
Revision programming = logic programming +integrity constraintsVictor Marek, Inna Pivkina, and Miros law Truszczy�nskiDepartment of Computer Science, University of Kentucky, Lexington, KY 40506-0046marek|inna|mirek@cs.engr.uky.eduAbstract. We study revision programming, a logic-based mechanism forenforcing constraints on databases. The central concept of this approachis that of a justi�ed revision based on a revision program. We show thatfor any program P and for any pair of initial databases I and I0 we cantransform (shift) the program P to a program P 0 so that the size of theresulting program does not increase and so that P -justi�ed revisions of Iare shifted to P 0-justi�ed revisions of I0. Using this result we show thatrevision programming is closely related to a subsystem of general logicprogramming of Lifschitz and Woo. This, in turn, allows us to reducerevision programming to logic programming extended by the concept ofa constraint with a suitably modi�ed stable model semantics. Finally,we use the connection between revision programming and general logicprogramming to introduce a disjunctive version of our formalism.1 IntroductionRevision programming was introduced in [MT98] as a formalism to describeand study the process of database updates. In this formalism, the user speci�esupdates by means of revision rules, that is, expressions of the following twotypes: in(a) in(a1); : : : ; in(am);out(b1); : : : ;out(bn) (1)or out(a) in(a1); : : : ; in(am);out(b1); : : : ;out(bn); (2)where a, ai and bi are data items from some �nite universe, say U . Rules of the�rst type are called in-rules and rules of the second type are called out-rules.Revision rules have a declarative interpretation as constraints on databases.For instance, an in-rule (1) imposes on a database the following condition: a isin the database, or at least one ai, 1 � i � m, is not in the database, or at leastone bj , 1 � j � n, is in the database.Revision rules also have a computational interpretation that expresses apreferred way to enforce a constraint. Namely, assume that all data items ai,1 � i � m, belong to the current database, say I, and none of the data itemsbj , 1 � j � n, belongs to I. Then, to enforce the constraint (1), the item a mustbe added to the database (removed from it, in the case of the constraint (2)),rather than some item ai removed or some item bj added.

In [MT98], a precise semantics for revision programs (collections of revisionrules) was de�ned. Given a revision program P and a database I, this semanticsspeci�es a family of databases, each of which might be chosen as an update of I bymeans of the program P . These revised databases are called P -justi�ed revisionsof I. In [MT98] (and in the earlier papers [MT94] and [MT95]), basic propertiesof justi�ed revisions were established. Subsequently, revision programming wasstudied in the context of situation calculus [Bar97] and reasoning about actions[McCT95,Tur97].Revision programming has also been investigated from the perspective of itsclose relationship with logic programming. In [MT98], it was argued that revi-sion programming extends logic programming with stable semantics by showingthat revision programs consisting of in-rules only can be identi�ed with logicprograms. A converse embedding | an encoding of revision programs as logicprograms | was constructed in [PT97]. The techniques from this paper are nowbeing exploited in the study of the problem of updating logic programs [AP97]and resulted in a new paradigm of dynamic logic programming [ALP+98]. Well-founded semantics for a formalism closely related to revision programming wasdiscussed in [BM97].The key property of revision programming is the duality of in and out liter-als. The duality theorem (Theorem 3.8 from [MT98]) demonstrated that everyrevision program P has a counterpart, a dual revision program PD such thatP -justi�ed revisions of a database I are precisely the complements of the PD-justi�ed revisions of the complement of I.The key result of this paper, the shifting theorem (Theorem 4), is a general-ization of the duality theorem from [MT98]. It states that P -justi�ed revisionsof a database I can be computed by revising an arbitrarily chosen database I0 bymeans of a certain \shifted" revision program P 0. This program P 0 is obtainedfrom P by uniformly replacing some literals in P by their duals. The choice ofliterals to replace depends on I and I0. In addition, I and I0 determine also amethod to reconstruct P -justi�ed revisions of I from P 0-justi�ed revisions of I0.As a special case, the shifting theorem tells us that justi�ed revisions ofarbitrary databases are determined by revisions, via shifted programs, of theempty database. This result implies two quite surprising facts. First, it meansthat although a revision problem is de�ned as pair (P; I) (revision programand a database), full information about any revision problem can be recoveredfrom revision problems of very special type that deal with the empty database.Moreover, the reduction does not involve any growth in the size of the revi-sion program. Second, the shifting theorem implies the existence of a naturalequivalence relation between the revision problems: two revision problems areequivalent if one can be shifted onto another.The �rst of these two observations (the possibility to project revision prob-lems onto problems with the empty database) allows us to establish a directcorrespondence between revision programming and a version of logic program-ming proposed by Lifschitz and Woo [LW92]. We will refer to this latter systemas general disjunctive logic programming or, simply, general logic programming.

