The Foundations of Inductive Logic Programming

By Chongbing Liu

Outlines

☐ Resolution Based Proof Procedures
☐ ILP Problem Specification
☐ Generality Orders on Clauses
☐ Refinement Operators
☐ Conclusions
Resolution Based Proof Procedures

Proof Procedures

- Very often we need to prove that $\Sigma \vdash E$
- But this is in general undecidable
- When $\Sigma \vdash E$ is true, we could have some procedures to generate proofs
- Ideal properties: complete, sound, work mechanically, efficient and applicable to all Σ and E
Resolution Based Proof Procedures

\[\Sigma: \quad C, D, E, F, G, H \]

\[R, U, V, C, D, E, F, G, H \]

\[W, R, U, V, C, D, E, F, G, H \]

\[\ldots \]

Unconstrained

C, D from \(\Sigma \) or all the intermediate resolvents

Incomplete

Inefficient
Resolution Based Proof Procedures

Resolution

C = f, x D = ¬f, y

R = x ∨ y
Resolvent

Σ:
- h(x)←f(x), g(x).
- f(x).
- g(x).

resolution

Σ ⊢ h(x).

Σ ⊢ h(a).

C, D from Σ or all the intermediate resolvents

Unconstrained

Incomplete
Inefficient

10/19/2004
The Foundations of Inductive Logic Programming
Resolution Based Proof Procedures

Deduction

resolution rule

C = f, x D = ¬f, y

R = x ∨ y
Resolvent

Σ:

h(x) ← f(x), g(x).

f(x).

g(x).

Σ ⊨ h(x).

C subsume D if exists

θ s.t. C θ ⊆ D

Σ ⊨ h(a).

Unconstrained

Deduction

C, D from Σ or all the
intermediate resolvents

Complete Inefficient

10/19/2004

The Foundations of Inductive Logic Programming
Resolution Based Proof Procedures

Linear Resolution

C, D, E, F, G, H

R

U

V

W

C is the resolvent of the last step, D from all

C, D from Σ or all the intermediate resolvents

Linear

Unconstrained

Deduction

Deduction

Complete Inefficient

Complete Inefficient

10/19/2004

The Foundations of Inductive Logic Programming
Resolution Based Proof Procedures

Resolution rule

\[C = f, x \quad D = \neg f, y \]

\[R = x \lor y \]

Resolvent

Input Resolution

\[C, \quad D, \quad E, \quad F, \quad G, \quad H \]

\[R \]

\[U \]

\[V \]

C is the resolvent of the last step, D from \(\Sigma \)

Input

Deduction

Subsumption

Incompleteness Efficient

C is the resolvent of the last step, D from all

Linear

Deduction

Subsumption

Complete Incompleteness

C, D from \(\Sigma \) or all the intermediate resolvents

Unconstrained

Deduction

Subsumption

Complete Incompleteness
Resolution Based Proof Procedures

Resolution rule

\[C = f, x \quad D = \neg f, y \]

\[R = x \lor y \]

Resolvent

\[\Sigma \text{ consists of Horn clauses} \]

\[C \text{ is the resolvent of the last step, } D \text{ from } \Sigma \]

\[C, D \text{ from } \Sigma \text{ or all the intermediate resolvers} \]

SLD Resolution

Input

SLD

Deduction

Complete Efficient

Linear

Complete Inefficient

Unconstrained

Complete Inefficient

Deduction

Deduction

Deduction

Deduction

10/19/2004

The Foundations of Inductive Logic Programming
Resolution Based Proof Procedures

Resolvent Rule:

\[C = f, x \quad D = \neg f, y \]

\[R = x \lor y \]

SLDNF Resolution

- **SLDNF**
 - Allow negative literals in the clause body;
 - Use Negation as Failure

- **SLD**
 - \(\Sigma \) consists of Horn clauses

- **Input**
 - \(C \) is the resolvent of the last step, \(D \) from \(\Sigma \)

- **Linear**
 - \(C \) is the resolvent of the last step, \(D \) from all

- **Unconstrained**
 - \(C, D \) from \(\Sigma \) or all the intermediate resolvents

Deduction

- Incomplete
- Efficient

- Complete
- Inefficient

Subsumption

10/19/2004

The Foundations of Inductive Logic Programming
ILP Problem Specification

Given:

A finite set of clauses \(B \) (background knowledge), and sets of clauses \(E^+ \) and \(E^- \)

Find:

A theory \(\Sigma \), such that \(\Sigma \cup B \) is correct with respect to \(E^+ \) and \(E^- \)
ILP Problem Specification

Correct theory

\[\Sigma \cup B \text{ is correct with respect to } E^+ \text{ and } E^- \text{ if} \]

1. \[\Sigma \cup B \models E^+ \] (completeness)

and

2. \[\Sigma \cup B \cup \neg E^- \text{ is satisfiable} \] (consistency).

