Nonmonotonic Inductive Logic Programming (NMILP)

Chongbing Liu

October 24, 2005
Outlines

■ Why NMILP?

■ SLDNF Based Approaches

■ Moving from ILP to NMILP

■ Stable Models Based Approaches
Why NMILP?
Nonmonotonic Logic Programming (NMLP)

• normal logic programs (CAW by NAF)
 \[A_0 \leftarrow A_1, \ldots, A_m, \neg A_{m+1}, \ldots, \neg A_n \]

• mainly, stable model semantics (beliefs)

• default reasoning on incomplete knowledge (defaults + observation \(\Rightarrow \) conclusion)

• rules acts as contraints or derivation rules (not as definitions)

• nonmonotonicity (addition of new info may contradict previous conclusions)

• No learning mechanisms are provided
Inductive Logic Programming (ILP)

- Given:
 - Background Knowledge B and
 - Examples $E = E^+ \cup E^-$ ($B \not\models E$)

Find a theory H such that
- $B \cup H \models e$ for every $e \in E^+$
- $B \cup H \not\models f$ for every $f \in E^-$

- Present ILP uses Horn clauses for B and H
 - less expressive language
 - monotonic reasoning

- armed with various learning mechanisms
 - incremental learning (non-monotonic learning)
 - batch learning (monotonic learning)
 - top-down search and bottom-up search
 - inverse resolution
 - inverse entailment
Nonmonotonic Inductive Logic Programming (NMILP)

NMLP: expressive language, human commonsense reasoning, but no learning mechanisms

ILP: language with limited expressiveness, armed with learning mechanisms, but does not simulate human commonsense reasoning

NMILP: hopefully takes advantages of both paradigms

\[\text{NMILP} = \text{NMLP} + \text{ILP} \]
SLDNF Based Approaches
Representive Efforts

- Non-monotonic learning, M. Bain, S. Muggleton, 1992

- Learning Logic Programs with negation as failure, 1996

- Learning nonmonotonic logic program: learning exceptions, 1995

- Normal programs and multiple predicate learning, 1998

- Learning extended logic programs, 1997

- A three-valued framework for the induction of general programs, 1996
Incremental Learning

Initialize Σ to $\{\Box\}$

repeat

read the next (positive or negative) example

while Σ is not correct w.r.t. the examples read so far

if $\exists e^-$ s.t. $\Sigma \models e^-$

specialize Σ by identifying a false clause

and delete it from Σ

if $\exists e^+$ s.t. $\Sigma \not\models e^+$

generalize Σ by constructing a clause $C \models e$

and add it to Σ

until no examples left to read.

=================================

An Example

$B = \{\text{bird(swan). bird(eagle). bird(penguin). bird(pigeon).}\}$

$E = \{\oplus \text{flies(swan).} \oplus \text{flies(eagle).} \ominus \text{flies(penguin).}\}$

$\Sigma_0 = \Box$

$\oplus: \text{flies(swan)}$

$\Sigma_1 = \{\text{flies}(X) \leftarrow \text{bird}(X).\}$

$\oplus: \text{flies(eagle)}$

$\Sigma_2 = \{\text{flies}(X) \leftarrow \text{bird}(X).\}$

$\ominus: \text{flies(penguin)}$

$\Sigma_3 = \{\text{flies(swan). flies(eagle).}\}$
An Example

\[B = \{ \text{bird(swan). bird(eagle). bird(penguin). bird(pigeon).} \} \]

\[E = \{ \oplus \text{flies(swan).} \oplus \text{flies(eagle).} \ominus \text{flies(penguin).} \} \]

\[\Sigma_0 = \Box \]

\[\oplus: \text{flies(swan)} \]

\[\Sigma_1 = \{ \text{flies}(X) \leftarrow \text{bird}(X). \} \]

\[\oplus: \text{flies(eagle)} \]

\[\Sigma_2 = \{ \text{flies}(X) \leftarrow \text{bird}(X). \} \]

\[\ominus: \text{flies(penguin)} \]

\[\Sigma_3 = \{ \text{flies(swan). flies(eagle).} \} \]

comments

1. monotonic reasoning (Horn clauses based)

2. non-monotonic learning (correct info not preserved, e.g., both \(\Sigma_1 \) and \(\Sigma_2 \) imply \(\text{flies(pigeon)} \), but \(\Sigma_3 \) does not.)