In general logic programming both disjunction and negation as failure opera-tors are allowed in the heads of rules. In this paper we study the relationshipbetween revision programming and general logic programming. First, in Section3, we show that revision programming is equivalent to logic programming withstable model semantics extended by a concept of a constraint. Second, in Section4, we extend revision programming to the disjunctive case.2 PreliminariesIn this section we will review main concepts and results concerning revisionprogramming that are relevant to the present paper. The reader is referred to[MT98] for more details.Elements of some �nite universe U are called atoms. Subsets of U are calleddatabases. Expressions of the form in(a) or out(a), where a is an atom, arecalled literals. Literals will be denoted by greek letters �, etc. For a literal in(a),its dual is the literal out(a). Similarly, the dual of out(a) is in(a). The dual ofa literal � is denoted by �D.For a set of atoms R � U , we de�neRc = fin(a) : a 2 Rg [fout(a) : a =2 Rg:A set of literals is coherent if it does not contain a pair of dual literals. Givena database I and a coherent set of literals L, we de�neI� L = (I [fa: in(a) 2 Lg) n fa:out(a) 2 Lg:Let P be a revision program. The necessary change of P , NC(P), is the leastmodel of P , when P is treated as a Horn program built of independent propo-sitional atoms of the form in(a) and out(b). The necessary change describes allinsertions and deletions that are enforced by the program, independently of theinitial database.In the transition from a database I to a database R, the status of someelements does not change. A basic principle of revision programming is the ruleof inertia according to which, when specifying change by means of rules in arevision program, no explicit justi�cation for not changing the status is required.Explicit justi�cations are needed only when an atom must be inserted or deleted.The collection of all literals describing the elements that do not change the statusin the transition from a database I to a database R is called the inertia set forI and R, and is de�ned as follows:I(I;R) = fin(a): a 2 I \ Rg [fout(a): a =2 I [Rg:By the reduct of P with respect to a pair of databases (I;R), denoted byPI,R, we mean the revision program obtained from P by eliminating from thebody of each rule in P all literals in I(I;R).The necessary change of the program PI,R provides a justi�cation for someinsertions and deletions. These are exactly the changes that are (a posteriori)

justi�ed by P in the context of the initial database I and a (putative) reviseddatabase R. The database R is a P -justi�ed revision of I if the necessary changeof PI,R is coherent and if R = I�NC(PI,R).The following example illustrates the notion of justi�ed revision.Example 1. Assume that we need to form a committee. There are four peoplewhich can be on the committee: Ann, Bob, Tom and David. There are fourconditions on the committee members which need to be satis�ed.First, Ann and Bob are experienced employees, and we want to see at leastone of them on the committee. That is, if Ann is not on the committee, Bob mustbe there, and if Bob is not on the committee, Ann must be there. Second, Tomis an expert from another country and does not speak English well enough yet.So, if Tom is on the committee, David should be on the committee too, becauseDavid can serve as an interpreter. If David is not on the committee, Tom shouldnot be there, too. Third, David asked not to be on the same committee withAnn. Fourth, Bob asked not to be on the same committee with David.The initial proposal is to have Ann and Tom in the committee.We want to form a committee which satis�es the four conditions and di�ersminimally from the initial proposal. This is a problem of computing justi�edrevisions of initial database I = fAnn; Tomg with respect to revision programP : in(Bob) out(Ann)in(Ann) out(Bob)in(David) in(Tom)out(Tom) out(David)out(Ann) in(David)out(David) in(Bob)Let us show that R = fAnng is a P -justi�ed revision of I . Clearly, U =fAnn;Bob; Tom;Davidg. Thus,I(I;R) = fin(Ann);out(Bob);out(David)g:Therefore, PI,R is the following.in(Bob) out(Ann)in(Ann) in(David) in(Tom)out(Tom) out(Ann) in(David)out(David) in(Bob)Hence, NC(PI,R) = fin(Ann);out(Tom)g. It is coherent and R = I�NC(PI,R).Consequently, R is a P -justi�ed revision of I (in fact, unique). 2

In the paper we will use the following characterizations of justi�ed revisionsgiven in [MT98].Theorem 1. ([MT98]) The following conditions are equivalent:1. A database R is a P -justi�ed revision of a database I,2. NC(P [f� : � 2 I(I;R)g) = Rc,3. NC(PI,R) [I(I;R) = Rc.Two results from [MT98] are especially pertinent to the results of this paper.Given a revision program P , let us de�ne the dual of P (PD in symbols) to be therevision program obtained from P by simultaneously replacing all occurrencesof all literals by their duals. The �rst of the two results we will quote here,the duality theorem, states that revision programs P and PD are, in a sense,equivalent. Our main result of this paper (Theorem 4) is a generalization of theduality theorem.Theorem 2. (Duality Theorem [MT98]) Let P be a revision program andlet I be a database. Then, R is a P -justi�ed revision of I if and only if U nR isa PD-justi�ed revision of U n I.The second result demonstrates that there is a straightforward relationshipbetween revision programs consisting of in-rules only and logic programs. Givena logic program clause cp q1; : : : ; qm; not s1; : : : ; not snwe de�ne the revision rule rp(c) asin(p) in(q1); : : : ; in(qm);out(s1); : : : ;out(sn):For a logic program P , we de�ne the corresponding revision program rp(P) by:rp(P) = frp(c): c 2 Pg.Theorem 3. ([MT98]) A set of atoms M is a stable model of a logic programP if and only if M is an rp(P)-justi�ed revision of ;.It is also possible to represent revision programming in logic programming.This observation is implied by complexity considerations (both the existence of ajusti�ed revision and the existence of a stable model problems are NP-complete).An explicit representation was discovered in [PT97]. In addition to representingrevision rules as logic program clauses, it encodes the initial database by meansof new variables and encodes the inertia rule as logic program clauses. As aconsequence to our main result (Theorem 4), we obtain an alternative (andin some respects, simpler) connection between revision programming and logicprogramming. Namely, we establish a direct correspondence between revisionprograms and general logic programs of [LW92].

