
Annotated revision programsVictor Marek Inna Pivkina Miros law Truszczy�nskiDepartment of Computer Science,University of Kentucky,Lexington, KY 40506-0046marek|inna|mirek@cs.engr.uky.eduAbstractRevision programming is a formalism to describe and enforce updates of belief sets anddatabases. That formalism was extended by Fitting who assigned annotations to revisionatoms. Annotations provide a way to quantify the con�dence (probability) that a revisionatom holds. The main goal of our paper is to reexamine the work of Fitting, argue thathis semantics does not always provide results consistent with intuition, and to proposean alternative treatment of annotated revision programs. Our approach di�ers from thatproposed by Fitting in two key aspects: we change the notion of a model of a programand we change the notion of a justi�ed revision. We show that under this new approachfundamental properties of justi�ed revisions of standard revision programs extend to theannotated case.1 IntroductionRevision programming is a formalism to specify and enforce constraints on databases, beliefsets and, more generally, on arbitrary sets. Revision programming was introduced and studiedin [MT95, MT98]. The formalism was shown to be closely related to logic programmingwith stable model semantics [MT98, PT97]. In [MPT99], a simple correspondence of revisionprogramming with the general logic programming system of Lifschitz and Woo [LW92] wasdiscovered. Roots of another recent formalism of dynamic logic programming [ALP+98] canalso be traced back to revision programming.(Unannotated) revision rules come in two forms of in-rules and out-rules:in(a) in(a1); : : : ; in(am);out(b1); : : : ;out(bn) (1)and out(a) in(a1); : : : ; in(am);out(b1); : : : ;out(bn): (2)Expressions in(a) and out(a) are called revision atoms. Informally, the atom in(a) stands for\a is in the current set" and out(a) stands for \a is not in the current set." The rules (1)and (2) have the following interpretation: whenever all elements ak, 1 � k � m, belong to thecurrent set (database, belief set) and none of the elements bl, 1 � l � n, belongs to the currentset then, in the case of rule (1), the item a should be in the revised set, and in the case of rule(2), a should not be in the revised set. 1

To provide a precise semantics to revision programs (collections of revision rules), theconcept of a justi�ed revision was introduced in [MT95, MT98]. Informally, given an initialset BI and a revision program P , a justi�ed revision of BI with respect to P (or, simply, aP -justi�ed revision of BI) is obtained from BI by adding some elements to BI and by removingsome other elements from BI so that each change is, in a certain sense, justi�ed.The formalism of revision programs was extended by Fitting [Fit95] to the case whenrevision atoms occurring in rules are assigned annotations. Such annotation can be interpretedas the degree of con�dence that a revision atom holds. For instance, an annotated atom(in(a) :0:2) can be regarded as the statement that a is in the set with the probability 0:2.Thus, annotated atoms and annotated revision programs can be used to model situationswhen membership status of atoms (whether they are \in" or \out") is not precisely known andwhen constraints re
ect this imprecise knowledge. In his work, Fitting de�ned the concept ofan annotated revision program, described the concept of a justi�ed revision of a database byan annotated revision program, and studied properties of that notion.The annotations do not have to be numeric. In fact they may come from any set. It isnatural, though, to assume that the set of annotations has a mathematical structure of a com-plete distributive lattice. Such lattices allow us to capture within a single algebraic formalismdi�erent intuitions associated with annotations. For instance, annotations expressing probabil-ities [NS94]), possibilistic annotations [vE86], and annotations in terms of opinions of groupsof experts [Fit95] can all be regarded as elements of certain complete and distributive lattices.The general formalism of lattice-based annotations was studied by Kifer and Subrahmanian[KS92] but only for logic programs without negations.In the setting of logic programs, an annotation describes the probability (or the degree ofbelief) that an atom is implied by a program or, that it is \in" a database. The closed worldassumption then implies the probability that an atom is \out". Annotations in the contextof revision programs provide us with richer descriptions of the status of atoms. Speci�cally, apossible interpretation of a pair of annotated revision literals (in(a) : �) and (out(a) : �) isthat our con�dence in a being in a database is � and that, in the same time, our con�dencethat a does not belong to the database is �. Annotating atoms with pairs of annotations allowsus to model incomplete and contradictory information about the status of an atom.Thus, in annotated revision programming the status of an atom a is, in fact, given bya pair of annotations. Therefore, in this paper we will consider, in addition to a lattice ofannotations, which we will denote by T , the product of T by itself | the lattice T 2. Thereare two natural orderings on T 2. We will use one of them, the knowledge ordering, to comparethe degree of incompleteness (or degree of contradiction) of the pair of annotations describingthe status of an atom.The main goal of our paper is to reexamine the work of Fitting, argue that his semanticsdoes not always provide results consistent with intuition, and to propose an alternative treat-ment of annotated revision programs. Our approach di�ers from that proposed by Fitting intwo key aspects: we use the concept of an s-model which is a re�nement of the notion of amodel of a program, and we change the notion of a justi�ed revision. We show that underthis new approach fundamental properties of justi�ed revisions of standard revision programsextend to the case of annotated revision programs.Here is a short description of the content and the contributions of our paper. In Section2, we introduce annotated revision programs, provide some examples and discuss underlying2

motivations. We de�ne the concepts of a valuation of a set of revision atoms in a lattice ofannotations T and of a valuation of a set of (ordinary) atoms in the corresponding productlattice T 2. We also de�ne the knowledge ordering on T 2 and on valuations of atoms in T 2.Given an annotated revision program, we introduce the notion of the operator associatedwith the program. This operator acts on valuations in T 2 and is analogous to the van Emden-Kowalski operator for logic programs [vEK76]. It is monotone with respect to the knowledgeordering and allows us to introduce the notion of the necessary change entailed by an annotatedrevision program.In Section 3, we introduce one of the two main concepts of this paper, namely that of ans-model of a revision program. Models of annotated revision programs may be inconsistent.In the case of an s-model, if it is inconsistent, its inconsistencies are explicitly or implicitlysupported by the program and the model itself. We contrast the notion of an s-model withthat of a model. We show that in general the two concepts are di�erent. However, we alsoshow that under the assumption of consistency they coincide.In Section 4, we de�ne the notion of a justi�ed revision of an annotated database by anannotated revision program P . Such revisions are referred to as P -justi�ed revisions. Theyare de�ned so as to generalize justi�ed revisions of [MT95, MT98].Justi�ed revisions considered here are di�erent from those introduced by Fitting in [Fit95].We provide examples that show that Fitting's concept of a justi�ed revision fails to satisfy somenatural postulates and argue that our proposal more adequately models intuitions associatedwith annotated revision programs. In the same time, we provide a complete characterizationof those lattices for which both proposals coincide. In particular, they coincide in the standardcase of revision programs without annotations.We study the properties of justi�ed revisions in Section 5. We show that annotated revisionprograms with the semantics of justi�ed revisions generalize revision programming as intro-duced and studied in [MT95, MT98]. Next, we show that P -justi�ed revisions are s-modelsof the program P . Thus, the concept of an s-model introduced in Section 2 is an appropriatere�nement of the notion of a model to be used in the studies of justi�ed revisions. Further,we prove that P -justi�ed revisions decrease inconsistency and, consequently, that a consistentmodel of a program P is its own unique P -justi�ed revision.Throughout the paper we adhere to the syntax of annotated revision programs proposed byFitting in [Fit95]. This syntax stems naturally from the syntax of ordinary revision programsintroduced in [MT95, MT98] and allows us to compare directly our approach with that ofFitting. However, in Section 6, we propose and study an alternative syntax for annotatedrevision programs. In this new syntax (ordinary) atoms are annotated by elements of theproduct lattice T 2. Using this alternative syntax, we obtain an elegant generalization of theshifting theorem of [MPT99].In Section 7, we provide a brief account of some miscellaneous results on annotated revisionprograms. In particular, we discuss the case of programs with disjunctions in the heads andthe case when the lattice of annotations is not distributive.2 PreliminariesWe will start with examples that illustrate main notions and a possible use of annotatedrevision programming. Formal de�nitions will follow.3

Example 2.1 A group of experts is about to discuss a certain proposal and then vote whetherto accept or reject it. Each person has an opinion on the proposal that may be changed duringthe discussion as follows:- any person can convince an optimist to vote for the proposal,- any person can convince a pessimist to vote against the proposal.The group consists of two optimists (Ann and Bob) and one pessimist (Pete). We want tobe able to answer the following question: given everybody's opinion on the subject before thediscussion, what are the possible outcomes of the vote?Assume that before the vote Pete is for the proposal, Bob is against, and Ann is indi�erent(has no arguments for and no arguments against the proposal). This situation can be describedby assigning to atom \accept" the annotation hfPeteg; fBobgi, where the �rst element of thepair is the set of experts who have arguments for the acceptance of the proposal and the secondelement is the set of experts who have arguments against the proposal. In the formalism ofannotated revision programs, as proposed by Fitting in [Fit95], this initial situation is describedby a function that assigns to each atom in the language (in this example there is only one atom)its annotation. In our example, this function is given by: BI(accept) = hfPeteg; fBobgi. (Letus mention here that in general, the sets of experts in an annotation need not to be disjoint.An expert may have arguments for and against the proposal at the same time. In such a casethe expert is contradictory.)The ways in which opinions may change are described by the following annotated revisionrules: (in(accept):fAnng) (in(accept):fBobg)(in(accept):fAnng) (in(accept):fPeteg)(in(accept):fBobg) (in(accept):fAnng)(in(accept):fBobg) (in(accept):fPeteg)(out(accept):fPeteg) (out(accept):fAnng)(out(accept):fPeteg) (out(accept):fBobg)The �rst rule means that if Bob accepts the proposal, then Ann should accept the proposal, too,since she will be convinced by Bob. Similarly, the second rule means that if Pete has argumentsfor the proposal, then he will be able to convince Ann. These two rules describe Ann being anoptimist. The remaining rules follow as Bob is an optimist and Pete is a pessimist.Possible outcomes of the vote are given by justi�ed revisions. In this particular case thereare two justi�ed revisions of the initial database BI . They are BR(accept) = hfAnn;Bob; Peteg;fgi and B0R(accept) = hfg; fBob; Petegi. The �rst one corresponds to the case when the pro-posal is accepted (Ann, Bob and Pete all voted for). This outcome happens if Pete convincesBob and Ann to vote for. The second revision corresponds to the case when Bob and Petevoted against the proposal (Ann remained indi�erent and did not vote). This outcome happensif Bob convinces Pete to change his opinion. 2Remark 2.2 It is possible to rewrite annotated revision rules from Example 2.1 as ordi-nary revision rules (without annotations) if we use atoms "accept Ann", "accept Bob", and4