3. may result in poor learning quality

4. due to problem of “overly(drastic)-specialization”

5. we desire to preserve correct info

6. can not be achieved by any forms of “incremental-specialization” within classical logic framework

7. SOLUTION: introducing negation !
Closed World Specialization

Input:

set of clauses T (possibly with negation) and ground atom A s.t. $T \models A$ and A is incorrect

Operations:

Generate proof of $T \models A$ using SLDNF-resolution
Assume $C \in T$ resolved with $\leftarrow A$
Let $C = \text{Hd} : \neg \text{Bd}$
Let θ be the substitution for variables in C
If literal $\neg B \in \text{Bd}$
 Let $T' = T \cup \{ B\theta \}$
else
 Let $\{ V_1, \ldots, V_n \}$ be the domain of θ
 Let q be a predicate symbol not found in T
 Let $B = q(V_1, \ldots, V_n)$
 Let $T' = T - \{ C \} \cup \{ \text{Hd} : \neg (B \cup \neg B) \} \cup \{ B\theta \}$

Output: T'

Note: T' specializes T, but not in traditional sense, since T' has a new predicate symbol.

In our example, the following theory will be learned

$\{ \text{flies}(X) \leftarrow \text{bird}(X), \neg \text{flightless}(X). \text{flightless}(\text{penguin}). \}$

Now since $\text{flightless(\text{penguin})}$ is true, $\neg \text{flightless(\text{penguin})}$ is false. Therefore, the newly learned theory does not derive $\text{flies(\text{penguin})}$ any more.
Moving from ILP to NMILP
Inverse Resolution is not directly applicable in NMILP!

Inverse resolution: (absorption)

\[
\begin{align*}
C_1 &: q \leftarrow A \\
C_2 &: p \leftarrow q, B \\
C_3 &: p \leftarrow A, B
\end{align*}
\]

- \(\Sigma_1 \) generalizes \(\Sigma_2 \) if \(\Sigma_2 \models a \) implies \(\Sigma_1 \models a \)
- Denote \(\Sigma = \{C_1, C_3\}, A(\Sigma) = \{C_1, C_2\} \).
- \(A(\Sigma) \) generalizes \(\Sigma \) in Horn clausal logic

In NMLP, however

- \(A(\Sigma) \) does not necessarily generalizes \(\Sigma \)
 \(\Sigma = \{p \leftarrow \neg q, q \leftarrow r, s \leftarrow r, s \leftarrow\} \) (V:3,2,2)
 \(A(\Sigma) = \{p \leftarrow \neg q, q \leftarrow s, s \leftarrow r, s \leftarrow\} \)
 Then, \(\Sigma \models p \) but \(A(\Sigma) \models\not p \).

- It may be the case that \(\Sigma \) is consistent, but \(A(\Sigma) \) is not.
 \(\Sigma = \{p \leftarrow q, \neg p, q \leftarrow r, s \leftarrow r, s \leftarrow\} \) (V:3,2,2)
 \(A(\Sigma) = \{p \leftarrow q, \neg q, q \leftarrow s, s \leftarrow r, s \leftarrow\} \)
 Then, \(\Sigma \) is consistent, but \(A(\Sigma) \) is not.

- ...
Inverse Entailment is not directly applicable to NMLP!

Deduction Theorem (Horn clausal logic)

For any formula A, we have

$$P \cup \{R\} \models A \iff P \models R \to A$$

Inverse entailment:

Given Horn program B and an example E, deduction theorem gives:

$$B \cup \{H\} \models E \iff B \models (H \to E) \iff B \models (\neg E \to \neg H) \iff B \cup \{\neg E\} \models \neg H$$

$B \land \neg E \models \neg H$ serves as a necessary condition for constructing H.

In NMLP, however

- Deduction theorem in Eq. (1) and (3) does not hold in general
- Contrapositive implication in Eq. (2) is undefined
Stable Model Based Approaches
Main Results (by Chiaka Sakama)

Deduction Theorem (Horn clausal logic)
For any formula \(A \), we have

\[
P \cup \{ R \} \models A \iff P \models R \rightarrow A
\]

Entailment Theorem (NMLP)
For any ground literal \(A \), we have

\[
P \cup \{ R \} \models S A \implies P \models S R \rightarrow A \quad \text{(i)}
\]

\[
P \cup \{ R \} \models S A \iff P \models S R \rightarrow A \text{ and } P \models S R \quad \text{(ii)}
\]