3 Shifting initial databases and programsIn this section we will introduce a transformation of revision programs anddatabases that preserves justi�ed revisions. Our results can be viewed as a gen-eralization of the results from [MT98] on the duality between in and out inrevision programming.Let W be a subset of U . We de�ne a W -transformation on the set of allliterals as follows (below, � = in(a) or � = out(a)):TW (�) = ��D ; when a 2W�; when a =2W .Thus, TW replaces some literals by their duals and leaves other literals un-changed. Speci�cally, if a belongs to W then literals in(a) and out(a) are re-placed by their duals.The de�nition of TW naturally extends to sets of literals and sets of atoms.Namely, for a set L of literals, we de�ne TW (L) = fTW (�):� 2 Lg. Similarly,for a set A of atoms, we de�neTW (A) = fa : in(a) 2 TW (Ac)g:The operator TW has several useful properties. In particular, for a suitableset W , TW allows us to transform any database I1 into another database I2.Speci�cally, we have: TI1�I2(I1) = I2;where � denotes the symmetric di�erence operator. Thus, it also follows thatTI(I) = ; and TU (I) = U n I:Some other properties of the operator TW are gathered in the following lemma.Lemma 1. Let S1 and S2 be sets of literals. Then:1. TW (S1 [S2) = TW (S1) [TW (S2);2. TW (S1 \ S2) = TW (S1) \ TW (S2);3. TW (S1 n S2) = TW (S1) n TW (S2);4. TW (S1) = TW (S2) if and only if S1 = S2;5. TW (TW (S1)) = S1.In fact, Lemma 1 holds when S1 and S2 are sets of atoms as well.The operator TW can now be extended to revision rules and programs. Fora revision rule r = � �1; : : : ; �m, we de�neTW (r) = TW (�) TW (�1); : : : ; TW (�m):Finally, for a revision program P , we de�ne TW (P) = fTW (r): r 2 Pg.The main result of our paper, the shifting theorem, states that revision pro-grams P and TW (P) are equivalent in the sense that they de�ne essentially thesame notion of change.

Theorem 4 (Shifting theorem). Let P be a revision program. For every twodatabases I1 and I2, a database R1 is a P -justi�ed revision of I1 if and only ifTI1�I2(R1) is a TI1�I2(P)-justi�ed revision of I2.Proof. Let W = I1 � I2. When calculating the necessary change, we treatliterals as propositional atoms of the form in(a) and out(b). Observe that W -transformation can be viewed as renaming these atoms. If we rename all atomsin the Horn program, �nd the least model of the obtained program, and thenrename the atoms back, we will get the least model of the original program.In other words, TW (NC(PI1;R1)) = NC(TW (PI1;R1)):Let R2 = TW (R1). Observe that by the de�nition of TW , I(I2;R2) =TW (I(I1;R1)). Hence, TW (PI1;R1) = (TW (P))I2;R2 .Theorem 1 and Lemma 1 imply the following sequence of equivalences.{ R1 is a P -justi�ed revision of I1,{ NC(PI1;R1) [I(I1;R1) = Rc1,{ TW (NC(PI1;R1) [I(I1;R1)) = TW (Rc1),{ TW (NC(PI1;R1)) [TW (I(I1;R1)) = TW (Rc1),{ NC(TW (PI1;R1)) [I(I2;R2) = TW (fin(a) : a 2 R1g [fout(a) : a =2R1g),{ NC((TW (P))I2;R2) [I(I2;R2) = Rc2,{ R2 = TW (R1) is a TW (P)-justi�ed revision of I2. 2Theorem 2 (the duality theorem) is a special case of Theorem 4 when I2 =U n I1.At �rst glance, a revision problem seems to have two independent param-eters: a revision program P that speci�es constraints to satisfy, and an initialdatabase I that needs to be revised by P . The shifting theorem shows that thereis a natural equivalence relation between pairs (P; I) specifying the revision prob-lem. Namely, a revision problem (P; I) is equivalent to a revision problem (P 0; I0)if P 0 = TI�I0(P). This is clearly an equivalence relation. Moreover, by the shift-ing theorem, it follows that if (P; I) and (P 0; I0) are equivalent then P -justi�edrevisions of I are in one-to-one correspondence with P 0-revisions of I0. In par-ticular, every revision problem (P; I) can be \projected" onto an isomorphicrevision problem (TI(P); ;). Thus, the domain of all revision problems can befully described by the revision problems that involve the empty database. Thereis an important point to make here. When shifting a revision program, its sizedoes not change (in other words, all revision programs associated with equivalentrevision problems have the same size).Example 2. Let us take the same problem about forming a committee which weconsidered in Example 1. Recall that I = fAnn; Tomg. Let us apply transforma-tion TI (shift to the empty initial database). It is easy to see that TI(P) consists

