Revising Knowledge in Multi-Agent System Using
Preferences

Inna Pivkina, Enrico Pontelli, Tran Cao Son

Department of Computer Science
New Mexico State University
{i pi vki najepontell |tson}@s. nmsu. edu

Abstract. In this paper we extend thBevision Programmindramework—a
logic-based framework to express and maintain constraimknowledge bases—
with different forms ofpreferencesPreferences allow users to introduce a bias
in the way agents update their knowledge to meet a given sgarddtraints. In
particular, they provide a way to select one between altsneasible revisions
and they allow the generation of revisions in presence ofiicting constraints,

by relaxing the set of satisfied constraingsft constraints A methodology for
computing preferred revisions using answer set programisipresented.

1 Introduction

Multi-Agents Systems (MAS) require coordination mechargdo facilitate dynamic
collaboration of the intelligent components, with the gofaheeting local and/or global
objectives. In the case of MAS, the coordination structiveutd provide communi-
cation protocols to link agents having inter-related ofiyes and it should facilitate
mediation and integration of exchanged knowledge [6]. f2déimed coordination ar-
chitectures (e.g., mediator-based architectures) asasdlllly distributed architectures
(e.g., distributed knowledge networks) face the problemosf-monotonically updating
agent’s theories to incorporate knowledge derived frorfedht agents. The problem
is compounded by the fact that incoming knowledge could b#radictory—either
conflicting with the local knowledge or with other incomingms—incomplete, or un-
reliable. Recently a number of formalisms have been prapfi<g 3, 19, 7] to support
dynamic updates of (propositional) logic programming tihes) they provide conve-
nient frameworks for describing knowledge base updatesedisas constraints to en-
sure user-defined principles of consistency. These typlesoflisms have been proved
effective in the context of MAS (e.qg., [11]).

One of such formalisms for knowledge base updat&eigsion ProgrammindRe-
vision programming is a formalism to describe and enforagstraints on belief sets,
databases, and more generally, on arbitrary knowledgesb@se revision program-
ming formalism was introduced in [14, 15]. In this framewgteinitial databaserep-
resents the initial state of a belief set or a knowledge bAsevision programis a
collection ofrevision rulesused to describe constraints on the content of the database.
Revision rules could be quite complex and are usually in tfof conditions. For
instance, a typical revision rule may express a conditiet, tifi certain elements are

present in the database and some other elements are absengnother given ele-
ment must be absent from (or present in) the database. Bevigies offer a natural
way of encoding policies for the integration of agent-gated knowledge (e.g., in a
mediator-based architecture) or for the management afagent exchanges.

In addition to being a declarative specification of a comstran a knowledge base,
a revision rule also has a computational interpretatiordiegting a way to satisfy
the constraint. Justified revisions semantics assignsyt&m@amwledge base a (possibly
empty) family ofrevisions Each revision represents an updated version of the origi-
nal knowledge base, that satisfies all the constraints geaMby the revision program.
Revisions are obtained by performing additions and deletid elements from the orig-
inal knowledge base, according to the content of the ravigites. Each revision might
be chosen as an update of the original knowledge base e tevision program.

The mechanisms used by revision programming to handle epddita knowledge
base or belief set may lead to indeterminate situations.cohstraints imposed on the
knowledge base are interpretedsd constraintsthat have to be met at all costs; nev-
ertheless this is rather unnatural in domains where oveirlgpand conflicting consis-
tency constraints may be present (e.g., legal reasonifjgqddpliers and broker agents
in a supply chain [12])—leading to the generatiomofacceptable revisions. Similarly,
situations with under-specified constraints or incompketewledge may lead to revi-
sion programs that providaultiplealternative revisions for the same initial knowledge
base. While such situations might be acceptable, there any wases where a single
revision is desired—e.g., agents desire to maintain a eniigw of a knowledge base.

Preferencegrovide a natural way to address these issues; preferetmedtze re-
vision programmer to introduce a bias, and focus the geioeraf revisions towards
more desirable directions. Preferences between revisidas and/or preferences be-
tween the components of the revisions can be employed totskteway revisions are
computed, ruling out undesirable alternatives and defgaibnflicting constraints. The
use of preference structures has been gaining relevanbe MAS community as key
mechanism in negotiation models for MAS coordination aesttures [8, 10].

In this work we propose extensions of revision programmimaf fprovide gen-
eral mechanisms to express different classes of prefesencestified by the needs of
knowledge integration in MAS. The basic underlying mecekancommon to the ex-
tensions presented in this work is the idea of allowing @ass revision rules to be
treated assoft revision rulesA revision might be allowed even if it does not satisfy
all the soft revision rules but only selected subsets of theser preferences express
criteria to select the desired subsets of soft revisiorstule

Our first approach (Section 3) is based on the usewsion programs with pref-
erences where dynamic partial orders are established betweenetfision rules. It
provides a natural mechanism to select preferred ways opating revisions, and to
prune revisions that are not deemed interesting. This agprs analogous to the or-
dered logic program (a.k.a. prioritized logic program)ggeh explored in the context
of logic programming (e.g., [5,4]). In a labeled revisiomgram, the revision program
and the initial knowledge base are enriched lopatrol program which expresses pref-
erences onrules. The control program may include revidierals as well as conditions
on the initial knowledge base. Given an initial knowledgedyahe control program and

the revision program are translated into a revision progséu@re regular justified revi-
sions semantics is used. This approach provides prefecapadilities similar to those
supported by the MINERVA agent architecture [11].

