and Sy be sets of literals. Then:
1. TW(51 U 52) = Tw(sl) U Tw(SQ),‘

2. TW(51 n 52) = Tw(sl) n Tw(SQ),‘

3. TW(51 \52) = Tw(S1) \Tw(SQ),

4. Tw(S1) = Tw(S2) if and only if S; = Ss;

5. T (Ty (S1)) = 1.

In fact, Lemma 1 holds when S; and Sy are sets of atoms as well.

The operator Ty can now be extended to revision rules and programs. For
a revision rule r = a + ay, ..., q,,, we define

Tw(T) = Tw(a) «— Tw(al), A ,Tw(am).

Finally, for a revision program P, we define Tw (P) = {Tw(r):r € P}.

The main result of our paper, the shifting theorem, states that revision pro-
grams P and Ty (P) are equivalent in the sense that they define essentially the
same notion of change.

Theorem 4 (Shifting theorem). Let P be a revision program. For every two
databases J1 and Jo, a database Ry is a P-justified revision of J1 if and only if
Ty, .9,(R1) is a Ty, . g, (P)-justified revision of J».

Proof. Let W = J; + J5. When calculating the necessary change, we treat
literals as propositional atoms of the form in(a) and out(b). Observe that -
transformation can be viewed as renaming these atoms. If we rename all atoms
in the Horn program, find the least model of the obtained program, and then
rename the atoms back, we will get the least model of the original program.

In other words,

Tw (NC(Py, %,)) = NC(Tw (Py, x,))-

Let Ry = Tw(Ry). Observe that by the definition of Tw, I(J2,Rs) =
Tw(I(jliRl)) Hence, TW(Pthl) = (TW(P))jg,ng-
Theorem 1 and Lemma 1 imply the following sequence of equivalences.

— R, is a P-justified revision of Jy,

- NC(le,le) UI(J1,Ry) = :Ria

— Tw(NC(Py, 2,) UI(1,R1)) = T (R5),

— Tw(NC(Py, 2,)) U Tw(I(31,R0)) = Ty (R5),

- NC(Tw(Py, %,)) U I(J2,R2) = Tw({in(a) : a € R, } U {out(a) : a ¢

Ri}),
= NC((Tw(P))3,x,) UI(J2,Ra2) = RS,
- Ry =Tw(Ry) is a Tw (P)-justified revision of Js. O

Theorem 2 (the duality theorem) is a special case of Theorem 4 when J, =
U\ 7.

At first glance, a revision problem seems to have two independent param-
eters: a revision program P that specifies constraints to satisfy, and an initial
database J that needs to be revised by P. The shifting theorem shows that there
is a natural equivalence relation between pairs (P, J) specifying the revision prob-
lem. Namely, a revision problem (P,J) is equivalent to a revision problem (P’,J")
if P' = Tj.q (P). This is clearly an equivalence relation. Moreover, by the shift-
ing theorem, it follows that if (P,J) and (P',J') are equivalent then P-justified
revisions of J are in one-to-one correspondence with P’-revisions of J'. In par-
ticular, every revision problem (P,J) can be “projected” onto an isomorphic
revision problem (T3(P),0). Thus, the domain of all revision problems can be
fully described by the revision problems that involve the empty database. There
is an important point to make here. When shifting a revision program, its size
does not change (in other words, all revision programs associated with equivalent
revision problems have the same size).

Example 2. Let us take the same problem about forming a committee which we
considered in Example 1. Recall that J = {Ann,Tom}. Let us apply transforma-
tion Ty (shift to the empty initial database). It is easy to see that Ty (P) consists

of the rules:
in(Bob) « in(Ann)
out(Ann) < out(Bob)
in(David) + out(Tom)
in(Tom) + out(David)
in(Ann) < in(David)
out(David) + in(Bob)

This revision program has only one justified revision of §, {Tom}. Observe
moreover that {Tom} = Ty({Ann}). This agrees with the assertion of Theo-
rem 4. a

There is a striking similarity between the syntax of revision programs and
nondisjunctive (unitary) general logic programs of Lifschitz and Woo [LW92].
The shifting theorem, which allows us to effectively eliminate an initial database
from the revision problem, suggests that both formalisms may be intimately
connected. In the next section we establish this relationship. This, in turn, allows
us to extend the formalism of revision programming by allowing disjunctions in
the heads.