Contrapositive rule in NMLP

\[
R : A_0 \leftarrow A_1, \ldots, A_m, \neg A_{m+1}, \ldots, \neg A_n
\]

\[
R^c : \neg A_1; \ldots, \neg A_m; \neg \neg A_{m+1}, \ldots, \neg \neg A_n \leftarrow \neg A_0
\]

\[
R^c : \leftarrow A_1, \ldots, A_m, \neg A_{m+1}, \ldots, \neg A_n, \neg A_0
\]

We can prove that \(P \models S R \iff P \models S R_C \quad \text{(iii)} \)

Inverse Entailment in NMLP

Given normal program \(B \) and a positive example \(E \) such that

\[
B \models S \neg E \quad \text{(iv)}
\]

Then

\[
B \cup \{ H \} \models S E \iff \text{by (i) } B \models S (H \rightarrow E)
\]

\[
\iff \text{by (iii) } B \models S (\neg E \rightarrow \neg H)
\]

consider \(H = p(x_1, \ldots, x_k) \) where \(p \) is a new atom

\[
\text{by (ii) and (iv) } B \cup \{ \neg E \} \models S \neg H
\]

So \(B \cup \{ \neg E \} \models S \neg H \) serves as a necessary condition for \(H \).

This necessary condition can be simplified as \(B \models S \neg H \).
Learning from a single positive example

Classical Inverse Entailment (IE):

- necessary condition for H: $B \land \neg E \models \neg H$ \hspace{1cm} (*)

- let Bot be the conjunction of ground literals which are true in every model of $B \land \neg E$.

- we consider $Bot \models \neg H$ (but note: this IE is not complete since condition (*) does not imply $Bot \models \neg H$).

- $H_0 = \neg Bot$ is a trivial valid (ground) candidate of H.

- organize H_0 s.t. target predicate atom A is left to “←”.

- generalizing H_0 by replacing constants with variables, we get a most specific hypothesis with variables.

NMLP Inverse Entailment (NMLP IE):

- necessary condition for H: $B \models_s \neg not H$ \hspace{1cm} (**) (same as $B \cup \{not\ E\} \models_s \neg not H$)

- let $M^+ = M \cup \{not\ l \mid l \notin M \text{ and } l \in \mathcal{HB}\}$, where M is the stable model of B and \mathcal{HB} is the Herbrand model of B.

- condition (**) implies $M^+ \models \neg not H$.

- let $\Gamma = \{K \in M^+ \mid K \text{ is relevant to } L \text{ and is involved in } B \cup \{E\}\}$.

- since $M^+ \models \Gamma$, we have $M^+ \models not\ r_0$ where $r_0 = \leftarrow \Gamma$.

- integrity constraint $r_0 = \leftarrow \Gamma$ is a trivial valid (ground) candidate of H.

- shift the target predicate atom to the left of “←” in r_0.

- generalizing r_0 by replacing constants with variables, we get a most specific hypothesis with variables.
Illustration

Given:
\[\mathcal{B} = \{ \text{bird}(X) \leftarrow \text{penguin}(X). \text{bird}(\text{tweety}). \text{penguin}(\text{polly}). \} \]
\[\mathcal{E} = \{ \oplus \text{flies}(\text{tweety}). \} \]
Note: \(\mathcal{B} \models \text{not flies}(\text{tweety}) \).

Steps:

stable model of \(\mathcal{B} \) (same as that of \(\mathcal{B} \mid \mathcal{E} \)):
\[\mathcal{M} = \{ \text{bird}(\text{tweety}). \text{bird}(\text{polly}). \text{penguin}(\text{polly}). \} \]

expansion of \(\mathcal{M} \):
\[\mathcal{M}^+ = \{ \text{bird}(\text{tweety}). \text{bird}(\text{polly}). \text{penguin}(\text{polly}). \text{not penguin}(\text{tweety}). \text{not flies}(\text{tweety}). \text{not flies}(\text{polly}). \} \]

integrity constraint:
\[r_0 = \leftarrow \text{bird}(\text{tweety}), \text{not penguin}(\text{tweety}), \text{not flies}(\text{tweety}). \]

shift the atom with target predicate to the left side:
\[r_0 = \text{flies}(\text{tweety}) \leftarrow \text{bird}(\text{tweety}), \text{not penguin}(\text{tweety}). \]

generalize \(r_0 \) by replacing constant with variables:
\[H = \text{flies}(X) \leftarrow \text{bird}(X), \text{not penguin}(X). \]