The second approach (Section 4) generalizes revision gmogythrough the intro-
duction ofweights(or costg associated to the components of a revision program (revi-
sion rules and/or database atoms). The weights are aimed\atling general criteria
for the selection of subsets of the soft revision rules todmesiered in the computa-
tion of the revisions of the initial database. Differentipw@s in assigning weights are
considered, allowing the encoding of very powerful prefieeecriteria (e.g., revisions
that differ from the initial database in the least numbertofizs). This level of prefer-
ence management addresses many of the preference requiselescribed in the MAS
literature (e.g., [10]).

For each of the proposed approaches to the managementeifgreés, we provide
an effective implementation schema based on translatiandwer set programming—
specifically to thesnodel s [16] language. This leads to effective ways to compute
preferredrevisions for any initial database w.r.t. a revision prognaith preferences.

The main contribution of this work is the identification ofrfies of preferences
that are specifically relevant to the revision programmiagggigm and justified by the
needs of knowledge maintenance and integration in MAS, badntvestigation of the
semantics and implementation issues deriving from thé&ioduction.

1.1 Related work

Since revision programming is strongly related to the lqgisgramming formalisms
[14,13, 18], our work is related to several works on reaspmiith preferences in logic
programming. In this section, we discuss the differencesd®n our approach and
some of the research in this area. In logic programminggepeeices have been an im-
portant source for “correct reasoning”. Intuitively, ailogrogram is developed to rep-
resent a problem, with the intention that its semantics (argswer set or well-founded
semantics) will yield correct answers to the specific problestances. Adding pref-
erences between rules is one way to eliminate countettiwg(or unwanted) results.
Often, this also makes the program easier to understand areletaboration tolerant.
In the literature on logic programming with preferences,ocae find at least two dis-
tinct ways to handle preferences. The first approach is tgpderthe preferences into
the program (e.g., [9, 5]): given a prografwith a set of preferencgwef, a new pro-
gram Py et is defined whose answer set semantics is used as the prefemedtics of
P with respect tapref. The second approach deals with preferences between nules b
defining a new semantics for logic programs with preferefees, [4]). The advantage
of the first approach is that it does not require the introidncbf a new semantics —
thus, answer set solvers can be used to compute the prefemeghtics. The second
approach, on the other hand, provides a more direct treah@neferences.

Section 3 of this paper follows the first approach. We defineten of revision pro-
gram with preferencesvhich is a labeled revision program with preferences betwe
the rules. Given a revision program with preferences, westede it into an ordinary re-
vision program, and we define preferred justified revisiams{ the revision program

! Space limitations do not allow us to provide a compreherigvef literature in this area.

with preferences) as the justified revisions w.r.t. the egponding program. Our treat-
ment of preferences is similar to that in [9, 5, 1]. In sectihrwe introduce different
types of preferences that can be dealt with more approfpyriayefollowing the second
approach.

Our work in this paper is also strongly related to dynamiédggogramming (DLP)
[3]. DLP is introduced as a mean to update knowledge baséegiiljat contain gener-
alized logic programming rules. Roughly, a DLP is an ordéistdf generalized logic
programs, where each represents the properties of the kdge/base at a time mo-
ment. The semantics of a DLP — taking into consideration aesecg of programs up
to a time pointt — specifies which rules should be applied to derive the sththeo
knowledge base at It has been shown that DLP generalizes revision program{8in

DLP has been extended to deal with preferences [2, 1]. A DUR prieferences, or
a prioritized DLP, is a pair(P, R) of two DLPs; P is a labeled DLP whose language
does not contain the binary predicateand R is a DLP whose language contains the
binary predicate< and whose set of constants includes all the rule labels froth b
programs. Intuitively(P, Q) represents a knowledge at different time moments — the
same way a DLP does — with the exception that there are prefesebetween rules
in (P,Q). An atom of the formr; < 7, represents the fact that rute is preferred to
ruler,. The semantics of prioritized DLP makes sure that the peefar order between
rules is reflected in the set of consequences derivable fnenkriowledge base. More
precisely, for two conflicting rules; andr,, if r; < ro is derived, then the consequence
of the ruler; should be preferred over the consequenaeg dPrioritized DLP deals with
preferences using the compilation approach. In fact, tipecgeh coincides with that of
preferred answer sets for extended logic programs [4] wieDt.P consists of a single
program. In this sense, the prioritized DLP approach islaino the approach described
in Section 3, in which we add to a revision program a prefezartation between its
rules and define the semantics of a revision program withepeates following the
compilation approach. The main difference between our vaoik prioritized DLP lies
in that we consider other types of preferences (e.g., mdxiamaber of applicable rules,
weighted rules, weighted atoms, or minimal size differ@racel prioritized DLP does
not. We plan to investigate the use of these types of pretereim DLP in the future.

Finally, DLP is also used as the main representation langdaga multi-agent
architecture in [11]. In this paper, we take the first stepaias this direction by using
revision programming with preferences to represent ansbreabout beliefs of multi-
agents in a coordinated environment. A detailed comparistnMINERVA is planned
in the near future.