4 General disjunctive logic programs and revision
programming

Lifschitz and Woo [LW92] introduced a formalism called general logic program-
ming (see also [Lif96] and [SI95]). General logic programming deals with clauses
whose heads are disjunctions of atoms (we will restrict here to the case of atoms
only, even though in the original paper more general syntax is studied) and
atoms within the scope of the negation-as-failure operator. Specifically, Lifschitz
and Woo consider general program rules of the form:

Aql.. . |Ag|not Agy1]...Inot A; +— Aigq,..., Apynot Ay, ... ,not Ay, (3)

3 3 3

which can be also represented as

HPos U not(HNeg) < BPosU not(BNeg)

Y

where Aj,..., A, areatoms, HPos= {A;,..., A}, HNeg= {Api1,..., 4},
BPos = {Aj41,...,Am}, BNeg={Apmi1,..., An}.

A general logic program is defined as a collection of general program rules.

Given a set of atoms M and a clause ¢ of the form (3), M satisfies ¢ if from
the fact that every A;, [+ 1 <1i < m, belongs to M and no 4;, m+ 1 <i <mn,
belongs to M, it follows that one of A;, 1 < i < k, belongs to M or one of A;,
k+1 <1 <1, does not belong to M.

Lifschitz and Woo introduced a semantics of general logic programs that is
stronger than the semantics described above. It is the semantics of answer sets.

Answer sets are constructed in stages. First, one defines answer sets for programs
that do not involve negation as failure, that is, consist of clauses

Al“Ak — Ak+1:---aAm (4)

Given a program P consisting of clauses of type (4), a set of atoms M is an
answer set for P if M is a minimal set of atoms satisfying all clauses in P.

Next, given a general logic program P (now possibly with negation as failure
operator) and a set of atoms M, one defines the reduct of P with respect to M,
denoted PM | as the general logic program without negation as failure obtained
from P by

— deleting each disjunctive rule such that HNeg € M or BNegN M # (), and
— replacing each remaining disjunctive rule by HPos < BPos.

A set of atoms M is an answer set for P if M is an answer set for PM.

4.1 Answer sets for general programs and justified revisions

We will now show that revision programming is closely connected with a special
class of general logic programs, namely those for which all rules have a single
atom in the head. We will call such rules and programs unitary.

The encoding of revision rules as general logic program clauses is straight-
forward. Given a revision program in-rule r:

in(p) <~ in(ql)7) in(qm); OUt(Sl)7 ey OUt(Sn)
we define the disjunctive rule dj(r) as:
P Q... Qm,not S1,...,n0t Sp.

Similarly, given a revision program out-rule 7:

we define the disjunctive rule dj(r) as:

not p <+ qi,..., Qqm,Not 81,...,n0t Sy,.

3 3

Finally, for a revision program P, define dj(P) = {dj(r):r € P}.

The mapping dj(-) is a 1-1 correspondence between revision rules and unitary
general logic program rules, and revision programs and unitary general logic
programs.

The following result states that revision problems where the initial database
is empty can be dealt with by means of general logic programs. This result can
be viewed as a generalization of Theorem 3.

Theorem 5. Let P be a revision program. Then, R is a P-justified revision of
0 if and only if R is an answer set for dj(P).

Proof. Let R be a database. Let P’ be a revision program obtained from P by
deleting each out-rule that has out(a) in the head for some a ¢ R, and deleting
each rule which has out(a) in the body for some a € R. Then, dj(P’) is the
disjunctive program obtained from dj(P) by deleting each disjunctive rule such
that HNeg € R or BNegN R # @ (recall that this is the first step in constructing
dj(P)).