"accept Pete". However, ordinary revision programs do not deal with inconsistent or not com-pletely de�ned databases. In particular, we will not be able to express the fact that initiallyAnn has no arguments for and no arguments against the proposal in Example 2.1.In the next example annotations are numbers from 0 to 1 representing di�erent degrees ofa particular quality.Example 2.3 Assume that there are two sources of light: a and b. Each of them may beeither On or O�. They are used to transmit two signals. The �rst signal is a combination of abeing On and b being O�. The second signal is a combination of a being O� and b being On.The sources a and b are located far from an observer. Such factors as light pollutionand dust may a�ect the perception of signals. Therefore, the observed brightness of a lightsource di�ers from its actual brightness. Assume that brightness is measured on a scale from0 (complete darkness) to 1 (maximal brightness). The actual brightness of a light source maybe either 0 (when it is O�), or 1 (when it is On).Initial database BI represents observed brightness of sources. For example, if observedbrightness of source a is � (0 � � � 1), then BI(a) = h�; 1��i. We may think of the �rst andthe second elements in the pair h�; 1 � �i as degrees of brightness and darkness of the sourcerespectfully. The task is to infer actual brightness from observed brightness. Thus, revision ofthe initial database should represent actual brightness of sources.Suppose we know that dust in the air can not reduce brightness by more than 0:2. Then, wecan safely presume that a light source is On if its observed brightness is 0:8 or more. Assumealso that light pollution can not contribute more than 0:4. That is, if observed darkness of asource is at least 0:6, it must be O�. This information together with the fact that only twosignals are possible, may be represented by the following annotated revision program P :(in(a):1) (in(a):0:8); (out(b):0:6)(out(b):1) (in(a):0:8); (out(b):0:6)(in(b):1) (in(b):0:8); (out(a):0:6)(out(a):1) (in(b):0:8); (out(a):0:6)The �rst two rules state that if the brightness of a is at least 0:8 and darkness of b is atleast 0:6, then brightness of a is 1 (the �rst rule) and darkness of b is 1 (the second rule).This corresponds to the case when the �rst signal is transmitted. Similarly, the last two rulesdescribe the case when the second signal is transmitted.Let observed brightness of a and b be 0:3 and 0:9 respectively. That is, BI(a) = h0:3; 0:7iand BI(b) = h0:9; 0:1i. Then, P -justi�ed revision of BI is the actual brightness. It is BR(a) =h0; 1i, and BR(b) = h1; 0i. 2Now let us move on to formal de�nitions. Throughout the paper we consider a �xed universeU whose elements are referred to as atoms. In Example 2.1 U = facceptg. In Example 2.3U = fa; bg. Expressions of the form in(a) and out(a), where a 2 U , are called revision atoms.In the paper we assign annotations to revision atoms. These annotations are members ofa complete in�nitely distributive lattice with the de Morgan complement (an order reversinginvolution). Throughout the paper this lattice is denoted by T . The partial ordering on T isdenoted by � and the corresponding meet and join operations by ^ and _, respectively. The5

de Morgan complement of a 2 T is denoted by a. Let us recall that it satis�es the followingtwo laws (the de Morgan laws):a _ b = a ^ b; a ^ b = a _ b:In Example 2.1, T is the set of subsets of the set fAnn;Bob; Peteg, with � as the orderingrelation, and the set-theoretic complement as the de Morgan complement. In Example 2.3,T = [0; 1] with the usual ordering; the de Morgan complement of � is 1� �.An annotated revision atom is an expression of the form (in(a):�) or (out(a):�), wherea 2 U and � 2 T . An annotated revision rule is an expression of the formp q1; : : : ; qn;where p, q1; : : : ; qn are annotated revision atoms. An annotated revision program is a set ofannotated revision rules.A T -valuation is a mapping from the set of revision atoms to T . A T -valuation v describesour information about the membership of the elements from U in some (possibly unknown)set B � U . For instance, v(in(a)) = � can be interpreted as saying that a 2 B with certainty�. A T -valuation v satis�es an annotated revision atom (in(a):�) if v(in(a)) � �. Similarly,v satis�es (out(a):�) if v(out(a)) � �. The T -valuation v satis�es a list or a set of annotatedrevision atoms if it satis�es each member of the list or the set. A T -valuation satis�es anannotated revision rule if it satis�es the head of the rule whenever it satis�es the body of therule. Finally, a T -valuation satis�es an annotated revision program (is a model of the program)if it satis�es all rules in the program.Given an annotated revision program P we can assign to it an operator on the set of allT -valuations. Let tP (v) be the set of the heads of all rules in P whose bodies are satis�ed bya T -valuation v. We de�ne an operator TP as follows:TP (v)(l) =_f�j(l:�) 2 tP (v)gHere WX is the join of the subset X of the lattice (note that ? is the join of an empty setof lattice elements). The operator TP is a counterpart of the well-known van Emden-Kowalskioperator from logic programming and it will play an important role in our paper.It is clear that under T -valuations, the information about an element a 2 U is given by apair of elements from T that are assigned to revision atoms in(a) and out(a). Thus, in thepaper we will also consider an algebraic structure T 2 with the domain T � T and with anordering �k de�ned by:h�1; �1i �k h�2; �2i if �1 � �2 and �1 � �2:If a pair h�1; �1i is viewed as a measure of our information about membership of a in someunknown set B then �1 � �2 and �1 � �2 imply that the pair h�2; �2i represents higherdegree of knowledge about a. Thus, the ordering �k is often referred to as the knowledgeor information ordering. Since the lattice T is complete and distributive, T 2 is a completedistributive lattice with respect to the ordering �k1.1There is another ordering that can be associated with T 2. We can de�ne h�1; �1i �t h�2; �2i if �1 � �2and �1 � �2. This ordering is often called the truth ordering. Since T is a complete distributive lattice, T 2with both orderings �k and �t forms a complete distributive bilattice (see [Gin88, Fit00] for a de�nition). Inthis paper we will not use the ordering �t nor the fact that T 2 is a bilattice.6

The operations of meet, join, top, and bottom under �k are denoted
, �, >, and ?,respectively. In addition, we make use of the con
ation operation. Con
ation is de�ned as�h�; �i = h�; �i. An element A 2 T 2 is consistent if A �k �A. In other words, an elementh�; �i 2 T 2 is consistent if � is smaller than or equal to the complement of � (the evidence\for" is less than or equal than the complement of the evidence \against") and � is smallerthan or equal to the complement of � (the evidence \against" is less than or equal than thecomplement of the evidence \for").The con
ation operation satis�es the de Morgan laws:�(h�; �i � h
; �i) = �h�; �i
 �h
; �i;�(h�; �i
 h
; �i) = �h�; �i � �h
; �i;where �; �;
; � 2 T .A T 2-valuation is a mapping from atoms to elements of T 2. If B(a) = h�; �i under someT 2-valuation B, we say that under B the element a is in a set with certainty � and it is notin the set with certainty �. We say that a T 2-valuation is consistent if it assigns a consistentelement of T 2 to every atom in U .In this paper, T 2-valuations will be used to represent current information about sets(databases) as well as the change that needs to be enforced. Let B be a T 2-valuation repre-senting our knowledge about a certain set and let C be a T 2-valuation representing changethat needs to be applied to B. We de�ne the revision of B by C, say B0, byB0 = (B
�C)� C:The intuition is as follows. After the revision, the new valuation must contain at least as muchknowledge about atoms being in and out as C. On the other hand, this amount of knowledgemust not exceed implicit bounds present in C and expressed by �C, unless C directly impliesso. In other words, if C(a) = h�; �i, then evidence for in(a) must not exceed �� unless � � ��,and the evidence for out(a) must not exceed �� unless � � ��. Since we prefer explicit evidenceof C to implicit evidence expressed by �C, we perform the change by �rst using �C and thenapplying C. However, let us note here that the order matters only if C is inconsistent; if C isconsistent, (B
�C)�C = (B �C)
�C. This speci�cation of how the change modeled bya T 2-valuation is enforced plays a key role in our de�nition of justi�ed revisions in Section 4.Example 2.4 (continuation of Example 2.1) In Example 2.1, BI has two revisions. The�rst one, BR, is the revision of BI by C, where C(accept) = hfAnn;Bobg; fgi. We have�C(accept) = hfAnn;Bob; Peteg; fPetegi. Thus, (BI
�C)(accept) = hfPeteg; ;i, and ((BI
�C)� C)(accept) = hfAnn;Bob; Peteg; ;i = BR(accept).The second revision, B0R, is the revision of BI by C 0, where C 0(accept) = hfg; fPetegi. 2There is a one-to-one correspondence � between T -valuations (of revision atoms) and T 2-valuations (of atoms). For a T -valuation v, the T 2-valuation �(v) is de�ned by: �(v)(a) =hv(in(a)); v(out(a))i. The inverse mapping of � is denoted by ��1. Clearly, by using themapping �, the notions of satisfaction de�ned earlier for T -valuations can be extended to T 2-valuations. Similarly, the operator TP gives rise to a related operator T bP . The operator T bP isde�ned on the set of all T 2-valuations by T bP = � � TP � ��1. The key property of the operatorT bP is its �k-monotonicity. 7