2 Preliminaries: Revision Programming

In this section we present the formal definition of revisioagrams with justified revi-
sion semantics and some of their properties [15, 14, 13].

Elements of some finite univergéare calledatoms Subsets ot/ are calleddata-
basesExpressions of the forim(a) or out(a), wherea is an atom, are callegvision
literals. For a revision literain(a), its dualis the revision literabut(a). Similarly, the
dual of out(a) is in(a). The dual of a revision literak is denoted byn”. A set of
revision literalsL is coherentf it does not contain a pair of dual literals. For any set of

atomsB C U, we denoteB® = {in(a) : a € B} U{out(a) : a ¢ B}. A revision rule
is an expression of one of the following two types:
in(a) < in(a1),...,in(ay),out(by),...,out(by,) or Q)

out(a) < in(ay),...,in(am),out(by),..., out(b,,), (2

))

wherea, a; andb; are atoms. Aevision prograrmis a collection of revision rules. Revi-
sion rules have a declarative interpretation as conssraimtiatabases. For instance, rule
(1) imposes the following conditiom:is in the database, or at least angl < i < m,

is notin the database, or at least dijel < j < n, isin the database.

Revision rules also have a computational (imperativeyjntgation that expresses
a way to enforce a constraint. Assume that all data item$ < i < m, belong to the
current database, sdy and none of the data itends, 1 < j < n, belongs tal. Then,
to enforce the constraint (1), the itesrmust be added to the database (removed from
it, in the case of the constraint (2)), rather than removaug{ng) some item; (b;).

Given a revision rule, by head(r) andbody(r) we denote the literal on the left
hand side and the set of literals on the right hand side oftheespectively.

A set of atomsB C U is amodelof (or satisfie} a revision literalin(a) (resp.,
out(a)), if a € B (resp.a ¢ B). A set of atomsB is amodelof (or satisfie} a revision
rule r if either B is not a model of at least one revision literal from the body obr
B is a model ofhead(r). A set of atomsB is amodelof a revision progran® if B is
a model of every rule irP. Let P be a revision program. Theecessary changsf P,
NC(P), is the least model oP, when treated as a Horn program built of independent
propositional atoms of the forin (a) andout(b).

The collection of all revision literals describing the elemts that do not change
their status in the transition from a databds®e a databas® is called thenertia set
for I andR, and is defined as follows:

I(I,R) = {in(a):a € IN R} U {out(a):a ¢ I UR}.

By thereductof P with respect to a pair of databagds R), denoted byP; r, we mean
the revision program obtained frof by eliminating from the body of each rule iR
all literals inI(I, R). The necessary change of the progBny, provides a justification
for some insertions and deletions. These are exactly thegesathat ar@ posteriori
justified by P in the context of the initial databageand a putative revised databdse

Definition 1 ([15]). A databaseR is a P-justified revisionof databasd if the neces-
sary change of’r p is coherent and if
R=(I\{a€U:out(a) €e NC(Pr,r)})U{a € U:in(a) e NC(Pr.r)}

Basic properties of justified revisions include the follagy[15]:
1. If a database is a P-justified revision off, thenR is a model ofP.
2. If a databasé satisfies a revision prograf then B is a uniqueP-justified revi-
sion of itself.
3. If R is a P-justified revision ofl, thenR + I is minimal in the family{B = I :
B is a model ofP }—whereR + I denotes the symmetric difference®fand!. In
other words, justified revisions of a database differ miniyrfaom the database.

Another important property of revision programs is thatta@ier transformations
(shiftg preserve justified revisions [13]. For each 88t C U, a W-transformation
is defined as follows. I is a literal of the fornin(a) or out(a), then

Tw(a) = aP, whena e W
W a, whena ¢ W.

Given a setL of literals, Tw (L) = {Tw(«a):a € L}. Given a setd of atoms,
Tw(A) = {a:in(a) € Tw(A")}. Given a revision progran®, Ty (P) is obtained
from P by applyingTyy to every literal inP. The Shifting theorem [13] states that for
any databaseEand/J, database® is a P-justified revision off if and only if T ;(R)
is a7 s(P)-justified revision ofJ. The shifting theorem provides a practical way [13]
to compute justified revisions using answer set programmirgines (e.gsnodel s
[16]). It can be done by executing the following steps.
1. Given arevision prograr and an initial databask we can apply the transforma-
tion Ty to obtain the revision prograffi; (P) and the empty initial database.
2. Ty (P) can be converted into a logic program with constraints bjaapg revision
rules of the type (1) by

a<$ ai,...,am,not by, ...,not by,)
and replacing revision rules of the type (2) by constraints
—a,ai,...,am,notby,...,notb,. 4)

We denote the logic program with constraints obtained frawwvesion progrant)
via the above conversion By(Q).
. Givenip(T;(P)) we can compute its answer sets.
4. Finally, the transformatioff; can be applied to the answer sets to obtainfhe
justified revisions ofl .

w

3 Revision programs with preferences

In this section, we introduaevision programs with preferencdhat can be used to deal
with preferences between rules of a revision program. Webeijin with an example
to motivate the introduction of preferences between reuisilles. We then present the
syntax and semantics and discuss some properties of nepsograms with prefer-
ences.