Observe that R is P-justified revision of @ if and only if R is P’-justified
revision of @. Indeed, inertia I((), R) = {out(a) : a € R}. From Theorem 1 we
have that R is P-justified revision of @ if and only if

NC(PU{a+:a€l(®,R)}) = NC(PU{out(a) +:a¢gR}) = R

From the definition of P’ and the fact that NC(P U {out(a) <: a € R}) is
coherent (as it equals R), it follows that

NC(P U {out(a) <:a gR}) = NC(P'U{out(a) +:a ¢ R}).

Therefore, using Theorem 1 again, we get that R is P-justified revision of § if
and only if R is P’-justified revision of .

Observe that if literal out(a), for some a, occurs in the body of a rule in P’
then out(a) € I(0,R). Also, inertia I(), R) consists only of literals of the form
out(a). Therefore, Pj 5 is obtained from P’ by eliminating each literal of the
form out(a) from the bodies of the rules.

Let Pé,jz = P"UP", where P" consists of all in-rules of P(Z;R’ P" = Py o\ P"
consists of all out-rules of Pé’y. Note, that all rules from P and P" have only
literals of the form in(a) in their bodies. Observe that if » € P"', then its head,
head(r) = out(a) for some a € R. By the definition, dj(P)® is obtained from
dj(P") by replacing each disjunctive rule by HPos - BPos. Therefore,

dj(P)Y® = dj(P"YU{ + ay,...,a; : out(a) « in(ay),...,in(a;) € P"}.

After this observations we are ready to prove the statement of the theorem.
(=) Let R be a P-justified revision of §. It follows that R is a P'-justified revision
of §. Thus, R = § & NC(Fj »). Assume that there exists a literal out(a) €
NC(Fj 5). Since NC(F; 5) is a subset of heads of rules from Fj 5, it must
be the case that a € R. This contradicts the fact that the necessary change is
coherent and R = 0 & NC(PéR). Therefore, NC(P(ZSR) consists only of literals
of the form in(a). It implies that NC (P) = {in(a) : a € R} is the least model
of P", and for every rule r € P there exist b such that in(b) € body(r) and
b ¢ R. Hence, R is the minimal set of atoms which satisfies all clauses in dj(P)X.
Thus, R is an answer set for dj(P).

(<) Let R be an answer set for dj(P). That is, R is the minimal set of atoms
which satisfies all clauses in
dj(P"YU{ + ay,...,a; : out(a) « in(ay),...,in(a;) € P"'}.

Then, any subset of R satisfies all clauses in

{ <+ ai,...,a; :out(a) < in(a1),...,in(ay) € P"'}.

Therefore, R is the minimal set of atoms which satisfies all clauses in dj(P").
Hence, {in(a) : a € R} is the least model of P" and satisfies P""’. Consequently,
{in(a) : @ € R} = NC(Pj 1), and R = § & NC(Fj 5). By the definition, R is
P'-justified revision of). Therefore, R is P-justified revision of). |

It might appear that the scope of Theorem 5 is restricted to the special
case of revision programs that update the empty database. However, the shift-
ing theorem allows us to extend this result to the general case. Thus, revision
programming turns out to be equivalent to the unitary fragment of general logic
programming. Indeed, we have the following corollary.

Corollary 1. Let P be a revision program and J a database. Then, a database R
is a P-justified revision of J if and only if T5(R) is an answer set for the program
dj(Ty(P)).

Consider a revision program P and a database J. A rule r € P is called a
constraint (with respect to J) if its head is of the form in(a), for some a € J, or
out(a), for some a ¢ J.

Theorem 6. Let P be a revision program and let J be a database. Let P’ consist
of all rules in P that are constraints with respect toJ. Let P" = P\ P'. A database
R is a P-justified revision of J if and only if R is a P"-justified revision of J that
satisfies all rules from P'.

