Designing of Nonmonotonic Inductive Logic Programming Systems

Chongbing Liu

October 24, 2005
Outlines

■ Basic Algorithms and Properties

■ Sequential Learning Algorithm

■ Parallelization
Basic Algorithms and Properties

Necessary conditions

Learn from a single positive example

Learn from a single negative example

Learn from a set of examples

General properties
Necessary Conditions

Given

\(B\): a program, \(H\): a rule, \(E\): a ground literal.

Proposition

\[B \cup \{H\} \models E \text{ and } B \models H \implies B \models E \quad (i)\]

From (i), we can prove

\[B \not\models E \text{ and } B \cup \{H\} \models E \implies B \not\models H \quad (ii) \quad (E: \text{ positive example})\]

\[B \models E \text{ and } B \cup \{H\} \not\models E \implies B \not\models H \quad (iii) \quad (E: \text{ negative example})\]

Trivial hypothesis

- Let \(M^+ = M \cup \{l \mid l \notin M \text{ and } l \in \mathcal{HB}\}\), where \(M\) is the stable model of \(B\) and \(\mathcal{HB}\) is the Herbrand model of \(B\).

- \(B \not\models H\) implies \(M^+ \not\models H\).

- Let \(\Gamma = \{K \in M^+ \mid K \text{ is relevant to } E \text{ and is involved in } B \cup \{E\}\}\).

- Since \(M^+ \models \Gamma\), we have \(M^+ \not\models r_0\) where \(r_0 = \leftarrow \Gamma\).

- Integrity constraint \(r_0 = \leftarrow \Gamma\) is a trivial valid (ground) candidate of \(H\).
Learning from a single positive example

algorithm: Learn-single-pos

Input: a categorical program B, a ground atom E (positive)

Output: a rule R

1. compute the answer set M of B and its expansion set M^+;
2. construct the integrity constraint $\leftarrow \Gamma$ from M^+;
3. produce a rule $E \leftarrow \Gamma'$ by shifting $\text{not } E$ in Γ;
4. generate a general rule R where $R\theta = (L \leftarrow \Gamma')$ for some θ.
Learning from a single positive example

Illustration

Given:

\[B = \{ \text{bird}(X) \leftarrow \text{penguin}(X). \text{bird}(\text{tweety}). \text{penguin}(\text{polly}). \} \]

\[E = \{ \oplus \text{flies}(\text{tweety}). \} \]

Note: \[B \models \text{not flies}(\text{tweety}). \]

Steps:

1. compute answer set \(M \) of \(B \) and expansion set \(M^+ \):
 - stable model of \(B \) (same as that of \(B \) not \(E \)):
 \[M = \{ \text{bird}(\text{tweety}). \text{bird}(\text{polly}). \text{penguin}(\text{polly}). \} \]
 - expansion of \(M \):
 \[M^+ = \{ \text{bird}(\text{tweety}). \text{bird}(\text{polly}). \text{penguin}(\text{polly}). \text{not penguin}(\text{tweety}). \text{not flies}(\text{tweety}). \text{not flies}(\text{polly}). \} \]

2. construct the integrity constraint \(\Gamma \) from \(M^+ \):
 \[\text{← bird(\text{tweety}), not penguin(\text{tweety}), not flies(\text{tweety}).} \]

3. produce a rule \(E \leftarrow \Gamma' \) by shifting not \(E \) in \(\Gamma \):
 \[r_0 = \text{flies(\text{tweety}) \leftarrow bird(\text{tweety}), not penguin(\text{tweety}).} \]

4. generate a general rule :
 \[H = \text{flies}(X) \leftarrow \text{bird}(X), \text{not penguin}(X). \]
 (simplified as \(ab(x) \leftarrow \text{penguin}(x). \)
Learning from a single positive example

Properties

B: categorical program,

E: positive example,

R: learned rule by algorithm LearnSingle-pos

Properties:

- $B \not\models R$.

- $\text{pred}(\text{head}(R)) = \text{pred}(E)$.

- If R is negative-cycle-free and its head predicate appears nowhere in B, then $B \cup \{R\}$ is also categorical.

- If R is negative-cycle-free and its head predicate appears nowhere in B, then $B \cup \{R\} \models E$.
Learning from a single negative example

algorithm: Learn-single-neg

Input:
a categorical program B, a ground atom E (negative example),
a target predicate $K(\ldots)$ on which $pred(E)$ strongly and negatively depends in B.

Output: a rule R

1. compute the answer set M of B and its expansion set M^+;
2. construct the integrity constraint $\leftarrow \Gamma$ from M^+;
3. produce the rule $K(\ldots) \leftarrow \Gamma'$ by shifting $not\ K(\ldots)$ in Γ;
4. obtain Γ'' by dropping from Γ' every literal l whose predicate $pred(l)$ strongly and negatively depends on $K(\ldots)$ in B.
5. generate a general rule R from $K(\ldots) \leftarrow \Gamma''$ such that $R\theta = K(\ldots) \leftarrow \Gamma''$ for some θ.
Learning from a single negative example

Illustration

Given:

\[B : \quad \text{flies}(x) \leftarrow \text{bird}(x), \not \text{ab}(x), \]
\[\text{bird}(x) \leftarrow \text{penguin}(x), \]
\[\text{bird(tweety)}, \]
\[\text{penguin}(polly). \]

\[E : \quad \not \text{flies}(polly). \]

target predicate: \textit{ab}

Note: \(B \models \text{flies}(polly). \)

Steps:

1. compute answer set \(M \) of \(B \) and expansion set \(M^+ \):
 ... omitted ...