Theorem 2.5 Let P be an annotated revision program and let B and B0 be two T 2-valuationssuch that B �k B0. Then, T bP (B) �k T bP (B0).By Tarski-Knaster Theorem [Tar56] it follows that the operator T bP has a least �xpoint inT 2 (see also [KS92]). This �xpoint is an analogue of the concept of a least Herbrand modelof a Horn program. It represents the set of annotated revision atoms that are implied bythe program and, hence, must be satis�ed by any revision under P of any initial valuation.Given an annotated revision program P we will refer to the least �xpoint of the operatorT bP as the necessary change of P and will denote it by NC(P). The present concept of thenecessary change generalizes the corresponding notion introduced in [MT95, MT98] for theoriginal unannotated revision programs.To illustrate concepts and results of the paper, we will consider two special lattices. The�rst of them is the lattice with the domain [0; 1] (interval of reals), with the standard ordering�, and the standard complement operation �� = 1 � �. We will denote this lattice by T[0;1].Intuitively, the annotated revision atom (in(a):x), where x 2 [0; 1], stands for the statementthat a is \in" with likelihood (certainty) x.The second lattice is the Boolean algebra of all subsets of a given set X. It will be denotedby TX . We will think of elements from X as experts. The annotated revision atom (out(a):Y),where Y � X, will be understood as saying that a is believed to be \out" by those expertsthat are in Y (the atom (in(a):Y) has a similar meaning).3 Models and s-modelsThe semantics of annotated revision programs will be based on the notion of a model, asde�ned in the previous section, and on its re�nements. The �rst two results describe somesimple properties of models of annotated revision programs. The �rst of them characterizesmodels in terms of the operator T bP .Theorem 3.1 Let P be an annotated revision program. A T 2-valuation B is a model of P(satis�es P) if and only if B �k T bP (B).Models of annotated revision programs are closed under meets. This property is analogousto a similar property holding for models of Horn programs. Indeed, since B1
 B2 �k Bi,i = 1; 2, and T bP is �k-monotone, by Theorem 3.1 we obtainT bP (B1
B2) �k T bP (Bi) �k Bi; i = 1; 2:Consequently, T bP (B1
B2) �k B1
B2:Thus, again by Theorem 3.1 we obtain the following result.Corollary 3.2 The meet of two models of an annotated revision program P is also a modelof P .
8

Given an annotated revision program P , its necessary change NC(P) satis�es NC(P) =T bP (NC(P)). Hence, NC(P) is a model of P .As we will now argue, not all models are appropriate for describing the meaning of anannotated revision program. The problem is that T 2-valuations may contain inconsistentinformation about elements from U . When studying the meaning of an annotated revisionprogram we will be interested in those models only whose inconsistencies are limited to thoseexplicitly or implicitly supported by the program and by the model itself.Consider the program P = f(in(a):fqg) g (where the annotation fqg comes from thelattice Tfp;qg). This program asserts that a is \in", according to expert q. By closed worldassumption, it also implies an upper bound for the evidence for out(a). In this case the onlyexpert that might possibly believe in out(a) is p (this is to say that expert q does not believein out(a)). Observe that a T 2-valuation B, such that B(a) = hfqg; fqgi is a model of P butit does not satisfy the implicit bound on evidence for out(a).Let P be an annotated program and let B be a T 2-valuation that is a model of P . Bythe explicit evidence we mean evidence provided by heads of program rules applicable withrespect to B, that is with bodies satis�ed by B. It is T bP (B). The implicit information is givenby a version of the closed world assumption: if the maximum evidence for a revision atoml provided by the program is � then, the evidence for the dual revision atom lD (out(a), ifl = in(a), or in(a), otherwise) must not exceed �� (unless explicitly forced by the program).Thus, the implicit evidence is given by �T bP (B). Hence, a model B of a program P containsno more evidence than what is directly implied by P given B and what is indirectly impliedby P given B if B �k T bP (B)� (�T bP (B)) (since the direct evidence is given by T bP (B) and theimplicit evidence is given by �T bP (B)). This observation leads us to a re�nement of the notionof a model of an annotated revision program.De�nition 3.3 Let P be an annotated revision program and let B be a T 2-valuation. We saythat B is an s-model of P ifT bP (B) �k B �k T bP (B)� (�T bP (B)):The \s" in the term \s-model" stands for \supported" and emphasizes that inconsistenciesin s-models are limited to those explicitly or implicitly supported by the program and themodel itself.Clearly, by Theorem 3.1, an s-model of P is a model of P . In addition, it is easy to seethat the necessary change of an annotated program P is an s-model of P (it follows directlyfrom the fact that NC(P) = T bP (NC(P))).The distinction between models and s-models appears only in the context of inconsistentinformation. This observation is formally stated below.Theorem 3.4 Let P be an annotated revision program. A consistent T 2-valuation B is ans-model of P if and only if B is a model of P .Proof. ()) Let B be an s-model of P . Then, T bP (B) �k B �k T bP (B) � (�T bP (B)). Inparticular, T bP (B) �k B and, by Theorem 3.1, B is a model of P .(() Let B satisfy P . From Theorem 3.1 we have T bP (B) �k B. Hence, �B �k �T bP (B). SinceB is consistent, B �k �B. Therefore,T bP (B) �k B �k �B �k �T bP (B): (3)9

It follows that T bP (B) �k �T bP (B) and T bP (B)� (�T bP (B)) = �T bP (B). By (3), we getT bP (B) �k B �k T bP (B)� (�T bP (B))and the assertion follows. 2Some of the properties of ordinary models hold for s-models, too. For instance, the followingtheorem shows that an s-model of two annotated revision programs is an s-model of their union.Theorem 3.5 Let P1, P2 be annotated revision programs. Let B be an s-model of P1 and ans-model of P2. Then, B is an s-model of P1 [P2.Proof. Clearly, B is a model of P1 [P2. That is,T bP1[P2(B) �k B: (4)It is easy to see that T bP1[P2(B) = T bP1(B)� T bP2(B). Hence, by the de Morgan law,�T bP1[P2(B) = �T bP1(B)
�T bP2(B):By the de�nition of an s-model:T bP1(B) �k B �k T bP1(B)��T bP1(B), andT bP2(B) �k B �k T bP2(B)��T bP2(B):Therefore, by the distributivity of lattice operations in T 2,B �k (T bP1(B)��T bP1(B))
 (T bP2(B)��T bP2(B)) == (T bP1(B)
 (T bP2(B)��T bP2(B)))� (�T bP1(B)
 (T bP2(B)��T bP2(B))) �k�k T bP1(B)� (�T bP1(B)
 (T bP2(B)��T bP2(B))) == T bP1(B)� (�T bP1(B)
 T bP2(B))� (�T bP1(B)
�T bP2(B)) �k�k T bP1(B)� T bP2(B)��T bP1[P2(B) = T bP1[P2(B)��T bP1[P2(B):In other words, B �k T bP1[P2(B)��T bP1[P2(B): (5)From (4) and (5) it follows that B is an s-model of P1 [P2. 2Not all of the properties of models hold for s-models. For instance, the counterpart ofCorollary 3.2 does not hold. The following example shows that the meet of two s-models isnot necessarily an s-model.Example 3.6 Consider the lattice Tfp;qg. Let P be an annotated program consisting of thefollowing rules: (in(a):fpg) (in(b):fpg)(out(a):fpg) (in(a):fpg) (out(b):fpg)10

Let B1 and B2 be de�ned as follows.B1(a) = hfpg; fpgi; B1(b) = hfpg; ;i;B2(a) = hfpg; fpgi; B2(b) = h;; fpgi:Let us show that B1 is an s-model of P . Indeed,T bP (B1)(a) = hfpg; fpgi; T bP (B1)(b) = h;; ;i:Hence, �T bP (B1)(a) = hfqg; fqgi; �T bP (B1)(b) = hfp; qg; fp; qgi:Therefore, T bP (B1)(a) �k B1(a) �k (T bP (B1)��T bP (B1))(a); andT bP (B1)(b) �k B1(b) �k (T bP (B1)��T bP (B1))(b):In other words, B1 is an s-model of P . Similarly, B2 is an s-model of P . However, B1
B2 isnot an s-model of P . Indeed,(B1
B2)(a) = hfpg; fpgi; (B1
B2)(b) = h;; ;i:Then, T bP (B1
B2)(a) = h;; fpgi; T bP (B1
B2)(b) = h;; ;i; and�T bP (B1
B2)(a) = hfqg; fp; qgi; �T bP (B1
B2)(b) = hfp; qg; fp; qgi:Hence, (B1
B2)(a) 6�k (T bP (B1
B2)��T bP (B1
B2))(a) = hfqg; fp; qgi:Therefore, B1
B2 is not an s-model of P . 2In this example both B1 and B2, as well as their meet B1
 B2 are inconsistent. For B1and B2 there are rules in P that explicitly imply their inconsistencies. However, for B1
 B2the bodies of these rules are no longer satis�ed. Consequently, the inconsistency in B1
B2 isnot implied by P . That is, B1
B2 is not an s-model of P .Let us now investigate what happens when we add to an annotated revision program Pa rule r = (l :�) (l :�) (here l is a revision atom, � is an annotation). Unlike ordinaryrevision programs where every database is a model of a rule of the form l l, not everyT 2-valuation is an s-model of r. Therefore, adding such a rule may a�ect the set of s-models ofthe program. On the one hand, rule r by imposing additional implicit bound on lD may giverise to a situation when an s-model of P is not an an s-model of P [frg (Case 1 of Example3.7). On the other hand, rule r may provide additional explicit evidence for l that results in asituation when an s-model of P [frg is not an s-model of P (Case 2 of Example 3.7).Example 3.7 Let U = fag and the lattice of annotations be Tfp;qg. Let B(a) = hfpg; fpgi.Let r = (in(a):fpg) (in(a):fpg).
11