Proof. By the shifting theorem it is enough to prove the statement for the case
J=0. Let 3= (. Then, P' consists of all out-rules of P and P" consists of all
in-rules of P.
(=) If Ris a P-justified revision of @), then R is a model of P. Hence, it is a
model of P! C P.

Theorem 1 implies that

NC(PU{a+:a€I(0,R)}) ={in(a) : a € R} U {out(a) : a ¢ R}.
Let M = NC(PU{a +:a € I(},R)}). That is, M is the least model of
Pu{a+:aeclI®,R)} =P UP"U{a+:acI(R)}.

By the definition of inertia, I(#,R) = {out(a) : a ¢ R}.
We will now show that M is the least model of P" U{a +: a € I(},R)}.
Let us divide P’ into two disjoint parts: P’ = P} U Pj, where heads of the
rules from P| are in {out(a) : a € R} and heads of the rules from Pj are in
{out(a) : a ¢ R}. For each rule r € P;, head(r) € I(§,R). Hence, there exists
rule head(r) < in the set {a <: a € I(B,R)}. Therefore, M is also the least
model of the program

P'"UP/ U{a<+:ael(l,R)}.

If we remove from the program some rules whose premises are false in M,
M remains the least model of the reduced program. Let us show that premises

of all rules from P| are false in M. Indeed, let r be a rule from P;. Then,
head(r) € {out(a) : a € R}. Assume that premises of r are true in M. Then,
head(r) must be true in M, since M is the model of P U P/ U {a «: a €
I(0,R)}. Hence, M N {out(a) : a € R} # 0, which contradicts the fact that
M = {in(a) : a € R} U {out(a) : a ¢ R}. Therefore, M is the least model of the
program P" U {a <: a € I(#,R)}. In other words,

NC(P"U{a+:a€elI(®,R)}) ={in(a): a € R} U{out(a) : a ¢ R}.

From Theorem 1 we conclude that R is a P"-justified revision of §.
(<) Assume R is a P"-justified revision of @), and R satisfies all rules from P’.
Theorem 1 implies that

NC(P"U{a+:a€el(h,R)}) =R".
Let M = R°. Then, M is the least model of
P'U{a<+:aelI(® R)}.

Clearly, M is also the least model of a modified program obtained by adding
some rules that are satisfied by M. All rules in P’ are satisfied by M by our
assumption. Therefore, M is the least model of

P UP'"U{a+:ael®,R)}=PU{a+:acI(B,R)}.

Hence,
NC(PU{a+:a€lI(®,R)})=M=R"
By Theorem 1, R is a P-justified revision of (). |

The reason for the term “constraint” is now clear. In computing P-justified
revisions only “non-constraints” are used. Then, the constraint part of P is used
to weed out some of the computed revisions.

Clearly, if J = (), the constraints are exactly the out-rules of a revision pro-
gram. We can extend the notion of a constraint to the case of unitary general
logic programs. Namely, a unitary program rule is a constraint if its head is of
the form not a (note that this notion of constraint is different from the one used
in [Lif96]). Theorem 6 has the following corollary.

Corollary 2. Let P be a unitary general logic program and let P' consists of all
constraints in P. A set M is an answer set for P if and only if M is a stable
model for P\ P’ that satisfies P’.

It follows from the shifting theorem and from Theorem 5 that in order to
describe updates by means of revision programming, it is enough to consider
logic programs with stable model semantics and rules with not a in the heads
that work as constraints.

Corollary 3. Let P be a revision program and let J be a database. Then, a
database R is a P-justified revision of J if and only if T3(R) is a stable model
of the logic program dj(Ty(P) \ P') that satisfies P', where P' consists of all
constraints in Ty(P).