2. construct the integrity constraint \(\leftarrow \Gamma \) from \(M^+ \):
 \[\leftarrow \text{bird}(polly), \text{penguin}(polly), \text{flies}(polly), \not \text{ab}(polly). \]

3. produce the rule \(K(\ldots) \leftarrow \Gamma' \) by shifting \(\not K(\ldots) \) in \(\Gamma \):
 \[\text{ab}(polly) \leftarrow \text{bird}(polly), \text{penguin}(polly), \text{flies}(polly). \]

4. dropping from \(\Gamma' \) every literal \(l \) whose predicate \(\text{pred}(l) \) strongly and netagively depends on predicate \textit{ab}:
 \[\text{ab}(polly) \leftarrow \text{bird}(polly), \text{penguin}(polly). \]

5. generate a general rule \(H \):
 \[\text{ab}(x) \leftarrow \text{bird}(x), \text{penguin}(x). \]
 (simplified as \(\text{ab}(x) \leftarrow \text{penguin}(x) \).

Note: Now since \(\text{ab}(polly) \) is \textit{true}, \(\not \text{ab}(penguin) \) is \textit{false}. Therefore, the newly learned theory prevents the first rule in \(B \) from deriving \text{flies}(polly).
Learning from a single negative example

Properties

B: categorical program,

E: negative example,

K: target predicate,

R: learned rule by algorithm Learnsingle-pos

Properties:

- $B \not\models R$.

- $\text{pred}(\text{head}(R)) \neq \text{pred}(E)$, instead, $\text{pred}(\text{head}(R)) = K$.

- if R is negative-cycle-free, then $B \cup \{R\}$ is not necessarily categorical.

- if $B \cup \{R\} \models R$ and $B \cup \{R\}$ is consistent, then $B \cup \{R\} \not\models E$.

Learning from a set of examples

all positive examples

1. Let B be a categorical program, and R_i is a rule learned from B and a positive example E_i, $1 \leq i \leq n$.

If each R_i is negativ-cycle-free and $\text{pred}(E_i)$ appears nowhere in B, then $B \cup \{R_1, \ldots, R_n\} \models E_i$.

2. Let B be a categorical program, E_1 and E_2 be positive examples such that $\text{pred}(E_1)$ and $\text{pred}(E_2)$ appear nowhere in B.

Suppose rule R_1 learned from B and E_1 is negative-cycle-free, and rule R_2 learned from $B \cup \{R_1\}$ and E_2 is negative-cycle-free.

Then $B \cup \{R_1, R_2\} \models E_i (i = 1, 2)$. (monotonicity)
Learning from a set of examples

all negative examples

... ... omitted
Learning from a set of examples

mixed set of positive and negative examples

1. may not necessarily produce a solution which satisfies both positive and negative examples.

2. in incremental learning mode, the order in which the examples are taken, does matter. (obvious in multiple-predicate learning, less obvious in single-predicate learning)
General Properties

- Both positive and negative examples may lead to new rules learned.

- Based on answer set semantics, so have both abductive and inductive nature.

- Example-driven learning, therefore bottom-up search in general.

- **(Induction in noncategorical programs)** Suppose program B has answer sets S_1, \ldots, S_n, and rule R_i is obtained by algorithm Learn-single-pos using B and a same positive example E. If each R_i is negative-cycle-free and $\text{pred}(E)$ appears nowhere in B, then $B \cup \{R_1, \ldots, R_n\} \models E$.

- No modifications to the rules as background knowledge. But the result of induction often has the same effect as modifying rules in a program, given appropriate program transformation techniques. For instance, let $B = \{p \leftarrow q, r. \quad q.\}$ and $E = p$. Then algorithm Learn-single-pos will learn a rule $p \leftarrow q, \text{not } r$.

 However, this rule and the first rule in B can be merged as $p \leftarrow q$, which is equivalent to the rule obtained by dropping r from the first rule in B.

- Since the learned theory may contain a lot of redundancies, it seems that we really need some robust program transformation procedures.

- This feature allows the batch learning systems to incorporate some prior knowledge, which was not allowed in traditional batch learning.

- Batch learning is preferred to incremental learning, since it leads to less redundant theories.
Sequential Learning Algorithms

Incremental Learning

Initialize \(\Sigma \) to \(\{ \square \} \) or some prior knowledge

repeat

read the next (positive or negative) example

while \(\Sigma \) is not correct w.r.t. the examples read so far

if \(\exists e^- \) s.t. \(\Sigma \models e^- \)

learn a rule from \(\Sigma \) and \(e^- \) using Learn-single-neg

add the learned rule to \(\Sigma \)

if \(\exists e^+ \) s.t. \(\Sigma \not\models e^+ \)

learn a rule from \(\Sigma \) and \(e^+ \) using Learn-single-pos

add the learned rule to \(\Sigma \)

simplify \(\Sigma \)

until no examples left to read.
Sequential Learning Algorithms

Batch Learning

Initialize Σ to $\{\Box\}$ or some prior knowledge

while there are positive examples uncovered by Σ

 learn a rule R from Σ and a randomly selected e^+
 find a best consistent rule R' between \Box and R
 using algorithm Learn-single-pos
 remove positive examples covered by R'
 add the rule R' to Σ
 simplify Σ

while there are negative examples

 learn a rule R from Σ and a randomly selected e^-
 using algorithm Learn-single-neg
 remove e^-
 add the rule R to Σ
 simplify Σ
Parallel Learning Algorithms

master processor:

- Initialize Σ to $\{\square\}$ or some prior knowledge
- partition the positive examples to p processors
- replicate all negative examples to all processors
- broadcast Σ to all the worker processors
- collect learned Σ_i from processor i
- merge Σ_i’s and simplify them into a new Σ

worker processor i:

- receive its partition of positive examples
- and all the negative examples
- learn a theory Σ_i sequentially
- send Σ_i to the master