1. Let P = fg. Then, T bP (B)(a) = h;; ;i, and �T bP (B)(a) = hfp; qg; fp; qgi. Hence,T bP (B)(a) � B(a) � T bP (B)(a) _ (�T bP (B))(a). Thus, B is an s-model of P . However,B is not an s-model of P [frg. Indeed, T bP[frg(B)(a) = hfpg; ;i, and �T bP[frg(B)(a) =hfp; qg; fqgi. Hence, B(a) 6� T bP[frg(B)(a) _ (�T bP[frg(B))(a) = hfp; qg; fqgi. Therefore,B is not an s-model of P [frg.2. Let P = f (out(a):fpg) g. Then it is easy to see that B is not an s-model of P .However, B is an s-model of P [frg. 2Remark 3.8 Let us note that adding rule r = (l:�) (l:�) to P has no e�ect on consistentmodels of P . Indeed, let B be a consistent model of P . Clearly, B is a model of frg. Hence,by Theorem 3.4, B is an s-model of P , and an s-model of frg. Therefore, Theorem 3.5 impliesthat B is an s-model of P [frg.4 Justi�ed revisionsIn this section, we will extend to the case of annotated revision programs the notion of a justi�edrevision introduced for revision programs in [MT95]. The reader is referred to [MT95, MT98]for the discussion of motivation and intuitions behind the concept of a justi�ed revision andof the role of the inertia principle (a version of the closed world assumption).There are several properties that one would expect to hold when the notion of justi�edrevision is extended to the case of programs with annotations. Clearly, the extended conceptshould specialize to the original de�nition if annotations are dropped. Next, main propertiesof justi�ed revisions studied in [MT98, MPT99] should have their counterparts in the case ofjusti�ed revisions of annotated programs. In particular, justi�ed revisions of an annotatedrevision program should be models of the program.There is one other requirement that naturally arises in the context of programs with anno-tations. Consider two annotated revision rules r and r0 that are exactly the same except thatthe body of r contains two annotated revision atoms (l:�1) and (l:�2), while the body of r0instead of (l:�1) and (l:�2) contains annotated revision atom (l:�1 _ �2).r = : : : : : : ; (l:�1); : : : ; (l:�2); : : :r0 = : : : : : : ; (l:�1 _ �2); : : :We will refer to this operation as the join transformation.It is clear, that a T 2-valuation B satis�es (l : �1) and (l : �2) if and only if B satis�es(l:�1 _ �2). Consequently, replacing rule r by rule r0 (or vice versa) in an annotated revisionprogram should have no e�ect on justi�ed revisions. In fact, any reasonable semantics forannotated revision programs should be invariant under such operation, and we will refer tothis property of a semantics of annotated revision programs as invariance under join.Now we introduce the notion of a justi�ed revision of an annotated revision program andcontrast it with an earlier proposal by Fitting [Fit95]. In the following section we show thatour concept of a justi�ed revision satis�es all the requirements listed above.Let a T 2-valuation BI represent our current knowledge about some subset of the universeU . Let an annotated revision program P describe an update that BI should be subject to.12

The goal is to identify a class of T 2-valuations that could be viewed as representing updatedinformation about the subset, obtained by revising BI by P . As argued in [MT95, MT98], eachappropriately \revised" valuation BR must be grounded in P and in BI , that is, any di�erencebetween BI and the revised T 2-valuation BR must be justi�ed by means of the program andthe information available in BI .To determine whether BR is grounded in BI and P , we use the reduct of P with respectto these two valuations. The construction of the reduct consists of two steps and mirrors theoriginal de�nition of the reduct of an unannotated revision program [MT98]. In the �rst step,we eliminate from P all rules whose bodies are not satis�ed by BR (their use does not havean a posteriori justi�cation with respect to BR). In the second step, we take into account theinitial valuation BI .How can we use the information about the initial T 2-valuation BI at this stage? Assumethat BI provides evidence � for a revision atom l. Assume also that an annotated revisionatom (l:�) appears in the body of a rule r. In order to satisfy this premise of the rule, it isenough to derive, from the program resulting from step 1, an annotated revision atom (l:
),where � _
 � �. The least such element exists (due to the fact that T is complete andin�nitely distributive). Let us denote this value by pcomp(�; �)2.Thus, in order to incorporate information about a revision atom l contained in the initialT 2-valuation BI , which is given by � = (��1(BI))(l), we proceed as follows. In the bodiesof rules of the program obtained after step 1, we replace each annotated revision atom of theform (l:�) by the annotated revision atom (l:pcomp(�; �)).Now we are ready to formally introduce the notion of reduct of an annotated revisionprogram P with respect to the pair of T 2-valuations, initial one, BI , and a candidate for arevised one, BR.De�nition 4.1 The reduct PBR jBI is obtained from P by1. removing every rule whose body contains an annotated atom that is not satis�ed in BR,2. replacing each annotated atom (l:�) from the body of each remaining rule by the annotatedatom (l:
), where
 = pcomp((��1(BI))(l); �).We now de�ne the concept of a justi�ed revision. Given an annotated revision program P ,we �rst compute the reduct PBR jBI of the program P with respect to BI and BR. Next, wecompute the necessary change for the reduced program. Finally we apply this change to theT 2-valuation BI . A T 2-valuation BR is a justi�ed revision of BI if the result of these threesteps is BR. Thus we have the following de�nition.De�nition 4.2 BR is a P -justi�ed revision of BI if BR = (BI
 �C) � C, where C =NC(PBR jBI) is the necessary change for PBR jBI .We will now contrast this approach with the one proposed by Fitting in [Fit95]. In order todo so, we recall the de�nitions introduced in [Fit95]. The key di�erence is in the way Fittingde�nes the reduct of a program. The �rst step is the same in both approaches. However,the second steps, in which the initial valuation is used to simplify the bodies of the rules noteliminated in the �rst step of the construction, di�er.2The operation pcomp(�; �) is known in the lattice theory as the relative pseudocomplement, see [RS70].13

De�nition 4.3 (Fitting) Let P be an annotated revision program and let BI and BR beT 2-valuations. The F -reduct of P with respect to (BI ; BR) (denoted PFBR jBI) is de�ned asfollows:1. Remove from P every rule whose body contains an annotated revision atom that is notsatis�ed in BR.2. From the body of each remaining rule delete any annotated revision atom that is satis�edin BI .The notion of justi�ed revision as de�ned by Fitting di�ers from our notion only in thatit uses the necessary change of the F -reduct (instead of the necessary change of the reductde�ned above in De�nition 4.1). We call the justi�ed revision based on the notion of F -reduct,the F -justi�ed revision.In the remainder of this section we show that the notion of the F -justi�ed revision doesnot in general satisfy some basic requirements that we would like justi�ed revisions to have. Inparticular, F -justi�ed revisions under an annotated revision program P are not always modelsof P .Example 4.4 Consider the lattice Tfp;qg. Let P be a program consisting of the following rules:(in(a):fpg) (in(b):fp; qg) and (in(b):fqg) and let BI be a valuation such that BI(a) = h;; ;i and BI(b) = hfpg; ;i. Let BR be a valuationgiven by BR(a) = h;; ;i and BR(b) = hfp; qg; ;i. Clearly, PFBR jBI = P , and BR is an F -justi�edrevision of BI (under P). However, BR does not satisfy P . 2The semantics of F -justi�ed revisions also fails to satisfy the invariance under join property.Example 4.5 Let P be the same revision program as before, and let P 0 consist of the rules(in(a):fpg) (in(b):fpg); (in(b):fqg) and (in(b):fqg) Let the initial valuation BI be given by BI(a) = h;; ;i and BI(b) = hfpg; ;i. The only F -justi�ed revision of BI (under P) is a T 2-valuation BR, where BR(a) = h;; ;i and BR(b) =hfp; qg; ;i. The only F -justi�ed revision of BI (under P 0) is a T 2-valuation B0R, where B0R(a) =hfpg; ;i and B0R(b) = hfp; qg; ;i. Thus, replacing in the body of a rule (in(b) : fp; qg) by(in(b):fpg) and (in(b):fqg) a�ects F -justi�ed revisions. 2However, in some cases the two de�nitions of justi�ed revision coincide. The followingtheorem provides a complete characterization of those cases (let us recall that a lattice T islinear if for any two elements �; � 2 T either � � � or � � �).Theorem 4.6 F -justi�ed revisions and justi�ed revisions coincide if and only if the lattice Tis linear.
14