3.1 Motivational example
Assume that we have a number of agentsas, ..., a,. The environment is encoded
through a set of parameteps, p», . . ., pr. The agents perceive parameters of the en-
vironment, and provide perceived data (observations) wnéraller. The observations
are represented using atoms of the foutserv(Par, Value, Agent), where Par is
the name of the observed parametésjue is the value for the parameter, addent
is the name of the agent providing the observation.

The controller combines the data received from agents t@tepits view of the
world, which includes exactly one value for each paramé@&tee.views of the world are

described by atomsvorld(Par, V alue, Agent), whereV alue is the current value for
the parametePar, and Agent is the name of the agent that provided the last accepted
value for the parameter. The initial database containsa wiethe world before the
new observations arrive. A revision program, denoted@bys used to update the view
of the world, and is composed of rules of the type:

in(observ(Par,Value, Agent)) «
which describe all new observations; and rules of the fatgwwo types:

in(world(Par,Value,Agent}- in(observ(Par,Value,Agent)) (a)
out(world(Par,Value,Agent)- in(world(Par,Valuel,Agentl)), (b)
(where Agent: Agentl or Value£ Valuel).

Rules of type (a) allow to generate a new value for a paranoétervorld view from a
new observation. Rules of type (b) are used to enforce thétfatonly one observation
per parameter can be used to update the view.

Itis easy to see that if the value of each parameter is perddiyexactly oneagent
and the initial world view of the controller is coherent, theachP-justified revision
reflects the controller's world view that integrates its tggbservations whenever they
arrive. However,P does not allow any justified revisions when there are two tgen
which perceive different data for the same parameter ataimedime. We illustrate this
problem in the following scenario. Let us assume we have wemtsa; andas, both
provide observations for the parameter namedperature denoting the temperature
in the room. Initially, the controller knows thatorld(temperature, 76, s2). At a later
time, it receives two new observations

in(observ(temperature, 74, a;))
in(observ(temperature, 72, as))

There is naP-justified revision for this set of observations as the nsagschange with
respect to it is incoherent, it includes(world(temperature, 74, a;)) (because of (a)
and the first observation) araut(world(temperature,74,a,)) (because of (a), (b),
and the second observation).

The above situation can be resolved by placing a prefereateelen the values
provided by the agents. For example, if we know that aggrhas a better temper-
ature sensor than agest, then we should tell the controller that observationgof
are preferred to those af . This can be described by adding preferences of the form:
prefer(r2,rl), where rl and r2 are names of rules of type (a) containingnd a.,
respectively. With the above preference, the controlleuthbe able to derive a justi-
fied revision which would contaimworld(temperature, 72, as). If the agenta, has a
broken temperature sensor and does not provide tempeodiseevations, the value of
temperature will be determined by:; and the world view will be updated correctly
by P.

The above preference represents a fixed order of rule’scgtigih in creating re-
visions. Sometimes, preferences might be dynamic. As ampbeg we may prefer the
controller to keep using temperature observations fronséimee agent if available. This
can be described by preferences of the form:

prefer(rl,r2)« world(temperature,Value;) € I, in(observ(temperature,NewValue));

prefer(r2,rl)« world(temperature,Value;) € I, in(observ(temperature,NewValue));

where rl and r2 are names of rules of type (a) containingnda, respectively, and
is an initial database (a view of the world before the new plad®ns arrive).

3.2 Syntax and Semantics

A labeled revision progranis a pair(P, £) whereP is a revision program and is

a function which assigns to each revision ruleRra unique name (label). The label
of aruler € P is denotedC(r). The rule with a label is denoted-(1). We will use
head(l), body(l) to denotehead(r(l)) andbody(r(l)) respectively. The set of labels
of all revision rules fromP is denotedC(P). That is,L(P) = {L(r) : r € P}. For
simplicity, for each ruleyy + a;, ..., a, of P, we will write:

l:apg < ai,...,an

to indicate that is the value assigned to the rule by the functibn
A preferenceon rules in(P, £) is an expression of the following form

prefer(ly, ly) « initially(ai, ..., k), Qgt1, .- ., Qn, (5)

wherely, I are labels of rules i, oy ..., «,, are revision literalsk > 0, n > k.

Informally, the preference (5) mean that if revision litera; . . ., aj, are satisfied
by the initial database and literadg, 1, . .., a, are satisfied by a revision, then we
prefer to use rule(l;) over ruler(ly). More precisely, if the body of rule(l,) is
satisfied then rule(l,) is defeated and ignored. ¥bdy(l,) is not satisfied then rule
r(ly) is used.

A revision program with preferencésa triple(P, £, S), where(P, L) is a labeled
revision program and is a set of preferences on rules(iR, £). We refer toS as the
control program since it plays an important role on whatswaign be used in construct-
ing the revisions.

A revision program with preferencé®, £, S) can be translated into an ordinary
revision program as follows. Lét“(") be the universe obtained frobi by adding
new atoms of the formk (1), de feated(l), prefer(ly, 1) forall I,1;,1l> € L(P). Given
an initial databasé, we define a new revision prografv:! overUU~(P) as the revision
program consisting of the following revision rules:

e for eachl € L(P), the revision progran®*:! contains the two rules

head(l) < body(l),in(ok(l)) (6)
in(ok(l)) < out(defeated(l)) (7
e for each preferencerefer(li,ls) < initially(as,...,ak), @gs1,...,an NS

such thaty; . .., ay are satisfied by, PS5 contains the rules

in(prefer(ly, l2)) < ags1,...,an (8)
in(defeated(l2)) < body(ly),in(prefenl,ls)) 9)

Following the compilation approach in dealing with preferes, we define the no-
tion of (P, £, S)-justified revisions of an initial databageas follows.