ILP Search all the clauses for correct \(\Sigma \)
ILP Problem Specification

Correct theory

\[\Sigma \cup B \text{ is correct with respect to } E^+ \text{ and } E^- \text{ if} \]

1. \[\Sigma \cup B \models E^+ \] (completeness)

and

2. \[\Sigma \cup B \cup \neg E^- \text{ is satisfiable} \] (consistency).

\[(\Sigma \cup B) \text{ implies no } e \in E^- \] (easier, proof procedures)
ILP Problem Specification

Consistency Condition

$$\Sigma \cup \mathcal{B}$$ is correct with respect to $$E^+$$ and $$E^-$$ if

1. $$\Sigma \cup \mathcal{B} \models E^+$$ \hspace{1cm} (completeness)

and

2. $$\Sigma \cup \mathcal{B} \cup \neg E^-$$ is satisfiable \hspace{1cm} (consistency).

Example: (let $$\mathcal{B} = \emptyset$$)

$$\Sigma = \{ P(a) \lor P(b) \}$$

$$E^- = \{ P(a), P(b) \}$$

($$\Sigma \cup \mathcal{B}$$) implies no $$e \in E^-$$

(easier, proof procedures)

10/19/2004 The Foundations of Inductive Logic Programming
ILP Problem Specification

Admissibility

\(\Sigma \cup B \) is correct with respect to \(E^+ \) and \(E^- \) if

1. \(\Sigma \cup B \models E^+ \) (completeness)

and

2. \(\Sigma \cup B \cup \neg E^- \) is satisfiable (consistency).

\((\Sigma \cup B) \) implies no \(e \in E^- \) (easier, proof procedures)

If \(\langle E, \Sigma \rangle \) are admissible:

- \(\langle \text{ground atoms, Horn clauses} \rangle \)
- \(\langle \text{ground literals, clauses} \rangle \)
ILP Problem Specification

Correct theory

Σ ∪ B is correct with respect to E⁺ and E⁻ if

1. Σ ∪ B |= E⁺ (completeness)

and

2. (Σ ∪ B) implies no e ∈ E⁻ (consistency).

(easier, proof procedures)

If ⟨E, Σ⟩ are admissible:
⟨ground atoms, Horn clauses⟩
⟨ground literals, clauses⟩
ILP Problem Specification

Correct theory

\[\sum \cup B \text{ is correct with respect to } E^+ \text{ and } E^- \text{ if} \]

1. \[\sum \cup B \models E^+ \] (completeness)

and

\[\text{Reduced Search Space! (bias)} \]

2. \[(\sum \cup B) \text{ implies no } e \in E^- \] (consistency).
 (easier, proof procedures)

If \(\langle E, \sum \rangle \) are admissible:

\(\langle \text{ground atoms, Horn clauses} \rangle \)

\(\langle \text{ground literals, clauses} \rangle \)
ILP Problem Specification

ILP as a search problem (search space)

Theory Space

Clause space (Language bias)
ILP Problem Specification

ILP as a search problem (generality orders)

Ordered Clause space
ILP Problem Specification

ILP as a search problem (generality orders)

Ordered Theory Space

Ordered Clause space
ILP Problem Specification

ILP as a search problem (A General Scheme)

Start with some initial theory
Repeat

If Σ is too strong, specialize it

If Σ is too weak, generalize it

until $\Sigma \cup B$ is correct with respect to E^+ and E^-
ILP Problem Specification

Operations

Start with some initial theory
Repeat
If \(\sum \) is too strong, specialize it
If \(\sum \) is too weak, generalize it
} \[\text{Refinement operators} \]
until \(\sum \cup B \) is correct with respect to \(E^+ \) and \(E^- \)
Generality Orders on Clauses

Basic Concepts

- Quasi-order \succeq on set S: Reflexive and transitive
- Least generalization(S): Least Upper Bound (lub)
- Greatest specialization(S): Greatest Lower Bound (glb)
- Lattice: Exist lub and glb for any S
- Downward Cover(C): $\{ D \mid C \succeq D, \text{ and no } E \text{ s.t. } C > E > D \}$
- Upward Cover(C): $\{ D \mid D \succeq C, \text{ and no } E \text{ s.t. } D > E > C \}$
Generality Orders on Clauses

(no background knowledge)

• Subsumption order on atoms
• Subsumption order on clauses
• Implication order on clauses
Generality Orders on Clauses