of the rules: in(Bob) in(Ann)out(Ann) out(Bob)in(David) out(Tom)in(Tom) out(David)in(Ann) in(David)out(David) in(Bob)This revision program has only one justi�ed revision of ;, fTomg. Observemoreover that fTomg = TI(fAnng). This agrees with the assertion of Theo-rem 4. 2There is a striking similarity between the syntax of revision programs andnondisjunctive (unitary) general logic programs of Lifschitz and Woo [LW92].The shifting theorem, which allows us to e�ectively eliminate an initial databasefrom the revision problem, suggests that both formalisms may be intimatelyconnected. In the next section we establish this relationship. This, in turn, allowsus to extend the formalism of revision programming by allowing disjunctions inthe heads.4 General disjunctive logic programs and revisionprogrammingLifschitz and Woo [LW92] introduced a formalism called general logic program-ming (see also [Lif96] and [SI95]). General logic programming deals with clauseswhose heads are disjunctions of atoms (we will restrict here to the case of atomsonly, even though in the original paper more general syntax is studied) andatoms within the scope of the negation-as-failure operator. Speci�cally, Lifschitzand Woo consider general program rules of the form:A1j : : : jAkjnot Ak+1j : : : jnot Al Al+1; : : : ; Am; not Am+1; : : : ; not An; (3)which can be also represented asHPos [not(HNeg) BPos [not(BNeg);where A1; : : : ; An are atoms, HPos = fA1; : : : ; Akg, HNeg = fAk+1; : : : ; Alg,BPos = fAl+1; : : : ; Amg, BNeg = fAm+1; : : : ; Ang.A general logic program is de�ned as a collection of general program rules.Given a set of atoms M and a clause c of the form (3), M satis�es c if fromthe fact that every Ai, l + 1 � i � m, belongs to M and no Ai, m + 1 � i � n,belongs to M , it follows that one of Ai, 1 � i � k, belongs to M or one of Ai,k + 1 � i � l, does not belong to M .Lifschitz and Woo introduced a semantics of general logic programs that isstronger than the semantics described above. It is the semantics of answer sets.

Answer sets are constructed in stages. First, one de�nes answer sets for programsthat do not involve negation as failure, that is, consist of clausesA1j : : : jAk Ak+1; : : : ; Am (4)Given a program P consisting of clauses of type (4), a set of atoms M is ananswer set for P if M is a minimal set of atoms satisfying all clauses in P .Next, given a general logic program P (now possibly with negation as failureoperator) and a set of atoms M , one de�nes the reduct of P with respect to M ,denoted PM , as the general logic program without negation as failure obtainedfrom P by{ deleting each disjunctive rule such that HNeg 6�M or BNeg \M 6= ;, and{ replacing each remaining disjunctive rule by HPos BPos.A set of atoms M is an answer set for P if M is an answer set for PM .4.1 Answer sets for general programs and justi�ed revisionsWe will now show that revision programming is closely connected with a specialclass of general logic programs, namely those for which all rules have a singleatom in the head. We will call such rules and programs unitary.The encoding of revision rules as general logic program clauses is straight-forward. Given a revision program in-rule r:in(p) in(q1); : : : ; in(qm);out(s1); : : : ;out(sn)we de�ne the disjunctive rule dj(r) as:p q1; : : : ; qm; not s1; : : : ; not sn:Similarly, given a revision program out-rule r:out(p) in(q1); : : : ; in(qm);out(s1); : : : ;out(sn)we de�ne the disjunctive rule dj(r) as:not p q1; : : : ; qm; not s1; : : : ; not sn:Finally, for a revision program P , de�ne dj(P) = fdj(r): r 2 Pg.The mapping dj(�) is a 1-1 correspondence between revision rules and unitarygeneral logic program rules, and revision programs and unitary general logicprograms.The following result states that revision problems where the initial databaseis empty can be dealt with by means of general logic programs. This result canbe viewed as a generalization of Theorem 3.Theorem 5. Let P be a revision program. Then, R is a P -justi�ed revision of; if and only if R is an answer set for dj(P).