Definition 2. A databaseR is a (P, £, S)-justified revisionof I if there existsk' C
UL(P) such thatR' is a P°-justified revision of, andR = R' N U.

The next example illustrates the definition of justified sésms with respect to re-
vision programs with preferences.

Example 1.Let P be the program containing the rules

r1 : in(world(temperature, 76, a1)) < in(observ(temperature, 76, a;)).
ro @ in(world(temperature, 77, a2)) < in(observ(temperature, 77, az)).

and the sefS of preferences consists of a single preferepeder(ry,r,). Let I; =
{observ(temperature, 76, a1), observ(temperature, 77, a2)} be the initial database.
The revision progran® -t is the following:

+ in(observ(temperature, 76, a1)),in(ok(ry))

Y

in(world(temperature, 76, ay))
in(world(temperature, 77, as)) < in(observ(temperature, 77, as)),in(ok(rz))
in(ok(r1)) < out(defeated(r))
in(ok(rz)) « out(defeated(rs))
in(prefer(ry,ra)) <
in(defeated(ry)) < in(observ(temperature, 76, ay))
in(prefer(ry, r2))

Y

Sincel; has only one?*:!1-justified revision,
. observ(temperature, 76, a,), observ(temperature, 77, as),
! { world(temperature, 76, ay), prefery, r2), ok(r1), de feated(rs) }’
thenI; has only onéP, £, S)-justified revision{world(temperature, 76, ay) }*.
Now, consider the case where the initial database is
I, = {observ(temperature, 77, as)}.
The revision progran®-2 = P51, Sincel, has only oneP*:!2-justified revision,
R — world(temperature, 77, as), observ(temperature, 77, as), }
27 prefer(ry,r2), ok(ry), ok(rs) '
we can conclude thd has only on€ P, £, S)-justified revision,
{world(temperature, 77, as) }>.
Notice the difference in the two cases: in the first case,muis defeated and cannot be
used in generating the justified revision. In the second batierules can be used.d

3.3 Properties
Justified revision semantics for revision programs withfgnences extends justified
revision semantics for ordinary revision programs. Morecigely:

Theorem 1. A databaseR is a (P, £, §))-justified revision off if and only if R is a
P-justified revision of .

We will now investigate other properties of revision pragsawith preferences. Be-
cause of the presence of preferences, it is expected thaveoy (P, L, S)-justified
revision ofI is a model ofP. This can be seen in the next example.

2 We omit the observations from the revised database.

Example 2.Let P be the program
r1 :in(a) < out(d) ro 1 in(b) < out(a)

and the sefS consists of two preferencegrefer(r;,) andprefer(ry, r1). Then,d is
(P, L, S)-justified revision of} (both rules are defeated) but not a modePof |

The next theorem shows that for egdh £, S)-preferred justified revisio® of I,
the subset of rules iR that are satisfied bR, is uniquely determined. To formulate the
theorem, we need some more notation. Léte a subset o/ “(*). By P|; we denote
the program consisting of the rulesn P such that

e ok(L(r)) € J,or
e ok(L(r)) ¢ Jandbody(r) \ J¢ # 0.

Theorem 2. For every P! -justified revisionR of I, the correspondindP, £, S)-
justified revisionk N U of I is a model of progran®| .

In the rest of this subsection, we discuss some propert>harantee that each
(P, L, S)-justified revision off is a model of the prograr?. We concentrate on con-
ditions on the set of preferencés Obviously, Example 2 suggests thashould not
contain a cycle between rules. The next example shows tipa¢iérences are placed
on a pair of rules such that the body of one of them is satisfieenthe other rule is
fired, may result in revisions that are not models of the @oygr

Example 3.Let P be the program
ry :in(a) < in(b) o : in(d) < out(a)

and the set of preferenc8<onsists oprefer(r,, r1). Then{b,d} is (P, L, S)-justified
revision of{b} but is not a model oP. m|

We now define precisely the conditions that guarantee tledeped justified revi-
sions are models of the revision programs as well. First, @fand when two rules are
disjoint, i.e., when two rules cannot be used at the sameitimeeating revisions.

Definition 3. Let (P, £,S) be a revision program with preferences. Two rutes’ of
P aredisjointif one of the following conditions is satisfied:

1. (head(r))P € body(r') and (head(r"))P € body(r); or
2. body(r) U body(r') is incoherent.

We say that a set of preferences@ectingf it contains only preferences between
disjoint rules.

Definition 4. Let (P, L, S) be a revision program with preference$.is said to be a
set ofselecting preferencéfsfor every rule

preferr,r') < 1y,... 1k

in S, rulesr andr’ are disjoint.

Finally, we say that a set of preferences is cycle-free ittassitive closure of the
preference relatiopreferdoes not contain a cycle.