4.2 Disjunctive revision programs

The results of Section 4.1 imply an approach to extend revision programming to
include clauses with disjunctions in the heads. Any such proposal must satisfy
several natural postulates. First, the semantics of disjunctive revision program-
ming must reduce to the semantics of justified revisions on disjunctive revision
programs consisting of rules with a single literal in the head. Second, the shift-
ing theorem must generalize to the case of disjunctive revision programs. Finally,
the results of Section 4.1 indicate that there is yet another desirable criterion.
Namely, the semantics of disjunctive revision programming over the empty ini-
tial database must reduce to the Lifschitz and Woo semantics for general logic
programs. The construction given below satisfies all these three conditions.
First, let us introduce the syntax of disjunctive revision programs. By a
disjunctive revision rule we mean an expression of the following form:

ar| .. Jam < amg1, .- 0p (5)

where a;, 1 < i < n are literals (that is, expressions of the form in(a) or out(a)).
A disjunctive revision program is a collection of disjunctive revision rules.

In order to specify semantics of disjunctive revision programs we first define
the closure of a set of literals under a disjunctive rule. A set L of literals is closed
under a rule (5) if at least one a;, 1 < i < m, belongs to L or if at least one
a;, m+ 1 <i<mn, does not belong to L. A set of literals L is closed under a
disjunctive revision program P if it is closed under all rules of P.

The next step involves the generalization of the notion of necessary change.
Let P be a disjunctive revision program. A necessary change entailed by P is
any minimal set of literals that is closed under P. Notice that in the context of
disjunctive programs the necessary change may not be unique.

Recall that a database is a collection of atoms from universe U. A literal [is
satisfied by a database R C U if | = in(a) and a € R, or | = out(a) and a ¢ R,
for some a € U. We say that the body of a disjunctive revision rule is satisfied
by a database R if every literal from the body is satisfied by R.

We will now introduce the notion of a reduct of a disjunctive revision program
P with respect to two databases J (initial database) and R (a putative revision
of J). The reduct, denoted by PTR _is constructed in the following four steps.

Step 1: Eliminate from the body of each rule in P all literals in I(J, R).

Step 2: Remove all rules r, such that head(r) N I(J,R) # 0.

Step 3: Eliminate from the remaining rules every rule whose body is not satis-
fied by R.

Step 4: Remove from the heads of the rules all literals that are not satisfied by
R.

We are ready now to define the notion a P-justified revision of a database
J for the case of disjunctive revision programs. Let P be a disjunctive revision
program. A database R is a P-justified revision of a database J if for some
coherent necessary change L of PIR R =9@ L. Let us observe that only steps

(1) and (2) in the definition of reduct are important. Steps (3) and (4) do not
change the defined notion of revision but lead to a simpler program.

The next example illustrates a possible use of disjunctive revision program-
ming.

Ezample 3. Let us now represent the situation of Example 1 as a disjunctive
revision program P:

in(Ann) | in(Bob) +

out(Tom) | in(David) +
out(Ann) + in(David)

out(David) + in(Bob)

Assume that I = {Ann,Tom}, R = {Ann}. Then, inertia I(J,R) = {in(Ann),
out(Bob), out(David)}. The reduct P7® = {out(Tom) +}. The only necessary
change of P7® is L = {out(T'om)}. Since L is coherent and R =T & L, R is a
P-justified revision of J . |

The following three theorems show that the semantics for disjunctive revision
programs described here satisfies the three criteria described above.

Theorem 7. Let P be a revision program (without disjunctions). Then, R is a
P-justified revision of J if and only if R is a P-justified revision of J when P is
treated as a disjunctive revision program.

Proof. For any revision program P (without disjunctions), the least model of P,
when treated as a Horn program built of independent propositional atoms of the
form in(a) and out(a), is closed under P. Moreover, every set of literals that is
closed under P must contain the least model of P. Therefore, the notions of nec-
essary change coincide for revision programs without disjunctions, when treated
as ordinary revision programs and as disjunctive revision programs. Hence, the
notions of justified revisions coincide, too. a

The definition of Ty naturally extends to the case of disjunctive revision
programs.