Proof. ()) Assume that F -justi�ed revisions and justi�ed revisions coincide for a lattice T .Let �; � 2 T . We will show that either � � � or � � �. Indeed, let P be annotated revisionprogram consisting of the following rules.(in(a):�) (in(b):� _ �) and (in(b):�) Let BI be given by BI(a) = h?;?i and BI(b) = h�;?i. Let BR be given by BR(a) = h�;?iand BR(b) = h� _ �;?i. It is easy to see that BR is a justi�ed revision of BI (with respect toP). By our assumption, BR is also an F -justi�ed revision of BI . There are only two possiblecases.Case 1. � _ � � �. Then, � � �.Case 2. � _ � 6� �. Then, PFBR jBI = P . Let C = NC(PFBR jBI). By the de�nition of thenecessary change,C(a) = NC(PFBR jBI)(a) = NC(P)(a) = � h?;?i; when � _ � 6� �h�;?i; when � _ � � �By the de�nition of an F -justi�ed revision, BR = (BI
 �C) � C. From the facts thatBR(a) = h�;?i and BI(a) = h?;?i it follows that C(a) = h�;?i. Therefore, it is the casethat � _ � � �. That is, � � �.(() Assume that lattice T is linear. Then, for any �; � 2 Tpcomp(�; �) = �?; when � � �� otherwise (when � < �)Let P be an annotated revision program. Let BI and BR be any T 2-valuations. Let us seewhat is the di�erence between PBR jBI and PFBR jBI . The �rst steps in the de�nitions of reductand F -reduct are the same. During the second step of the de�nition of an F -reduct eachannotated atom (l:�) such that � � BI(l) is deleted from bodies of rules. In the second stepof the de�nition of the reduct such annotated atom is replaced by (l:?). If � > BI(l), then inthe reduct PBR jBI annotated atom (l:�) is replaced by (l:pcomp(BI(l); �)) = (l:�), that is, itremains as it is. In the F -reduct, (l:�) also remains in the bodies for � > BI(l). Thus, the onlydi�erence between PBR jBI and PFBR jBI is that bodies of the rules from PBR jBI may containatoms of the form (l : ?), where l 2 U , that are not present in the bodies of the correspondingrules in PFBR jBI . However, annotated atoms of the form (l : ?) are always satis�ed. Therefore,the necessary changes of PBR jBI and PFBR jBI , as well as justi�ed and F -justi�ed revisions ofBI coincide. 2Theorem 4.6 explains why the di�erence between the justi�ed revisions and F -justi�edrevisions is not seen when we limit our attention to revision programs as considered in [MT98].Namely, the lattice T WO = ff ; tg of boolean values is linear. Similarly, the lattice of realsfrom the segment [0; 1] is linear, and there the di�erences cannot be seen either.5 Properties of justi�ed revisionsIn this section we study basic properties of justi�ed revisions. We show that key properties ofjusti�ed revisions in the case of revision programs without annotations have their counterpartsin the case of justi�ed revisions of annotated revision programs.15

First, we observe that revision programs as de�ned in [MT95] can be encoded as annotatedrevision programs (with annotations taken from the lattice T WO = ff ; tg). Namely, a revisionrule p q1; : : : qm(where p and all qi's are revision atoms) can be encoded as(p:t) (q1:t); : : : ; (qm:t)We will denote by P a the result of applying this transformation to a revision program P (ruleby rule). Second, let us represent a set of atoms B by a T WO2-valuation Bv as follows:Bv(a) = ht; fi, if a 2 B, and Bv(a) = hf ; ti, otherwise.Fitting [Fit95] argued that under such encodings the semantics of F -justi�ed revisionsgeneralizes the semantics of justi�ed revisions introduced in [MT95]. Since for lattices whoseordering is linear the approach by Fitting and the approach presented in this paper coincide,and since the ordering of T WO is linear, the semantics of justi�ed revisions discussed hereextends the semantics of justi�ed revisions from [MT95]. Speci�cally, we have the followingresult.Theorem 5.1 Let P be an ordinary revision program and let BI and BR be two sets of atoms.Then, BR is a P -justi�ed revision of BI if and only if the necessary change of P aBvR jBvI isconsistent and BvR is a P a-justi�ed revision of BvI .Before we study how properties of justi�ed revisions generalize to the case with annotations,we prove the following auxiliary results.Lemma 5.2 Let P be an annotated revision program. Let B be a T 2-valuation. Then,NC(PB jB) = T bP (B).Proof. The assertion follows from de�nitions of a necessary change and operator T bP . 2Lemma 5.3 Let P be an annotated revision program. Let BI , BR, and C be T 2-valuations,such that BR � BI � C. Then, C satis�es the bodies of all rules in PBR jBI .Proof. Let r0 2 PBR jBI . Let (l:
) be an annotated revision atom from the body of r0. Let(��1(BI))(l) = �. By the de�nition of the reduct, r0 was obtained from some rule r 2 P , suchthat the body of r is satis�ed by BR, and
 = pcomp(�; �), where (l:�) is in the body of r.Since the body of r is satis�ed by BR, we have � � (��1(BR))(l). From BR �k BI � C itfollows that (��1(BR))(l) � (��1(BI � C))(l) == (��1(BI))(l) _ (��1(C))(l) = � _ (��1(C))(l):Combining this inequality with our previous observation that � � (��1(BR))(l), we get � ��_ (��1(C))(l). By the de�nition of pcomp(�; �), we get
 � (��1(C))(l). That is, C satis�es(l :
). Since (l :
) was arbitrary, C satis�es all annotated revision atoms in the body of r0.As r0 was an arbitrary rule from PBR jBI , we conclude that C satis�es the bodies of all rulesin PBR jBI . 216

Lemma 5.4 Let BR be a P -justi�ed revision of BI. Then, NC(PBR jBI) = T bP (BR).Proof. By the de�nition of a justi�ed revision BR = (BI
�C)�C, where C = NC(PBR jBI).Hence, BR � BI �C. By Lemma 5.3, C satis�es the bodies of all rules in PBR jBI . Since C isa model of PBR jBI , C satis�es all heads of clauses in PBR jBI .Let D be a valuation satisfying all heads of rules in PBR jBI . Then D is a model of PBR jBI .Since C is the least model of the reduct PBR jBI , we �nd that C �k D. Consequently, C is theleast valuation that satis�es all heads of the rules in PBR jBI . The rules in PBR are all thoserules from P whose bodies are satis�ed by BR. Thus, by the de�nition of the operator T bP ,C = T bP (BR). 2We will now look at properties of the semantics of justi�ed revisions. We will present aseries of results generalizing properties of revision programs to the case with annotations. Wewill show that the concept of an s-model is a useful notion in the investigations of justi�edrevisions of annotated programs.Our �rst result relates justi�ed revisions to models and s-models. Let us recall that in thecase of revision programs without annotations, justi�ed revisions under a revision program Pare models of P . In the case of annotated revision programs we have an analogous result.Theorem 5.5 Let P be an annotated revision program and let BI and BR be T 2-valuations.If BR is a P -justi�ed revision of BI then BR is an s-model of P (and, hence, a model of P).Proof. By the de�nition of a P -justi�ed revision, BR = (BI
 �C) � C, where C is thenecessary change for PBR jBI . From Lemma 5.4 it follows that C = T bP (BR). Therefore,BR = (BI
�T bP (BR))� T bP (BR) �k �T bP (BR)� T bP (BR):Also, BR = (BI
�T bP (BR))� T bP (BR) � T bP (BR):Hence, BR is an s-model of P . 2In the previous section we showed an example demonstrating that F -justi�ed revisions donot satisfy the property of invariance under joins. In contrast, justi�ed revisions in the senseof our paper do have this property.Theorem 5.6 Let P2 be the result of simpli�cation of an annotated revision program P1 bymeans of the join transformation. Then for every initial database BI , P1-justi�ed revisions ofBI coincide with P2-justi�ed revisions of BI .The proof follows directly from the de�nition of P -justi�ed revisions and from the followingdistributivity property of pseudocomplement: pcomp(�; �1)_pcomp(�; �2) = pcomp(�; �1_�2).In the case of revision programs without annotations, a model of a program P is its uniqueP -justi�ed revision. In the case of programs with annotations, the situation is slightly morecomplicated. The next several results provide a complete description of justi�ed revisions ofmodels of annotated revision programs. First, we characterize those models that are their ownjusti�ed revisions. This result provides additional support for the importance of the notion ofan s-model in the study of annotated revision programs.17

Theorem 5.7 Let a T 2-valuation BI be a model of an annotated revision program P . Then,BI is a P -justi�ed revision of itself if and only if BI is an s-model of P .Proof. Let us denote C = NC(PBI jBI). By the de�nition, BI is a P -justi�ed revision of itselfif and only if BI = (BI
�C)� C. Since BI satis�es P , Theorem 3.1 implies that BI �k C.Thus, BI � C = BI . Distributivity of the product lattice T 2 implies that (BI
 �C) � C =(BI � C)
 (�C � C) = BI
 (�C � C). Clearly, BI = BI
 (�C � C) if and only ifBI �k (�C � C).By Lemma 5.2, C = NC(PBI jBI) = T bP (BI). Thus, BI is a P -justi�ed revision of itselfif and only if BI �k T bP (BI) � (�T bP (BI)). But this latter condition is precisely the one thatdistinguishes s-models among models. Thus, under the assumptions of the theorem, BI is aP -justi�ed revision of itself if and only if it is an s-model of P . 2As we observed above, in the case of programs without annotations, models of a revisionprogram are their own unique justi�ed revisions. This property does not hold, in general, in thecase of annotated revision programs. In other words, s-models, if they are inconsistent, mayhave other revisions besides themselves (by Theorem 5.7 they always are their own revisions).The following example shows that inconsistent s-model may have no revisions other thanitself, may have only one consistent justi�ed revision, or may have incomparable (with respectto the knowledge ordering) consistent revisions.Example 5.8 Let the lattice of annotations be Tfp;qg. Consider an inconsistent T 2-valuationBI such that BI(a) = hfqg; fqgi.1. Consider annotated revision program P1 consisting of the clauses:(out(a):fqg) and (in(a):fqg) It is easy to see that BI is an s-model of P1 and the only justi�ed revision of itself.2. Let an annotated revision program P2 consist of the clauses:(out(a):fqg) and (in(a):fqg) (in(a):fqg)Clearly, BI is an s-model of P2. Hence, BI is its own justi�ed revision (under P2).However, BI is not the only P2-justi�ed revision of BI . Consider the T 2-valuation BRsuch that BR(a) = h;; fqgi. We have P2BR jBI = f(out(a):fqg) g. Let us denote thecorresponding necessary change, NC(P2BR jBI), by C. Then, C(a) = h;; fqgi. Hence,�C = hfpg; fp; qgi and ((BI
�C)� C)(a) = h;; fqgi = BR(a). Consequently, BR is aP2-justi�ed revision of BI . It is the only consistent P2-justi�ed revision of BI .3. Let an annotated revision program P3 be the following:(in(a):fqg) (in(a):fqg) and (out(a):fqg) (out(a):fqg)Then, BI is s-model of P3 and its own P3-justi�ed revision. In addition, it is straitforwardto check that BI has two consistent revisions BR and B0R, where BR(a) = h;; fqgiand B0R(a) = hfqg; ;i. The revisions BR and B0R are incomparable with respect to theknowledge ordering. 218