Definition 5. Let(P, £, S) be arevision program with preferences and= {(r1,r2) |
prefer(r,, ry) occursinS}. S is said to becycle-freeif for every ruler of P, (r, r) does
not belong to the transitive closuref of <g.

The next theorem shows that the conditions on the set of @mefesS guarantee
that preferred justified revisions are models of the origiegision program.

Theorem 3. Let (P, £, S) be a revision program with preferences whérés a set of
selecting preferences and is cycle-free. For edtyL, S)-justified revisionR of I, R
is a model ofP.

The next theorem discusses the shifting property of rewipimgrams with prefer-
ences. We extend the definition Bf -transformationto a set of preferences on rules.
Given a preference on rulesof the form (5), itsiW -transformation is the preference

Given a set of preferences its W -transformation i€'w (S) = {Tw(p) : p € S}.

Theorem 4. Let(P, L, S) be a revision program with preferences. For every two data-
basesl; and I, a databaseR, is a (P, L, S)-justified revision off; if and only if
Tr-r(Ry)isa(Ty-5,(P), L, T, »1,(S))-justified revision of ;.

4 Soft revision rules with weights

Preferences between rules (Section 3) can be useful in sit twa ways. They can
be used to recover from incoherency when agents providegistent data, as in the
example from Section 3.1. They can also be used to elimimate sevisions. The next
example shows that in some situations, this type of prete®is rather weak.

Example 4.Consider again the example from Section 3.1, with two agenenda,
whose observations are used to determine the value of thenptertemperature. Let

us assume now that anda, are of the same quality, i.égmperature can be updated
by one of the observations yielded by anda,. This means that there is no preference
between the rule of type (a) (faf) and the rule of type (a) (far,) and vice versa. Yet,
as we can see, allowing both rules to be used in computingethigsions will not allow
the controller to update its world view when the observatiare inconsistent. a

The problem in the above example could be resolved by groupia rules of the
type (a) into a set and allowing only one rule from this setgaibed in creating revisions
if the presence of all the rules does not allow justified riewis.

Inspired by the research in constraint programming, we ggepo address the sit-
uation when there are no justified revisions by dividing asiem programP in two
parts,HR andSR, i.e.,P = HR U SR. Rules fromH R andSR are callechard rules
andsoft rules respectively. The intuition is that rules i R must be satisfied by each
revision, while revisions may satisfy only a subsef@ if it is impossible to satisfy all
of them. The subset of soft rules that is satisfied, Saghould be optimal with respect
to some comparison criteria. In this section, we investigatveral criteria—each one
is discussed in a separate subsection.

4.1 Maximal number of rules

Let P = HR U SR. Our goal is to find revisions that satisfy all rules fraiR and
the most number of rules frorfiR. Example 4 motivates the search for this type of
revisions. In the next definition, we make this precise.

Definition 6. R is a (H R, SR)-preferred justified revision of if Risa(HRU S) -
justified revision ofl for someS C SR, and for all S’ C SR such thatS’ has more
rules thansS, there are nd H R U S')-justified revisions of .

Preferred justified revision can be computed, under the maixnumber of rules
criteria, by extending the translation of revision progsatimanswer set programming,
to handle the distinction between hard and soft rules. Thectibe is to determine
(HR U S)-justified revisions of an initial databade whereS is a subset ofSR of
maximal size such thdfl R U S)-justified revisions exist.

The idea is to make use of two language extensions proposddelsnodel s
system: choice rules amxi ni ze statements. Intuitively, each soft rule can be either
accepted or rejected in the program used to determine oegisLet us assume that
the rules inT;(SR) have been uniquely numbered. For each initial dataliasee
translate®? = HRUSR into ansnodel s programip(T(HR))Ulp' (T;(SR)) where
Ip'(T1(SR)) is defined as follows. If the rule numbein 77 (SR) is

in(a) < in(p1),...,in(pm),0ut(s1),...,0ut(sy)
then the following rules are addedig (T (SR))

{rule;} : — p1,...,pm,not s1,...,n0t sy,.

)

a 1 — rule;

whererule; is a distinct new atom. Similarly, if

{rule;}: — p1,...,pm,not s1,...,n0t sy,.
s —rule;, a.

whererule; is a distinct new atom. Finally, we need to enforce the faat the desire

to maximize the number & R rules that are satisfied. This corresponds to maximizing
the number ofrule; that are true in the computed answer sets. This can be directl
expressed by the following statement:

maxi m ze{ruley,...,rule;}. (10)

wherek is the number of rules i§ R. The way howsnpdel s system processesx-

i m ze statement is as follows. It first searches a single model antspt. After that,
snodel s prints only "better” models. The last model tretodel s prints will cor-
respond to § HR, SR)-preferred justified revision of. Notice that this is the only
occurrence ofraxi m ze in the translation which is a requirement for the correcthan
dling of this constructirsnodel s.

4.2 Maximal subset of rules

A variation of definition from Section 4.1 can be obtained wirstead of satisfying
maximal number of soft rules it is desired to satisfy a maxisudoset of soft rules. In
other words, givelP = HR U SR, the goal is to find revisions that satisfy all rules
from H R and a maximal subset (with respect to set inclusion) of rirtes SR. The
precise definition follows.

Definition 7. Ris a(HR, SR)-preferred= justified revision of if Risa(HRU S) -
justified revision of for someS C SR, and for allS’ if S ¢ S’ C SR, then there are
no (HR U S’)-justified revisions of .