(no background knowledge)

Subsumption order \((\preceq)\) on the set of atoms

- **Definition**: \(A \preceq B\) if \(A \theta \subseteq B\) for some \(\theta\)
- **Existence Of Least Generalization**: Yes
- **Existence Of Greatest Specialization**: Yes
- **Upward covers**: finite
- **Downward cover**: finite
Generality Orders on Clauses

(no background knowledge)

Subsumption order \(\preceq \) on the set of \textbf{clauses}

- Definition: \(A \preceq B \) if \(A \theta \subseteq B \) for some \(\theta \)
- Existence Of Least Generalization : Yes
- Existence Of Greatest Specialization: Yes
- On Horn clauses : Lattice
- Upward covers : not always exist or finite
- Downward cover : not always exist or finite
Generality Orders on Clauses

(no background knowledge)

Implication order (|-) on the set of clauses

☐ Definition: logical consequence
☐ Existence Of Least Generalization: Yes
☐ Existence Of Greatest Specialization: No
☐ On Horn clauses: No
☐ Upward covers: not always exist or finite
☐ Downward cover: not always exist or finite

Only when S contains at least One function-free clause
Generality Orders on Clauses

(with background knowledge)

- Relative Subsumption order
- Relative Implication order
- Generalized Subsumption order
Generality Orders on Clauses

(with background knowledge)

Relative Subsumption order \((\preceq_B) \)

- **Definition:** \(C \preceq_B D \) if \(B \vdash \forall (C \theta \subseteq D) \) for some \(\theta \)
- **Existence Of Least Generalization:** Yes, when \(B \) is a set of ground literals
- **On Horn clauses:** Yes, when \(B \) is ground atoms
- **Deduction:** Exist a deduction of \(D \) from \(\{C\} \cup B \) where \(C \) occurs at most once
Generality Orders on Clauses

(with background knowledge)

Relative Implication order (\(\vdash_B\))

- Definition: \(C \vdash_B D\) if \((B \cup \{C\}) \vdash D\)
- Existence Of Least Generalization: Yes, when \(B\) is a set of function-free ground literals and \(S\) contains at least one on function-free clause
- On Horn clauses: NO
- Deduction: Exist a deduction of \(D\) from \(\{C\} \cup B\)
Generality Orders on Clauses

(with background knowledge)

Generalized Subsumption order (\geq_B)

- Definition: $C \geq_B D$ if with B, C can be used to prove at least as many results as D
- Existence Of Least Generalization: Yes, but if S is a set of atoms, or S and B are all function-free or B is ground
- On Horn clauses: Yes, e.g., if B is ground definite program and S is a set of definite program clause with same heads
- Deduction: Exist a SLD-deduction of D, where C is the top clause and members in B are input clauses
Generality Orders on Clauses

(with background knowledge)

- $C \succeq_B D$ if there exists a SLD-deduction of D, with C as top clause and members of B as input clauses.
- $C \prec_B D$ if there exists a deduction of D from $\{C\} \cup B$ where C occurs at most once as a leaf.
- $C \vdash_B D$ if there exists a deduction of D from $\{C\} \cup B$.
Generality Orders on Clauses

summary

Generalized subsumption \(\text{Weaker than}\) Relative subsumption \(\text{Weaker than}\) Relative implication

Subsumption \(\text{Weaker than}\) Relative subsumption \(\text{Weaker than}\) Implication

10/19/2004 The Foundations of Inductive Logic Programming
Refinement Operators

- functions from a single clause to a set of clauses:
 \[\rho(C) : \text{downward refinement operators} \]
 \[\delta(C) : \text{upward refinement operators} \]

- **Ideal (downward) operators:**
 - Locally finite : \(\rho(C) \) is finite
 - Complete : \(\forall C > D, \exists E \in \rho^*(c) \) s.t. \(D \equiv E \)
 - Proper : \(\rho(C) \subseteq \{ D \mid C \triangleright D \} \)
Refinement Operators

- Ideal $\rho(C)$ exists \iff every C has a finite set of downward cover set
- Ideal $\delta(C)$ exists \iff every C has a finite set of upward cover set
- Only subsumption order on set of atoms has finite downward and upward cover sets. Others don’t.
- So ideal operators do not exist for clauses structured by most practical orders.
Refinement Operators

- In practice we drop the properness, and use
- locally finite and complete operators.

- Such operators exist for clauses structured by
- subsumption order.
Conclusions

- Resolution based proof procedures are useful in ILP.
- ILP is a search problem.
- Different orders may be defined on the search space.
- The search could be achieve by applying refinement operators.
Thank you.