The same behavior can be observed in the case of programs annotated with elements fromother lattices. The following example is analogous to the second case in the Example 5.8, butthe lattice is T[0;1].Example 5.9 Let P be an annotated revision program (annotations belong to the latticeT[0;1]) consisting of the rules:(out(a):1) and (in(a):0:4) (in(a):0:4)Let BI be a valuation such that BI(a) = h0:4; 1i. Then, BI is an s-model of P and, hence, itis its own P -justi�ed revision. Consider a valuation BR such that BR(a) = h0; 1i. We havePBR jBI = f(out(a):1) g. Let us denote the necessary change NC(PBR jBI) by C. ThenC(a) = h0; 1i and �C = h0; 1i. Thus, ((BI
�C)� C)(a) = h0; 1i = BR(a). That is, BR is aP -justi�ed revision of BI . 2Note that in both examples the additional justi�ed revision BR of BI is smaller than BIwith respect to the ordering �k. It is not coincidental as demonstrated by our next result.Theorem 5.10 Let BI be a model of an annotated revision program P . Let BR be a P -justi�edrevision of BI. Then, BR �k BI.Proof. By the de�nition of a P -justi�ed revision, BR = (BI
 �C) � C, where C is thenecessary change of PBR jBI . By the de�nition of the reduct PBR jBI and the fact that BI isa model of P , it follows that BI is a model of PBR jBI . The necessary change C is the least�xpoint of T bPBR jBI , therefore, C � BI . Hence,BR = (BI
�C)�C �k BI �C �k BI �BI = BI : 2Finally, we observe that if a consistent T 2-valuation is a model (or an s-model; these notionscoincide in the class of consistent valuations) of a program then it is its unique justi�ed revision.Theorem 5.11 Let BI be a consistent model of an annotated revision program P . Then, BIis the only P -justi�ed revision of itself.Proof. Theorem 3.4 implies that BI is an s-model of P . Then, from Theorem 5.7 we getthat BI is a P -justi�ed revision of itself. We need to show that there are no other P -justi�edrevisions of BI .Let BR be a P -justi�ed revision of BI . Then, BR �k BI (Theorem 5.10). Therefore,T bP (BR) �k T bP (BI). Hence, �T bP (BI) �k �T bP (BR). Theorem 3.1 implies that BI �k T bP (BI).Thus, �BI �k �T bP (BI). Since BI is consistent, BI �k �BI . Combining the above inequali-ties, we get BI �k �BI �k �T bP (BI) �k �T bP (BR):That is, BI �k �T bP (BR). Hence, BI
�T bP (BR) = BI .From de�nition of justi�ed revision and Lemma 5.4,BR = (BI
�T bP (BR))� T bP (BR) = BI � T bP (BR) �k BI :19

Therefore, BR = BI . 2To summarize, when we consider inconsistent valuations (they appear naturally, especiallywhen we measure beliefs of groups of independent experts), we encounter an interesting phe-nomenon. An inconsistent valuation BI , even when it is an s-model of a program, may havedi�erent justi�ed revisions. However, all these additional revisions must be �k-less inconsistentthan BI . In the case of consistent models this phenomenon does not occur. If a valuation Bis consistent and satis�es P then it is its unique P -justi�ed revision.In [MT98] we proved that, in the case of ordinary revision programs, \additional evidencedoes not destroy justi�ed revisions". More precisely, we proved that if BR is a P -justi�edrevision of BI and BR is a model of P 0 then BR is a P [P 0-justi�ed revision of BI . Wewill now prove a generalization of this property to the case of annotated revision programs.However, as before, we need to replace the notion of a model with that of an s-model.Theorem 5.12 Let P , P 0 be annotated revision programs. Let BR be a P -justi�ed revision ofBI . Let BR be an s-model of P 0. Then, BR is a P [P 0-justi�ed revision of BI .Proof. Let C = NC(PBR jBI). Let C 0 = NC((P [P 0)BR jBI). Clearly, C � C 0. By thede�nition of a justi�ed revision BR = (BI
�C)� C. Hence,BR � BI � C � BI � C 0:By Lemma 5.3 it follows that C 0 satis�es the bodies of all rules in (P [P 0)BR jBI . Since C 0 isthe necessary change of (P [P 0)BR jBI we conclude that C 0 satis�es the heads of all rules in(P [P 0)BR jBI . Reasoning as in the proof of Lemma 5.4 we �nd that C 0 = T bP[P 0(BR).By Theorem 5.5, BR is an s-model of P . Therefore, by Theorem 3.5, BR is a s-model ofP [P 0. Theorem 5.7 implies that BR is a P [P 0-justi�ed revision of itself. In other words,BR = (BR
�NC((P [P 0)BR jBR))�NC((P [P 0)BR jBR):From Lemma 5.2 it follows that NC((P [P 0)BR jBR) = T bP[P 0(BR). Hence,BR = (BR
�C 0)� C 0:Next, let us recall that BR = (BI
�C)� C. Hence,BR = (((BI
�C)� C)
�C 0)� C 0:Now, using the facts that C � C 0 and �C 0 � �C, we get the following equalities:BR = (((BI
�C)� C)
�C 0)� C 0 == ((BI
�C)
�C 0)� (C
�C 0)� C 0 == (BI
 (�C
�C 0))� C 0 = (BI
�C 0)� C 0Thus, BR = (BI
�C 0)� C 0. By the de�nition of justi�ed revisions, BR is a P [P 0-justi�edrevision of BI . 2In case of revision programs without annotations, justi�ed revisions satisfy the minimalityprinciple (see [MT98]). Namely, P -justi�ed revisions of a database di�er from the database20

by as little as possible. Recall, that in the case of revision programs without annotations,databases are sets of atoms, and the di�erence between databases R and I is their symmetricdi�erence R � I = (R n I) [(I n R). The minimality principle states that if R is a P -justi�edrevision of I, then, R� I is minimal in the family fB � I : B is a model of Pg (Theorem 3.6in [MT98]).Before generalizing the minimality principle to the case of annotated revision programs weneed to specify what we mean by the di�erence between T 2-valuations.De�nition 5.13 Let R, B be T 2-valuations. We say that B can be transformed into R viaa T 2-valuation C if R = (B
 �C) � C. We say that B can be transformed into R if thereexists T 2-valuation C such that B can be transformed into R via C.Given two T 2-valuations, it is not necessarily the case that one of them can be transformedinto the other. Indeed, let V> be a T 2-valuation that assigns to each atom annotation >. LetV? be a T 2-valuation that assigns to each atom annotation ?. Then, if a lattice consists ofmore than one element, V> can not be transformed into V?.De�nition 5.14 Let R, B be T 2-valuations. Let S = fC j B can be transformed into R viaCg. The di�erence di�(R;B) isdi�(R;B) = �QS; when S 6= ;,V> otherwise (when S = ;).The following lemma describes a useful property of a di�erence between T 2-valuations.Namely, that the di�erence between T 2-valuations R and B is the least (in �k ordering)T 2-valuation among all C such that R = (B
�C)� C.Lemma 5.15 Let R, B be T 2-valuations. Let S = fC j B can be transformed into R via Cg.If S 6= ;, then di�(R;B) 2 S.Proof. Let S = fC j B can be transformed into R via Cg 6= ;. Then, di�(R;B) = QS. First,let us show that �QS = Pf�C : C 2 Sg. On the one hand, QS � C for all C 2 S. Thus,�QS � �C for all C 2 S. Hence,�YS �Xf�C : C 2 Sg: (6)On the other hand, Pf�C : C 2 Sg � �C for all C 2 S. Thus, �Pf�C : C 2 Sg � C forall C 2 S. Hence, �Pf�C : C 2 Sg � QS. That is,Xf�C : C 2 Sg � �YS: (7)From (6) and (7) it follows that �QS =Pf�C : C 2 Sg.Since T is complete and in�nitely distributive, we get the following.(B
�YS)�YS = (B
Xf�C : C 2 Sg)�YS ==Xf(B
�C) : C 2 Sg �YS =21

=YfXf(B
�C) : C 2 Sg � C 0 : C 0 2 Sg ��Yf(B
�C 0)� C 0 : C 0 2 Sg =YfRg = R:That is, (B
�YS)�YS � R: (8)By de�nition of S, for each C 2 S, R = (B
�C)�C. Therefore, for each C 2 S, C � Rand B
�C � R. Thus, QS � R andB
�YS = B
Xf�C : C 2 Sg =Xf(B
�C) : C 2 Sg � R:Hence, (B
�QS)�QS � R. This together with (8) imply that(B
�YS)�YS = R:That is, QS 2 S. 2Now we will show that the minimality principle can be generalized to the case of annotatedrevision programs. We will have, however, to assume that T is a Boolean algebra and restrictourselves to consistent T 2-valuations.Let T be a Boolean algebra with de Morgan complement being the complement. Let usde�ne the negation operation on T 2 as :h�; �i = h�; �i (�; � 2 T). Then, the lattice T 2with operations �,
, :, and elements ?, > is a Boolean algebra, too. Operations on T 2 liftpointwise to the space of T 2-valuations. It is easy to see that the space of T 2-valuations withoperations �,
, :, and elements V?, V> is again a Boolean algebra.Lemma 5.16 Let T be a Boolean algebra. Let R, B, I be T 2-valuations. Let R and I beconsistent. Let di�(R;B) �k di�(R; I). Then, R
B �k R
 I.Proof. Let C = di�(R; I), C 0 = di�(R;B). Since I is consistent, I �k �I. Thus,I
�(:I) �k �I
�(:I) = �(I � :I) = �V> = V? (9)Since R is consistent, C is consistent, too. That is, C �k �C. Hence,I
�C = (I
�C)� (I
 C) (10)Consider valuation C
 :I. Using (9) and (10) we get:(I
�(C
 :I))� (C
 :I) = (I
 (�C ��(:I)))� (C
 :I) == (I
�C)� (I
�(:I))� (C
 :I) = (I
�C)� (I
 C)� V? � (C
 :I) == (I
�C)� (I
 C)� (C
 :I) = (I
�C)� (C
 (I � :I)) == (I
�C)� (C
 V>) = (I
�C)� C = R:Consequently, C �k C
 :I (by de�nition of di�(R; I)). Hence, C
 I �k C
 :I
 I = V?.That is, C
 I = V?. Since C 0 � C, it follows that C 0
 I = V?. We have: I
 �C �k R =(B
�C 0)� C 0. Thus,I
�C = (I
�C)
 I �k ((B
�C 0)� C 0)
 I = ((B
�C 0)
 I)� (C 0
 I) =22