The procedure described in Section 4.1 allows to computeam of(H R, SR)-
preferred justified revisions which has maximal number of soft rulessfiad.

4.3 Weights

An alternative to the maximal subset of soft rules is to assigights to the revisions
and then select those with the maximal (or minimal) weighthis section, we consider
two different ways of assigning weights to revisions. Firge assign weight to rule.
Next, we assign weight to atoms. In both cases, the goal imtbdisubses of SR
such that the prograif R U S has revisions whose weight is maximal.

Weighted rules.Each ruler in SR is assigned a weight (a numbex)(r). Intuitively,
w(r) represents the importancegfi.e., the more the weight of a rule the more impor-
tant it is to satisfy it.

Example 5.Let us reconsider the example from Section 3.1. Rules ofyihe (a) are
treated as soft rules, while the rules of type (b) are treaseldard rules. We can make
use of rule weights to select desired revisions. For exanifde observed parameter
value falls outside expected value range for the paranieteay suggest that an agent
that provided the observation has a faulty sensor. Thus, ayeprefer observations that
are closer to the expected range. This can be expressedduyasg) to each rule of
the type (a) the weight

w(r) = min{0, MaxEV — Value} + min{0, Value — MinEV},
whereMaxzEV andMinEV are maximum and minimum expected valuesRar. O
Let us define the rule-weighted justified revision of a prograith weights for rules.

Definition 8. R is called a rule-weightedH R, SR)-justified revision off if the fol-
lowing two conditions are satisfied:
1. there exists a set of rulésC SR s.t. Ris a(H R U S)-justified revision of, and
2. for any setof rule$’ C SR, if R'isa(HR U S')-justified revision of , then the
sum of weights of rules ifi’ is less or equal than the sum of weights of ruleS§'in

Let us generalize the implementation in the previous sestio consider weighted
rules. The underlying principle is similar, with the diféarce that the selection of soft
rules to include is driven by the goal of maximizing the totadight of the soft rules

that are satisfied by the justified revision. The only changeneed to introduce w.r.t.

the implementation is in themxi m ze statement. Let us assume thati) denotes
the weight associated to thth SR rule. Then, instead of the rule (10) the following
maximize statement is generated:

maxi m zefrule; = w(l), rules = w(2),...,ruley = w(k)].
Weighted atoms.Instead of assigning weights to rules, we can also assigghtseto
atoms in the universg. Each atona in the universé/ is assigned a weight(a) which
represented the degree we would like to keep it unchangegtiie more the weight of
an atom the less we want to change its status in a databasaeeXhexample presents
a situation where this type of preferences is desirable.

Example 6.Let us return to the example from Section 3.1 with the samétioar of
rules in hard and soft rules as in Example 5. Let us assumettbathoice of which
observation to use to update the view of the world is baset®principle that stronger
values for the parameters are preferable, as they denotersst signal. This can be
encoded by associating weights of the form

w(world(Param,V alue, Sensor)) = —Value
and minimizing the total weight of the revision. |

Let us define preferred justified revision for programs witkigit atoms.

Definition 9. R is called an atom-weightedd R, S R)-justified revision of if the fol-
lowing two conditions are satisfied:
1. there exists a set of rulésC SR s.t. Ris a(H R U S)-justified revision of, and
2. forany set of rules’ C SR, if Q isa(HR U S')-justified revision of, then the
sum of weights of atoms ih+ @ is greater than or equal to the sum of weights of
atoms in/ + R.

Atom-weighted revisions can be computed ussimpdel s. In this case the selec-
tion of the SR rules to be included is indirectly driven by the goal of miiging the
total weight of the atoms id + R, if I is the initial database ang is the justified
revision. We make use of the following observation: giverasion programP and
an initial databasé, if T (R) is aTy(P)-justified revision ofp, thenT;(R) = I + R.
Thanks to this observation, the computation of the weighhefdifference between the
original database and-justified revision can be computed by determining tin@l
weight of the true atoms obtained from the answer set gesebfat thel'; (P) program.

The program used to compute preferred revisions is encddethdy to what is
done for the case of maximal number of rules or weighted riles each soft rule is
encoded usingnodel s’s’ choice rules. The only difference is that instead of nmaki
use of amaxi m ze statement, we make use ofrani m ze statement of the form:

m ni m zela; = w(ay),az = w(az),...,a, = w(ay)] (11)
whereay, . .., a, are all the atoms id/.

4.4 Minimal size difference

In this subsection, we consider justified revisions thathainimal size difference with
initial database. The next example shows that this is dasiia different situations.

Example 7.Assume that a department needs to form a committee to worloore s
problem. Each of the department faculty members has hisrave conditions on the
committee members which need to be satisfied. The head oéffettnent provided an
initial proposal for members of the committee. The task &t a committee which
will satisfy all conditions imposed by the faculty membengl avill differ the least from
the initial proposal — the size of the symmetric differeneéAren the initial proposal
and its revision is minimal.

In this problem we have a set of agents (faculty members) efalnich provides
its set of requirements (revision rules). The goal is tasfatll agent’s requirements in
such a way that the least number of changes is made to thad thétiabase (proposal).