Proof. Let R be a database. Let P 0 be a revision program obtained from P bydeleting each out-rule that has out(a) in the head for some a 62 R, and deletingeach rule which has out(a) in the body for some a 2 R. Then, dj(P 0) is thedisjunctive program obtained from dj(P) by deleting each disjunctive rule suchthat HNeg 6� R or BNeg\R 6= ; (recall that this is the �rst step in constructingdj(P)R).Observe that R is P -justi�ed revision of ; if and only if R is P 0-justi�edrevision of ;. Indeed, inertia I(;;R) = fout(a) : a 62 Rg. From Theorem 1 wehave that R is P -justi�ed revision of ; if and only ifNC(P [f� : � 2 I(;;R)g) = NC(P [fout(a) : a 62 Rg) = Rc:From the de�nition of P 0 and the fact that NC(P [fout(a) : a 62 Rg) iscoherent (as it equals Rc), it follows thatNC(P [fout(a) : a 62 Rg) = NC(P 0 [fout(a) : a 62 Rg):Therefore, using Theorem 1 again, we get that R is P -justi�ed revision of ; ifand only if R is P 0-justi�ed revision of ;.Observe that if literal out(a), for some a, occurs in the body of a rule in P 0then out(a) 2 I(;;R). Also, inertia I(;;R) consists only of literals of the formout(a). Therefore, P 0;;R is obtained from P 0 by eliminating each literal of theform out(a) from the bodies of the rules.Let P 0;;R = P 00[P 000, where P 00 consists of all in-rules of P 0;;R, P 000 = P 0;;RnP 00consists of all out-rules of P 0;;R. Note, that all rules from P 00 and P 000 have onlyliterals of the form in(a) in their bodies. Observe that if r 2 P 000, then its head,head(r) = out(a) for some a 2 R. By the de�nition, dj(P)R is obtained fromdj(P 0) by replacing each disjunctive rule by HPos BPos. Therefore,dj(P)R = dj(P 00) [f a1; : : : ; ak : out(a) in(a1); : : : ; in(ak) 2 P 000g:After this observations we are ready to prove the statement of the theorem.()) Let R be a P -justi�ed revision of ;. It follows that R is a P 0-justi�ed revisionof ;. Thus, R = ; � NC(P 0;;R). Assume that there exists a literal out(a) 2NC(P 0;;R). Since NC(P 0;;R) is a subset of heads of rules from P 0;;R, it mustbe the case that a 2 R. This contradicts the fact that the necessary change iscoherent and R = ; �NC(P 0;;R). Therefore, NC(P 0;;R) consists only of literalsof the form in(a). It implies that NC(P 0;;R) = fin(a) : a 2 Rg is the least modelof P 00, and for every rule r 2 P 000 there exist b such that in(b) 2 body(r) andb 62 R. Hence, R is the minimal set of atoms which satis�es all clauses in dj(P)R.Thus, R is an answer set for dj(P).(() Let R be an answer set for dj(P). That is, R is the minimal set of atomswhich satis�es all clauses indj(P 00) [f a1; : : : ; ak : out(a) in(a1); : : : ; in(ak) 2 P 000g:Then, any subset of R satis�es all clauses inf a1; : : : ; ak : out(a) in(a1); : : : ; in(ak) 2 P 000g:

Therefore, R is the minimal set of atoms which satis�es all clauses in dj(P 00).Hence, fin(a) : a 2 Rg is the least model of P 00 and satis�es P 000. Consequently,fin(a) : a 2 Rg = NC(P 0;;R), and R = ; � NC(P 0;;R). By the de�nition, R isP 0-justi�ed revision of ;. Therefore, R is P -justi�ed revision of ;. 2It might appear that the scope of Theorem 5 is restricted to the specialcase of revision programs that update the empty database. However, the shift-ing theorem allows us to extend this result to the general case. Thus, revisionprogramming turns out to be equivalent to the unitary fragment of general logicprogramming. Indeed, we have the following corollary.Corollary 1. Let P be a revision program and I a database. Then, a database Ris a P -justi�ed revision of I if and only if TI(R) is an answer set for the programdj(TI(P)).Consider a revision program P and a database I. A rule r 2 P is called aconstraint (with respect to I) if its head is of the form in(a), for some a 2 I, orout(a), for some a =2 I.Theorem 6. Let P be a revision program and let I be a database. Let P 0 consistof all rules in P that are constraints with respect to I. Let P 00 = P nP 0. A databaseR is a P -justi�ed revision of I if and only if R is a P 00-justi�ed revision of I thatsatis�es all rules from P 0.Proof. By the shifting theorem it is enough to prove the statement for the caseI = ;. Let I = ;. Then, P 0 consists of all out-rules of P and P 00 consists of allin-rules of P .()) If R is a P -justi�ed revision of ;, then R is a model of P . Hence, it is amodel of P 0 � P .Theorem 1 implies thatNC(P [f� : � 2 I(;;R)g) = fin(a) : a 2 Rg [fout(a) : a =2 Rg:Let M = NC(P [f� : � 2 I(;;R)g). That is, M is the least model ofP [f� : � 2 I(;;R)g = P 0 [P 00 [f� : � 2 I(;;R)g:By the de�nition of inertia, I(;;R) = fout(a) : a =2 Rg.We will now show that M is the least model of P 00 [f� : � 2 I(;;R)g.Let us divide P 0 into two disjoint parts: P 0 = P 01 [P 02, where heads of therules from P 01 are in fout(a) : a 2 Rg and heads of the rules from P 02 are infout(a) : a =2 Rg. For each rule r 2 P 02, head(r) 2 I(;;R). Hence, there existsrule head(r) in the set f� : � 2 I(;;R)g. Therefore, M is also the leastmodel of the program P 00 [P 01 [f� : � 2 I(;;R)g:If we remove from the program some rules whose premises are false in M ,M remains the least model of the reduced program. Let us show that premises