= ((B
�C 0)
 I)� V? = (B
�C 0)
 I �k B
�C 0:That is, I
�C �k B
�C 0: (11)Since R is consistent, C 0 is consistent, too. It means that C 0 �k �C 0. Hence, B
 �C 0 �kB
 C 0. Therefore,R
B = ((B
�C 0)� C 0)
B = ((B
�C 0)
B)� (C 0
B) == (B
�C 0)� (B
 C 0) = B
�C 0:That is, R
B = B
�C 0: (12)Similarly, R
 I = I
�C: (13)Combining (11), (12), and (13) we get R
 I �k R
B. 2If T is not a Boolean algebra, then the statement of the above lemma does not necessarilyhold, as illustrated by the following example.Example 5.17 Let T = T[0;1], U = fag. Let R(a) = h0:3; 0:7i, B(a) = h0:2; 0:5i, andI(a) = h0:1; 0:6i. Clearly, R and I are consistent. It is easy to see that (di�(R;B))(a) =(di�(R; I))(a) = h0:3; 0:7i. Hence, di�(R;B) �k di�(R; I). However, R
B 6�k R
 I. Indeed,(R
B)(a) = h0:2; 0:5i, and (R
 I)(a) = h0:1; 0:6i. 2Theorem 5.18 Let R be a consistent P -justi�ed revision of a consistent I. Let C = di�(R; I).Let B be such that di�(R;B) = C 0 �k C. Then, R is a P -justi�ed revision of B.Proof. Consider two reducts PRjI and PRjB. Let r0 2 PR. Let (l:�) be an annotated revisionatom from the body of r0. Let (��1(I))(l) = �I , (��1(B))(l) = �B , and (��1(R))(l) = �R. Bythe de�nition of a reduct, the corresponding rule in PRjI contains in the body the annotatedrevision literal (l:
I), where
I = pcomp(�I ; �). The corresponding rule in PRjB contains inthe body the annotated revision literal (l:
B), where
B = pcomp(�B ; �). By the de�nition ofpseudocomplement, �I _
I � �: (14)Since r0 2 PR, � � �R. Hence, � ^ �R = �. Also, from the de�nition of pcomp we get
I � �,which implies
I ^ �R =
I . From (14) we get(�I _
I) ^ �R � � ^ �R:That is, (�I ^ �R) _
I � �:From Lemma 5.16 it follows that �B ^ �R � �I ^ �R. Therefore,�B _
I � (�B ^ �R) _
I � �:From de�nition of pcomp(�B ; �) it follows that
B �
I . This means that the only di�erencebetween reducts PRjI and PRjB is that annotations of literals in the bodies of rules from PRjB23

are less than annotations of corresponding literals in PRjI. Consequently, NC(PRjB) �kNC(PRjI).Since R is consistent,C 0 �k C �k NC(PRjI) �k NC(PRjB) �k R �k�k �R �k �NC(PRjB) �k �C �k �C 0:Also, R = (B
�C 0)�C 0 implies that B
�C 0 �k R, and B �C 0 �k R. Then, on one hand,(B
�NC(PRjB))�NC(PRjB) �k (B
�C 0)�R �k R�R = R:On the other hand,(B
�NC(PRjB))�NC(PRjB) = (B �NC(PRjB))
�NC(PRjB) �k�k (B � C 0)
R �k R
R = R:Therefore, (B
�NC(PRjB))�NC(PRjB) = R. That is, R is a P -justi�ed revision of B. 2Theorem 5.19 Let R be a consistent P -justi�ed revision of a consistent I. Then, di�(R; I)is minimal in the family fdi�(B; I) : B is a consistent model of Pg.Proof. Let C = di�(R; I). Then, R = (I
�C)�C. Since R is consistent, C is also consistent.That is, C �k �C. Let B be a consistent model of P , and let di�(B; I) = C 0 �k C. We haveB = (I
�C 0)� C 0. Inequality C 0 �k C implies C 0 �k C �k �C �k �C 0. Therefore,(B
�C)� C = (((I
�C 0)�C 0)
�C)� C == (I
�C 0
�C)� (C 0
�C)� C = (I
�C)�C 0 � C == (I
�C)� C = R:Consequently, di�(R;B) �k C. By Theorem 5.18, R is a P -justi�ed revision of B. However,B is a consistent model of P . By Theorem 5.11, B is the only P -justi�ed revision of itself.Therefore, R = B. 2The condition in the above theorem that revision is consistent is important. For inconsistentrevisions the minimality principle does not hold, as shown in the following example.Example 5.20 Let T = Tfpg with the de Morgan complement being the set-theoretic com-plement. Let P be an annotated revision program consisting of the following rules:(in(a):fpg) (out(a):fpg) (out(a):fpg)Let I(a) = h;; fpgi. Clearly, I is consistent. Let R1(a) = hfpg; fpgi and R2(a) = hfpg; ;i.Both R1 and R2 are P -justi�ed revisions of I. Thus, R1 is inconsistent s-model of P , andR2 is consistent model of P . We have: di�(R1; I) = hfpg; fpgi, and di�(R2; I) = hfpg; ;i.Clearly, di�(R2; I) �k di�(R1; I). Therefore, R1 is a P -justi�ed revision of a consistent I, butdi�(R1; I) is not minimal in the family fdi�(B; I) : B is a consistent model of Pg. 224

6 An alternative way of describing annotated revision pro-grams and order isomorphism theoremWe will now provide an alternative description of annotated revision programs. Instead ofevaluating separately revision atoms in T we will evaluate atoms in T 2. This alternativepresentation will allow us to obtain a result on the preservation of justi�ed revisions underorder isomorphisms of T 2. This result is a generalization of the \shifting theorem" of [MPT99].An expression of the form a:h�; �i, where h�; �i 2 T 2, will be called an annotated atom(thus, annotated atoms are not annotated revision atoms). Intuitively, an atom a:h�; �i standsfor the conjunction of (in(a):�) and (out(a):�). An annotated rule is an expression of theform p q1; : : : ; qn where p; q1; : : : ; qn are annotated atoms. An annotated program is a set ofannotated rules.A T 2-valuation B satis�es an annotated atom a:h�; �i if h�; �i �k B(a). This notion ofsatisfaction can be extended to annotated rules and annotated programs.We will now de�ne the notions of reduct, necessary change and justi�ed revision for the newkind of programs. Let P be an annotated program. Let BI and BR be two T 2-valuations. Thereduct of a program P with respect to two valuations BI and BR is de�ned in a manner similarto De�nition 4.1. Speci�cally, we leave only the rules with bodies that are satis�ed by BR, andin the remaining rules we reduce the annotated atoms (except that now the transformation �is no longer needed!).De�nition 6.1 The reduct PBR jBI is obtained from P by1. removing every rule whose body contains an annotated atom that is not satis�ed in BR,2. replacing each annotated atom l:� from the body of each remaining rule by the annotatedatom l:
, where
 = pcomp(BI(l); �) (here �;
 2 T 2).Next, we compute the least �xpoint of the operator associated with the reduced program.Finally, as in De�nition 4.2, we de�ne the concept of justi�ed revision of a valuation BI withrespect to a revision program P .De�nition 6.2 BR is a P -justi�ed revision of BI if BR = (BI
 �C) � C, where C =NC(PBR jBI) is the necessary change for PBR jBI .It turns out that this new syntax does not lead to a new notion of justi�ed revision. Sincewe talk about two di�erent syntaxes, we will use the term \old syntax" to denote the revisionprograms as de�ned in Section 2, and \new syntax" to describe programs introduced in thissection. Speci�cally we now exhibit two mappings. The �rst of them, tr1, assigns to each \old"in-rule (in(a):�) (in(b1):�1); : : : ; (in(bm):�m); (out(s1):�1); : : : ; (out(sn):�n);a \new" rule a:h�;?i b1:h�1;?i; : : : ; bm:h�m;?i; s1:h?; �1i; : : : ; sn:h?; �ni:An \old" out-rule(out(a):�) (in(b1):�1); : : : ; (in(bm):�m); (out(s1):�1); : : : ; (out(sn):�n)25