Theorem 8 (Shifting theorem). Let J; and Iy be databases, and let P be a
disjunctive revision program. Let W =37y +Jo. Then, Ry is P-justified revision
of J1 if and only if Tw (Ry) is Tw (P)-justified revision of Jo.

Proof. Similarly to the case of ordinary revision programs, in computing jus-
tified revisions for disjunctive revision programs we are dealing with literals.
W -transformation can be viewed as renaming these literals, which does not ef-
fect the procedure. Therefore, the statement of the theorem holds. O

The embedding of (unitary) revision programs extends to the case of dis-
junctive revision programs. As before, each literal in(a) is replaced by the corre-
sponding atom a and each literal out(a) is replaced by not a. The general logic

program obtained in this way from a disjunctive revision program P is denoted
by dj(P).

Theorem 9. Let P be a disjunctive revision program. Then, R is a P-justified
revision of () if and only if R is an answer set for dj(P).

Proof. First notice that for every R, I((}, R) is equal to {out(a) : a ¢ R}.

Observe that step 2 in the definition of the reduct P”>** removes exactly those
rules r for which dj(r) satisfies condition HNeg Z R.

Step 3 removes all rules r for which dj(r) satisfies condition BNeg N R # 0,
as well as rules containing in(a) in the bodies for some a ¢ R (corresponding
disjunctive logic program rules have a in the bodies for some a ¢ R).

Step 1 eliminates from the bodies of the rules of P all literals that are in
I(J,R). In disjunctive logic program it corresponds to eliminating not(BNeg)
parts from the bodies of the remaining rules.

Step 4 in particular corresponds to eliminating not(HNeg) parts from the
heads of the remaining disjunctive logic program rules.

Therefore, dj(P)®, when compared to dj(P%*), may only have some extra
rules, the bodies of which are not satisfied by R, or some extra literals in the
heads, which are not satisfied by R. Hence, the statement of the theorem holds. O

We conclude this section with a simple observation related to the computa-
tional complexity of a problem of existence of justified revisions in the case of
disjunctive revision programming. We will show that disjunctive revision pro-
gramming is an essential extension of the unitary revision programming. In
[MT98] it was proved that the problem of existence of a justified revision in
the case of unitary revision programming is NP-complete. Using the results of
Eiter and Gottlob [EG95] and our correspondence between disjunctive revision
programs and general logic programs we obtain the following result.

Theorem 10. The following problem is XL -complete: Given a finite disjunctive
revision program and a database J, decide whether J has a P-justified revision.

It follows that disjunctive revision programming is an essential extension of
the unitary revision programming (unless the polynomial hierarchy collapses).

5 Future work

Lifschitz, Tang and Turner [LTT97] extended the answer set semantics to a class
of logic programs with nested expressions permitted in the bodies and heads of
rules. It can be shown that our formalism can be lifted to revision programs
admitting nested occurrences of connectives as well.

The connections between revision programming and logic programming, pre-
sented in this work, imply a straightforward approach to compute justified re-
visions. Namely, a revision problem (P,J) must first be compiled into a general
logic program (by applying the transformation Ty to P). Then, answer sets to
T3(P) must be computed and “shifted” back by means of Ty.

To compute the answer sets of the general logic program Tq(P), one might
use any of the existing systems computing stable models of logic programs (for
instance s-models [NS96], DeReS [CMMT95], and for disjunctive case DisLoP
[ADN97], or a system d1v presented in [ELM*97]). Some care needs to be taken
to model rules with negation as failure operator in the heads as standard logic
program clauses or defaults.

In our future work, we will investigate the efficiency of this approach to com-
pute justified revisions and we will develop related techniques tailored specifically
for the case of revision programming,.

References

[ADN97] C. Aravindan, J. Dix, and I. Niemeld. DisLoP: Towards a disjunctive logic
programming system. In Logic programming and nonmonotonic reasoning
(Dagstuhl, Germany, 1997), volume 1265 of Lecture Notes in Computer
Science, pages 342—-353. Springer, 1997.