of all rules from P 01 are false in M . Indeed, let r be a rule from P 01. Then,head(r) 2 fout(a) : a 2 Rg. Assume that premises of r are true in M . Then,head(r) must be true in M , since M is the model of P 00 [P 01 [f� : � 2I(;;R)g. Hence, M \ fout(a) : a 2 Rg 6= ;, which contradicts the fact thatM = fin(a) : a 2 Rg [fout(a) : a =2 Rg. Therefore, M is the least model of theprogram P 00 [f� : � 2 I(;;R)g. In other words,NC(P 00 [f� : � 2 I(;;R)g) = fin(a) : a 2 Rg [fout(a) : a =2 Rg:From Theorem 1 we conclude that R is a P 00-justi�ed revision of ;.(() Assume R is a P 00-justi�ed revision of ;, and R satis�es all rules from P 0.Theorem 1 implies thatNC(P 00 [f� : � 2 I(;;R)g) = Rc:Let M = Rc. Then, M is the least model ofP 00 [f� : � 2 I(;;R)g:Clearly, M is also the least model of a modi�ed program obtained by addingsome rules that are satis�ed by M . All rules in P 0 are satis�ed by M by ourassumption. Therefore, M is the least model ofP 0 [P 00 [f� : � 2 I(;;R)g = P [f� : � 2 I(;;R)g:Hence, NC(P [f� : � 2 I(;;R)g) = M = Rc:By Theorem 1, R is a P -justi�ed revision of ;. 2The reason for the term \constraint" is now clear. In computing P -justi�edrevisions only \non-constraints" are used. Then, the constraint part of P is usedto weed out some of the computed revisions.Clearly, if I = ;, the constraints are exactly the out-rules of a revision pro-gram. We can extend the notion of a constraint to the case of unitary generallogic programs. Namely, a unitary program rule is a constraint if its head is ofthe form not a (note that this notion of constraint is di�erent from the one usedin [Lif96]). Theorem 6 has the following corollary.Corollary 2. Let P be a unitary general logic program and let P 0 consists of allconstraints in P . A set M is an answer set for P if and only if M is a stablemodel for P n P 0 that satis�es P 0.It follows from the shifting theorem and from Theorem 5 that in order todescribe updates by means of revision programming, it is enough to considerlogic programs with stable model semantics and rules with not a in the headsthat work as constraints.Corollary 3. Let P be a revision program and let I be a database. Then, adatabase R is a P -justi�ed revision of I if and only if TI(R) is a stable modelof the logic program dj(TI(P) n P 0) that satis�es P 0, where P 0 consists of allconstraints in TI(P).

4.2 Disjunctive revision programsThe results of Section 4.1 imply an approach to extend revision programming toinclude clauses with disjunctions in the heads. Any such proposal must satisfyseveral natural postulates. First, the semantics of disjunctive revision program-ming must reduce to the semantics of justi�ed revisions on disjunctive revisionprograms consisting of rules with a single literal in the head. Second, the shift-ing theorem must generalize to the case of disjunctive revision programs. Finally,the results of Section 4.1 indicate that there is yet another desirable criterion.Namely, the semantics of disjunctive revision programming over the empty ini-tial database must reduce to the Lifschitz and Woo semantics for general logicprograms. The construction given below satis�es all these three conditions.First, let us introduce the syntax of disjunctive revision programs. By adisjunctive revision rule we mean an expression of the following form:�1j : : : j�m �m+1; : : : ; �n ; (5)where �i, 1 � i � n are literals (that is, expressions of the form in(a) or out(a)).A disjunctive revision program is a collection of disjunctive revision rules.In order to specify semantics of disjunctive revision programs we �rst de�nethe closure of a set of literals under a disjunctive rule. A set L of literals is closedunder a rule (5) if at least one �i, 1 � i � m, belongs to L or if at least one�i, m + 1 � i � n, does not belong to L. A set of literals L is closed under adisjunctive revision program P if it is closed under all rules of P .The next step involves the generalization of the notion of necessary change.Let P be a disjunctive revision program. A necessary change entailed by P isany minimal set of literals that is closed under P . Notice that in the context ofdisjunctive programs the necessary change may not be unique.Recall that a database is a collection of atoms from universe U . A literal l issatis�ed by a database R � U if l = in(a) and a 2 R, or l = out(a) and a 62 R,for some a 2 U . We say that the body of a disjunctive revision rule is satis�edby a database R if every literal from the body is satis�ed by R.We will now introduce the notion of a reduct of a disjunctive revision programP with respect to two databases I (initial database) and R (a putative revisionof I). The reduct, denoted by P I,R, is constructed in the following four steps.Step 1: Eliminate from the body of each rule in P all literals in I(I;R).Step 2: Remove all rules r, such that head(r) \ I(I;R) 6= ;.Step 3: Eliminate from the remaining rules every rule whose body is not satis-�ed by R.Step 4: Remove from the heads of the rules all literals that are not satis�ed byR.We are ready now to de�ne the notion a P -justi�ed revision of a databaseI for the case of disjunctive revision programs. Let P be a disjunctive revisionprogram. A database R is a P -justi�ed revision of a database I if for somecoherent necessary change L of P I,R, R = I�L. Let us observe that only steps