is encoded in analogous way:a:h?; �i b1:h�1;?i; : : : ; bm:h�m;?i; s1:h?; �1i; : : : ; sn:h?; �ni:Translation tr2, in the other direction, replaces a \new" revision rule by one in-rule and oneout-rule. Speci�cally, a \new" rulea:h�; �i a1:h�1; �1i; : : : ; an:h�n; �niis replaced by two \old" rules (with identical bodies but di�erent heads)(in(a):�) (in(a1):�1); (out(a):�1); : : : ; (in(an):�n); (out(an):�n)and (out(a):�) (in(a1):�1); (out(a):�1); : : : ; (in(an):�n); (out(an):�n):The translations tr1 and tr2 can be extended to programs. We then have the following theoremthat states that the new syntax and semantics of annotated revision programs presented inthis section are equivalent to the syntax and semantics introduced and studied earlier in thepaper.Theorem 6.3 Both transformations tr1, and tr2 preserve justi�ed revisions. That is, ifBI ; BR are valuations in T 2 and P is a program in the \old" syntax, then BR is a P -justi�edrevision of BI if and only if BR is a tr1(P)-justi�ed revision of BI. Similarly, if BI ; BR arevaluations in T 2 and P is a program in the \new" syntax, then BR is a P -justi�ed revision ofBI if and only if BR is a tr2(P)-justi�ed revision of BI .In the case of unannotated revision programs, the shifting theorem proved in [MPT99]shows that for every revision program P and every two initial databases B and B0 thereis a revision program P 0 such that there is a one-to-one correspondence between P -justi�edrevisions of B and P 0-justi�ed revisions of B0. In particular, it follows that the study of justi�edrevisions (for unannotated programs) can be reduced to the study of justi�ed revisions of emptydatabases. We will now present a counterpart of this result for annotated revision programs.The situation here is more complex. It is no longer true that a T 2-valuation can be \shifted"to any other T 2-valuation. However, the shift is possible if the two valuations are related toeach other by an order isomorphism of the lattice of all T 2-valuations.There are many examples of order isomorphisms on the lattice of T 2. For instance, themapping : T 2 ! T 2 de�ned by (h�; �i) = h�; �i is an order isomorphism of T 2. In thecase of the lattice TX , order isomorphisms of T 2X can also be generated by permutations of theset X.Let be an order isomorphism on T 2. It can be extended to annotated atoms, annotatedrules, and T 2-valuations as follows: (a : �) = a : (�), (a:� a1:�1; : : : ; an:�n) = (a:�) (a1:�1); : : : ; (an:�n),((B))(a) = (B(a)),where a; a1; : : : ; an 2 U , �; �1; : : : ; �n 2 T 2, and B is a T 2-valuation.The extension of an order isomorphism on T 2 to T 2-valuations is again an order isomor-phism, this time on the lattice of all T 2-valuations. We say that an order isomorphism on alattice preserves con
ation if (��) = � (�) for all elements � from the lattice. We now havethe following result that generalizes the shifting theorem of [MPT99].26

Theorem 6.4 Let be an order isomorphism on the set of T 2-valuations. Let preservecon
ation. Then, BR is a P -justi�ed revision of BI if and only if (BR) is a (P)-justi�edrevision of (BI).Proof. By de�nition, BR is a P -justi�ed revision of BI if and only if BR = (BI
�C)�C, whereC = NC(PBR jBI). Since is an order isomorphism, it preserves meet and join operations.Therefore, (BR) = ((BI
�C)� C) = (BI
�C)� (C) == ((BI)
 (�C))� (C) = ((BI)
� (C))� (C):At the same time, (PBR jBI) = ((P)) (BR)j (BI), and NC((PBR jBI)) = (NC(PBR jBI)).Thus, BR is a P -justi�ed revision of BI if and only if (BR) is a (P)-justi�ed revision of (BI). 2Shifting theorem of [MPT99], that applies to ordinary revision programs, is just a particularcase of Theorem 6.4. In order to derive it from Theorem 6.4, we take T = T WO. Next, weconsider an ordinary revision program P and two databases B1 and B2 (let us recall that inthe case of ordinary revision programs, databases are sets of atoms and not valuations). LetP a and Bv1 and Bv2 be de�ned as in Theorem 5.1. It is easy to see that the operator , de�nedby ((v))(a) = � h�; �i; when Bv1 (a) 6= Bv2(a)h�; �i; when Bv1 (a) = Bv2(a) ;is an order-isomorphism on T WO2-valuations and that (Bv1) = Bv2 . Let C1 and C2 be twosets of atoms such that Cv2 = (Cv1). By Theorem 6.4, Cv1 is a P a-justi�ed revision of Bv1 ifand only if Cv2 is a (P a)-justi�ed revision of Bv2 . Theorem 5.1 and the observation that thenecessary change of P aCv1 jBv1 is consistent if and only if the necessary change of (P a)Cv2 jBv2 isconsistent together imply now the shifting theorem of [MPT99].The requirement in Theorem 6.4 that preserves con
ation is essential. If it is not thecase, the statement of the theorem may not hold as illustrated by the following example.Example 6.5 Let T = Tfp;q;rg with the de Morgan complement de�ned as follows:fg = fp; q; rg; fpg = fp; rg; fqg = fq; rg; frg = fp; qg;fp; q; rg = fg; fp; rg = fpg; fq; rg = fqg; fp; qg = frg:Let be order isomorphism on T such that (fpg) = fpg, (fqg) = frg, and (frg) = fqg.Clearly, does not preserve con
ation, because (�hfpg; fgi) = (hfp; q; rg; fp; rgi) = hfp; q; rg; fp; qgi; but� (hfpg; fgi) = �hfpg; fgi = hfp; q; rg; fp; rgi:Let an annotated program be the following:P : a : hfpg; fgi It determines the necessary change C(a) = hfpg; fgi.27

Then, �C(a) = hfp; q; rg; fp; rgi. Let BI(a) = hfg; frgi. The P -justi�ed revision of BI isBR(a) = (hfg; frgi
 hfp; q; rg; fp; rgi) � hfpg; fgi = hfpg; frgi.The annotated program (P) is the same as P . We have (BI)(a) = hfg; fqgi, (BR)(a) =hfpg; fqgi. The reduct ((P)) (BR)j (BI) = (P) = P . The necessary change determined bythe reduct is C. However,(((BI)
�C)� C)(a) = hfpg; fgi 6= (BR)(a):Therefore, (BR) is not a (P)-justi�ed revision of (BI). 27 Conclusions and further researchThe main contribution of our paper is a new de�nition of the reduct (and hence of a justi�edrevision) for annotated programs considered by Fitting in [Fit95]. This new de�nition elimi-nates some anomalies arising in the approach by Fitting. Speci�cally, in Fitting's approach,justi�ed revisions are not, in general, models of a program. In addition, they do not satisfy theinvariance-under-join property. In our approach, both properties hold. Moreover, as we showin Sections 5 and 6, many key properties of ordinary revision programs extend to the case ofannotated revision programs under our de�nition of justi�ed revisions.Several research topics need to be further pursued. First, the concepts of an annotatedrevision program and of a justi�ed revision can be generalized to the disjunctive case, where aprogram may have \nonstandard disjunctions" in the head. One can show that this extensionindeed reduces back to the ordinary concept of annotated revision programming, as discussedhere, if no rule of a program contains a disjunction in its head. However, an in-depth study ofannotated disjunctive revision programming has yet to be conducted.Second, in this paper we focused on the case when the lattice of annotations is distributive.This assumption can be dropped and a reasonable notion of a justi�ed revision can still bede�ned. However, the corresponding theory is so far less understood and it seems to be muchless regular than the one studied in this paper.Finally, we did not study here the complexity of reasoning tasks for annotated revisionprograms. Assuming that the lattice is �nite and �xed (is not part of the input), the complexityresults obtained in [MT98] can be extended to the annotated case. The complexity of reasoningtasks when the lattice of annotations is a part of an input still needs to be studied. Clearly,any such study would have to take into account the complexity of evaluating lattice operations.8 AcknowledgmentsThis work was partially supported by the NSF grants CDA-9502645 and IRI-9619233.References[ALP+98] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T.C. Przymusinski.Dynamic logic programming. In Proceedings of KR'98: Sixth International Conference onPrinciples of Knowledge Representation and Reasoning, Trento, Italy, pages 98 { 110. SanMateo, CA, Morgan Kaufmann, 1998. 28

[vE86] M.H. van Emden. Quantitative deduction and its �xpoint theory. Journal of LogicProgramming, 3(1):37{53, 1986.[vEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a program-ming language. Journal of the ACM, 23(4):733{742, 1976.[Fit95] M. C. Fitting. Annotated revision speci�cation programs. In Logic programming andnonmonotonic reasoning (Lexington, KY, 1995), volume 928 of Lecture Notes in ComputerScience, pages 143{155. Springer-Verlag, 1995.[Fit00] M. C. Fitting. Fixpoint semantics for logic programming { a survey. TheoreticalComputer Science, 2000. To appear.[Gin88] M.L. Ginsberg. Multivalued logics: a uniform approach to reasoning in arti�cialintelligence. Computational Intelligence, 4:265{316, 1988.[KS92] M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic programs andits applications. Journal of Logic Programming, 12:335{367, 1992.[LW92] V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmonotonic reasoning. InProceedings of the 3rd international conference on principles of knowledge representationand reasoning, KR '92, pages 603{614, San Mateo, CA, Morgan Kaufmann, 1992.[MPT99] W. Marek, I. Pivkina, and M. Truszczy�nski. Revision programming = logic program-ming + integrity constraints. In Computer Science Logic, 12th International Workshop,CSL'98, volume 1584 of Lecture Notes in Computer Science, pages 73{89. Springer-Verlag,1999.[MT95] W. Marek and M. Truszczy�nski. Revision programming, database updates and in-tegrity constraints. In Proceedings of the 5th International Conference on Database Theory| ICDT 95, volume 893 of Lecture Notes in Computer Science, pages 368{382. Springer-Verlag, 1995.[MT98] W. Marek and M. Truszczy�nski. Revision programming. Theoretical Computer Sci-ence, 190(2):241{277, 1998.[NS94] R. Ng and V.S. Subrahmanian. Stable semantics for probabilistic deductive databases.Information and Computation, 110(1):42{83, 1994.[PT97] T. C. Przymusinski and H. Turner. Update by means of inference rules. Journal ofLogic Programming, 30(2):125{143, 1997.[RS70] H. Rasiowa and R. Sikorski. The Mathematics of Metamathematics. PWN|PolishScienti�c Publishers, Warsaw, 1970.[Tar56] A. Tarski. Logic, semantics, metamathematics. Oxford at the Clarendon Press, Oxford,1956.
29