[ALP*98] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T.C. Przy-
musinski. Dynamic logic programming. Accepted at KR’98: Sixth Interna-
tional Conference on Principles of Knowledge Representation and Reason-
ing, Trento, Italy, June 1998.

[AP97] J.J. Alferes and L.M. Pereira. Update-programs can update programs.
In Non-Monotonic Extensions of Logic Programming (Bad Honnef, 1996),
volume 1216 of Lecture Notes in Computer Science, pages 110-131, Berlin,
1997. Springer.

[Bar97] C. Baral. Embedding revision programs in logic programming situation
calculus. Journal of Logic Programming, 30(1):83-97, 1997.

[BM97] N. Bidoit and S. Maabout. Update programs versus revision programs.
In Non-monotonic extensions of logic programming (Bad Honnef, 1996),
volume 1216 of Lecture Notes in Computer Science, pages 151-170, Berlin,
1997. Springer.

[CMMT95] P. Cholewinski, W. Marek, A. Mikitiuk, and M. Truszczyniski. Experi-
menting with nonmonotonic reasoning. In Logic programming (Kanagawa,
1995), MIT Press Series in Logic Programming, pages 267-281, Cambridge,
MA, 1995. MIT Press.

[EGY5] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic
programming: propositional case. Annals of Mathematics and Artificial
Intelligence, 15(3-4):289-323, 1995.

[ELM*97] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive
system for non-monotonic reasoning. In Logic programming and nonmono-
tonic reasoning (Dagstuhl, Germany, 1997), volume 1265 of Lecture Notes
in Computer Science, pages 364-375. Springer, 1997.

[Lif96] V. Lifschitz. Foundations of logic programming. In Principles of Knowledge
Representation, pages 69-127. CSLI Publications, 1996.

[LTT97] V. Lifschitz, L. R. Tang, and H. Turner. Nested expressions in logic pro-
grams. unpublished draft, 1997.

[LW92] V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmonotonic rea-
soning. In Proceedings of the 3rd international conference on principles
of knowledge representation and reasoning, KR 92, pages 603-614, San
Mateo, CA, 1992. Morgan Kaufmann.

[MT94]

[MT95]

[McCT95]

[MT98]
[NS96]
[PT97]

[S195]

[Tur97]

W. Marek and M. Truszczynski. Revision specifications by means of pro-
grams. In Logics in artificial intelligence (York, 1994), volume 838 of Lec-
ture Notes in Computer Science, pages 122-136, Berlin, 1994. Springer.
W. Marek and M. Truszczynski. Revision programming, database updates
and integrity constraints. In Proceedings of the 5th International Confer-
ence on Database Theory — ICDT 95, pages 368-382. Berlin: Springer-
Verlag, 1995. Lecture Notes in Computer Science 893.

N. McCain and H. Turner. A causal theory of ramifications and qualifica-
tions. In IJCAI-95, Vol. 1, 2 (Montreal, PQ, 1995), pages 1978-1984, San
Francisco, CA, 1995. Morgan Kaufmann.

W. Marek and M. Truszczynski. Revision programming. Theoretical Com-
puter Science, 190(2):241-277, 1998.

I. Niemeld and P. Simons. Efficient implementation of the well-founded and
stable model semantics. In Proceedings of JICSLP-96. MIT Press, 1996.
T. C. Przymusinski and H. Turner. Update by means of inference rules.
Journal of Logic Programming, 30(2):125-143, 1997.

C. Sakama and K. Inoue. Embedding circumscriptive theories in general
disjunctive programs. In Logic programming and nonmonotonic reasoning
(Lexington, KY, 1995), volume 928 of Lecture Notes in Computer Science,
pages 344-357, Berlin, 1995. Springer.

H. Turner. Representing actions in logic programs and default theories: a
situation calculus approach. Journal of Logic Programming, 31(1-3):245—
298, 1997.