(1) and (2) in the de�nition of reduct are important. Steps (3) and (4) do notchange the de�ned notion of revision but lead to a simpler program.The next example illustrates a possible use of disjunctive revision program-ming.Example 3. Let us now represent the situation of Example 1 as a disjunctiverevision program P : in(Ann) j in(Bob) out(Tom) j in(David) out(Ann) in(David)out(David) in(Bob)Assume that I = fAnn; Tomg, R = fAnng. Then, inertia I(I;R) = fin(Ann);out(Bob); out(David)g. The reduct P I,R = fout(Tom) g. The only necessarychange of P I,R is L = fout(Tom)g. Since L is coherent and R = I� L, R is aP -justi�ed revision of I . 2The following three theorems show that the semantics for disjunctive revisionprograms described here satis�es the three criteria described above.Theorem 7. Let P be a revision program (without disjunctions). Then, R is aP -justi�ed revision of I if and only if R is a P -justi�ed revision of I when P istreated as a disjunctive revision program.Proof. For any revision program P (without disjunctions), the least model of P ,when treated as a Horn program built of independent propositional atoms of theform in(a) and out(a), is closed under P . Moreover, every set of literals that isclosed under P must contain the least model of P . Therefore, the notions of nec-essary change coincide for revision programs without disjunctions, when treatedas ordinary revision programs and as disjunctive revision programs. Hence, thenotions of justi�ed revisions coincide, too. 2The de�nition of TW naturally extends to the case of disjunctive revisionprograms.Theorem 8 (Shifting theorem). Let I1 and I2 be databases, and let P be adisjunctive revision program. Let W = I1 � I2. Then, R1 is P -justi�ed revisionof I1 if and only if TW (R1) is TW (P)-justi�ed revision of I2.Proof. Similarly to the case of ordinary revision programs, in computing jus-ti�ed revisions for disjunctive revision programs we are dealing with literals.W -transformation can be viewed as renaming these literals, which does not ef-fect the procedure. Therefore, the statement of the theorem holds. 2The embedding of (unitary) revision programs extends to the case of dis-junctive revision programs. As before, each literal in(a) is replaced by the corre-sponding atom a and each literal out(a) is replaced by not a. The general logic

program obtained in this way from a disjunctive revision program P is denotedby dj(P).Theorem 9. Let P be a disjunctive revision program. Then, R is a P -justi�edrevision of ; if and only if R is an answer set for dj(P).Proof. First notice that for every R, I(;;R) is equal to fout(a) : a =2 Rg.Observe that step 2 in the de�nition of the reduct P I,R removes exactly thoserules r for which dj(r) satis�es condition HNeg 6� R.Step 3 removes all rules r for which dj(r) satis�es condition BNeg \ R 6= ;,as well as rules containing in(a) in the bodies for some a =2 R (correspondingdisjunctive logic program rules have a in the bodies for some a =2 R).Step 1 eliminates from the bodies of the rules of P all literals that are inI(I;R). In disjunctive logic program it corresponds to eliminating not(BNeg)parts from the bodies of the remaining rules.Step 4 in particular corresponds to eliminating not(HNeg) parts from theheads of the remaining disjunctive logic program rules.Therefore, dj(P)R, when compared to dj(P I,R), may only have some extrarules, the bodies of which are not satis�ed by R, or some extra literals in theheads, which are not satis�ed by R. Hence, the statement of the theorem holds. 2We conclude this section with a simple observation related to the computa-tional complexity of a problem of existence of justi�ed revisions in the case ofdisjunctive revision programming. We will show that disjunctive revision pro-gramming is an essential extension of the unitary revision programming. In[MT98] it was proved that the problem of existence of a justi�ed revision inthe case of unitary revision programming is NP-complete. Using the results ofEiter and Gottlob [EG95] and our correspondence between disjunctive revisionprograms and general logic programs we obtain the following result.Theorem 10. The following problem is �P2 -complete: Given a �nite disjunctiverevision program and a database I, decide whether I has a P -justi�ed revision.It follows that disjunctive revision programming is an essential extension ofthe unitary revision programming (unless the polynomial hierarchy collapses).5 Future workLifschitz, Tang and Turner [LTT97] extended the answer set semantics to a classof logic programs with nested expressions permitted in the bodies and heads ofrules. It can be shown that our formalism can be lifted to revision programsadmitting nested occurrences of connectives as well.The connections between revision programming and logic programming, pre-sented in this work, imply a straightforward approach to compute justi�ed re-visions. Namely, a revision problem (P; I) must �rst be compiled into a generallogic program (by applying the transformation TI to P). Then, answer sets toTI(P) must be computed and \shifted" back by means of TI.