Assume that faculty members are Ann, Bob, Chris, David, f@amild Frank. Con-
ditions that they impose on the committee are the following:

Ann: in(Bob) < out(Chris)
in(Chris) < out(Bob)
Bob : out(David) < in(Bob)
Chris : out(Ann) < out(David)
David : in(David) < in(Chris),out(Ann)

The initial proposal id = {Ann, David}. Then, there is one minimal size differ-
enceP-justified revisions off, which is Ry = {Ann, David, Bob}. The size of the
differenceR; ~ I'is 1.

Ordinary P-justified revisions off also includeR, = {Bob} with size of the dif-
ferenceR, + I equal to 3. O

The next definition captures what is a minimal size diffejastified revision.

Definition 10. R is called a minimal size differende-justified revision of if the fol-
lowing two conditions are satisfied:
1. Ris a P-justified revision of/, and
2. for anyP-justified revisionk’, the number of atoms iR + I is less than or equal
to the number of atoms iR’ + 1.

Minimal size difference justified revision can be computedlmost the same way
as for atom-weighted justified revisions. The intuition it instead of minimizing
the total weight off +~ R (where[is the initial database anB is a P-justified re-
vision), we would like to minimize the size df + R. This can be accomplished by
replacing them ni mi ze statement (11) with the followingi ni nmi ze statement:

m nimze{ay,as,...,an}
whereay, ..., a, are all the atoms /.

5 Conclusions

The notion of preference has found pervasive applicationhé context of knowl-

edge representation and commonsense reasoning in MASdraléarge number of
approaches have been proposed to improve the knowledgesespiation capabilities
of logic programming by introducing different forms of peeénces. In this paper, we

presented a novel extension of the revision programmimgdreork which provides the
foundations for expressing very general types of prefasnereferences provide the
ability to “defeat” the use of certain revision rules in thengputation of the revisions;
this allows us to either reduce the number of revisions gaadr(eventually leading to
a single revision), or to generate revisions even in praseficonflicting revision rules.
We proposed different preference schemes, starting frostatively dynamic par-
tial order between revision rulegeision programs with preferencesand then moving
to a more general notion of weights, associated to revisit@srand/or database atoms.
Soft revision rules can be dynamically included or excluffech the generation of re-
visions depending on optimization criteria based on thegtitsi of the revision (e.g.,
minimization of the total weight associated to the revi$idile provided motivating
examples for the different preference schemes, along witieeise description of how
preferred revisions can be computed usingghredel s answer set inference engine.

References

1. J.J. Alferes, P. Dell’Acqua, and L.M. Pereira. A compdatof updates plus preferences. In
Logics in Artificial Intelligence, European Conferengages 62—73. Springer, 2002.
2. J.J. Alferes and L.M. Pereira. Updates plus preferencelsogics in Artificial Intelligence,
European Workshop (JELIApages 345-360. Springer, 2000.
3. J.J. Alferes et al. Dynamic Updates of Non-monotonic Kieolge BasesJLP, 45, 2000.
4. G. Brewka and T. Eiter. Preferred answer sets for extebabgd programs Artificial Intel-
ligence 109(1-2):297-356, 1999.
5. E. Delgrande, T. Schaub, and H. Tompits. A framework fongiting preferences in logic
programs.Theory and Practice of Logic Programming(2):129-187, March 2003.
6. H.E. Durfee.Coordination of Distributed Problem Solverkluwer Academic Press, 1988.
7. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Using Madk of Declarative Logic Pro-
gramming for Intelligent Information Agent3.PLP, 2(6), 2002.
8. P. Faratin and B. Van de Walle. Agent Preference Relatfemit, Indifferent, and Incom-
parable. IPAAMAS ACM, 2002.
9. M. Gelfond and T.C. Son. Prioritized default theory.Selected Papers from the Workshop
on Logic Programming and Knowledge Representation 19684—223. LNAI 1471, 1998.
10. P. La Mura and Y. Shoham. Conditional, Hierarchical, tMagent Preferences. MARK
VII, 1998.
11. J.A. Leite, J.J. Alferes, and L.M. Pereira. MINERVA: ariaynic Logic Programming Agent
Architecture. Inintelligent Agents VIlISpringer Verlag, 2002.
12. J. Liu and Y. YeE-Commerce Agentd.ecture Notes in Al, Springer Verlag, 2001.
13. W. Marek, I. Pivkina, and M. Truszczyhski. Revision gmramming = logic programming +
integrity constraints. Il€omputer Science LogiSpringer Verlag, 1999.
14. W. Marek and M. Truszczyhski. Revision programmingtadase updates and integrity
constraints. INCDT, pages 368-382. Springer Verlag, 1995.
15. W. Marek and M. Truszczyhski. Revision programmintheoretical Computer Science
190(2):241-277, 1998.
16. I. Niemela and P. Simons. Efficient implementation & well-founded and stable model
semantics. ILPNMR pages 289-303. MIT Press, 1996.
17. H. PrakkenLogical Tools for Modeling Legal ArgumentKluwer Publishers, 1997.
18. T. Przymusinski and H. Turner. Update by means of Infegenles. ILPNMR 1995.
19. C. Sakama and K. Inoue. Updating Extended Logic Progthresigh Abduction. IrLP-
NMR. Springer Verlag, 1999.