To compute the answer sets of the general logic program TI(P), one mightuse any of the existing systems computing stable models of logic programs (forinstance s-models [NS96], DeReS [CMMT95], and for disjunctive case DisLoP[ADN97], or a system dlv presented in [ELM+97]). Some care needs to be takento model rules with negation as failure operator in the heads as standard logicprogram clauses or defaults.In our future work, we will investigate the e�ciency of this approach to com-pute justi�ed revisions and we will develop related techniques tailored speci�callyfor the case of revision programming.References[ADN97] C. Aravindan, J. Dix, and I. Niemel�a. DisLoP: Towards a disjunctive logicprogramming system. In Logic programming and nonmonotonic reasoning(Dagstuhl, Germany, 1997), volume 1265 of Lecture Notes in ComputerScience, pages 342{353. Springer, 1997.[ALP+98] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T.C. Przy-musinski. Dynamic logic programming. Accepted at KR'98: Sixth Interna-tional Conference on Principles of Knowledge Representation and Reason-ing, Trento, Italy, June 1998.[AP97] J.J. Alferes and L.M. Pereira. Update-programs can update programs.In Non-Monotonic Extensions of Logic Programming (Bad Honnef, 1996),volume 1216 of Lecture Notes in Computer Science, pages 110{131, Berlin,1997. Springer.[Bar97] C. Baral. Embedding revision programs in logic programming situationcalculus. Journal of Logic Programming, 30(1):83{97, 1997.[BM97] N. Bidoit and S. Maabout. Update programs versus revision programs.In Non-monotonic extensions of logic programming (Bad Honnef, 1996),volume 1216 of Lecture Notes in Computer Science, pages 151{170, Berlin,1997. Springer.[CMMT95] P. Cholewi�nski, W. Marek, A. Mikitiuk, and M. Truszczy�nski. Experi-menting with nonmonotonic reasoning. In Logic programming (Kanagawa,1995), MIT Press Series in Logic Programming, pages 267{281, Cambridge,MA, 1995. MIT Press.[EG95] T. Eiter and G. Gottlob. On the computational cost of disjunctive logicprogramming: propositional case. Annals of Mathematics and Arti�cialIntelligence, 15(3-4):289{323, 1995.[ELM+97] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductivesystem for non-monotonic reasoning. In Logic programming and nonmono-tonic reasoning (Dagstuhl, Germany, 1997), volume 1265 of Lecture Notesin Computer Science, pages 364{375. Springer, 1997.[Lif96] V. Lifschitz. Foundations of logic programming. In Principles of KnowledgeRepresentation, pages 69{127. CSLI Publications, 1996.[LTT97] V. Lifschitz, L. R. Tang, and H. Turner. Nested expressions in logic pro-grams. unpublished draft, 1997.[LW92] V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmonotonic rea-soning. In Proceedings of the 3rd international conference on principlesof knowledge representation and reasoning, KR '92, pages 603{614, SanMateo, CA, 1992. Morgan Kaufmann.

[MT94] W. Marek and M. Truszczy�nski. Revision speci�cations by means of pro-grams. In Logics in arti�cial intelligence (York, 1994), volume 838 of Lec-ture Notes in Computer Science, pages 122{136, Berlin, 1994. Springer.[MT95] W. Marek and M. Truszczy�nski. Revision programming, database updatesand integrity constraints. In Proceedings of the 5th International Confer-ence on Database Theory | ICDT 95, pages 368{382. Berlin: Springer-Verlag, 1995. Lecture Notes in Computer Science 893.[McCT95] N. McCain and H. Turner. A causal theory of rami�cations and quali�ca-tions. In IJCAI-95, Vol. 1, 2 (Montreal, PQ, 1995), pages 1978{1984, SanFrancisco, CA, 1995. Morgan Kaufmann.[MT98] W. Marek and M. Truszczy�nski. Revision programming. Theoretical Com-puter Science, 190(2):241{277, 1998.[NS96] I. Niemel�a and P. Simons. E�cient implementation of the well-founded andstable model semantics. In Proceedings of JICSLP-96. MIT Press, 1996.[PT97] T. C. Przymusinski and H. Turner. Update by means of inference rules.Journal of Logic Programming, 30(2):125{143, 1997.[SI95] C. Sakama and K. Inoue. Embedding circumscriptive theories in generaldisjunctive programs. In Logic programming and nonmonotonic reasoning(Lexington, KY, 1995), volume 928 of Lecture Notes in Computer Science,pages 344{357, Berlin, 1995. Springer.[Tur97] H. Turner. Representing actions in logic programs and default theories: asituation calculus approach. Journal of Logic Programming, 31(1-3):245{298, 1997.

