
\qquad
\qquad
\qquad

Algorithm Analysis

- The amount of resources used by the algorithm - Space
- Computational time
- Running time:
- The number of primitive operations (steps) executed before termination
\qquad
\qquad
\qquad
\qquad
- Order of growth
- The leading term of a formula
- Expresses the behavior of a function toward infinity

Asymptotic Notations

- A way to describe behavior of functions in the limit \qquad
- How we indicate running times of algorithms
- Describe the running time of an algorithm as n grows to ∞
\qquad
- O notation: asymptotic "less than":
$f(n) " \leq " g(n)$ \qquad
- Ω notation: asymptotic "greater than":
$f(n) " \geq " g(n)$
- Θ notation: asymptotic "equality":
$f(n)$ " $=" g(n)$
\qquad
\qquad

Examples
$-2 n^{2}=O\left(n^{3}\right): 2 n^{2} \leq c n^{3} \Rightarrow 2 \leq c n \Rightarrow c=1$ and $n_{0}=2$
$-n^{2}=O\left(n^{2}\right): n^{2} \leq c n^{2} \Rightarrow c \geq 1 \Rightarrow c=1$ and $n_{0}=1$
$-1000 n^{2}+1000 n=O\left(n^{2}\right):$
$1000 n^{2}+1000 n \leq 1000 n^{2}+1000 n^{2}=2000 n^{2} \Rightarrow c=2000$ and $n_{0}=1$
$-n=O\left(n^{2}\right): n \leq c n^{2} \Rightarrow c n \geq 1 \Rightarrow c=1$ and $n_{0}=1$

Examples

$-5 n^{2}=\Omega(n)$
$\exists c, n_{0}$ such that: $0 \leq c n \leq 5 n^{2} \Rightarrow c n \leq 5 n^{2} \Rightarrow c=1$ and $n_{0}=1$

- $100 n+5 \neq \Omega\left(n^{2}\right)$
$\exists c, n_{0}$ such that: $0 \leq c n^{2} \leq 100 n+5$
$100 n+5 \leq 100 n+5 n(\forall n \geq 1)=105 n$
$c n^{2} \leq 105 n \Rightarrow n(c n-105) \leq 0$
Since n is positive $\Rightarrow c n-105 \leq 0 \Rightarrow n \leq 105 / c$
\Rightarrow contradiction: n cannot be smaller than a constant
$-n=\Omega(2 n), n^{3}=\Omega\left(n^{2}\right), n=\Omega(\log n)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples
$-n^{2} / 2-n / 2=\Theta\left(n^{2}\right)$
$\cdot 1 / 2 n^{2}-1 / 2 n \leq 1 / 2 n^{2} \forall n \geq 0 \Rightarrow c_{2}=1 / 2$
$\cdot 1 / 2 n^{2}-1 / 2 n \geq 1 / 2 n^{2}-1 / 2 n * 1 / 2 n(\forall n \geq 2)=1 / 4 n^{2} \Rightarrow c_{1}=1 / 4$
$-n \neq \Theta\left(n^{2}\right): c_{1} n^{2} \leq n \leq c_{2} n^{2} \Rightarrow$ only holds for: $n \leq 1 / c_{1}$
$-6 n^{3} \neq \Theta\left(n^{2}\right): c_{1} n^{2} \leq 6 n^{3} \leq c_{2} n^{2} \Rightarrow$ only holds for: $n \leq c_{2} / 6$
$-n \neq \Theta(\operatorname{logn}): c_{1} \operatorname{logn} \leq n \leq c_{2} \log n$
$\Rightarrow c_{2} \geq n / \log n, \forall n \geq n_{0}-$ impossible

More on Asymptotic Notations

- There is no unique set of values for n_{0} and c in proving the asymptotic bounds
\qquad
- Prove that $100 n+5=O\left(n^{2}\right)$
$-100 n+5 \leq 100 n+n=101 n \leq 101 n^{2}$
for all $n \geq 5$
\qquad
\qquad
$n_{0}=5$ and $c=101$ is a solution
- $100 n+5 \leq 100 n+5 n=105 n \leq 105 n^{2}$ \qquad for all $n \geq 1$
$n_{0}=1$ and $c=105$ is also a solution
Must find SOME constants c and n_{0} that satisfy the asymptotic notation relation

Comparisons of Functions

- Theorem:

$$
f(n)=\Theta(g(n)) \Leftrightarrow f=O(g(n)) \text { and } f=\Omega(g(n))
$$

\qquad

- Transitivity:
- $f(n)=\Theta(g(n))$ and $g(n)=\Theta(h(n)) \Rightarrow f(n)=\Theta(h(n))$
- Same for O and Ω
- Reflexivity:
- $f(n)=\Theta(f(n))$
- Same for O and Ω
- Symmetry:
- $f(n)=\Theta(g(n))$ if and only if $g(n)=\Theta(f(n))$
- Transpose symmetry
- $f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$

Asymptotic Notations in Equations

- On the right-hand side
$-\Theta\left(n^{2}\right)$ stands for some anonymous function in $\Theta\left(n^{2}\right)$
$2 n^{2}+3 n+1=2 n^{2}+\Theta(n)$ means:
There exists a function $f(n) \in \Theta(n)$ such that $2 n^{2}+3 n+1=2 n^{2}+f(n)$
- On the left-hand side
$2 n^{2}+\Theta(n)=\Theta\left(n^{2}\right)$
No matter how the anonymous function is chosen on the left-hand side, there is a way to choose the anonymous function on the right-hand side to make the equation valid.

16

Asymptotic Notations - Examples

- For each of the following pairs of functions, either $f(n)$ is $O(g(n)), f(n)$ is $\Omega(g(n))$, or $f(n)=\Theta(g(n))$. Determine which relationship holds.

$$
\begin{array}{rll}
-f(n) & =\log n^{2} ; g(n)=\log n+5 & f(n)=\Theta(g(n)) \\
-f(n) & =n ; g(n)=\log n^{2} & f(n)=\Omega(g(n)) \\
-f(n)=\log \log n ; g(n)=\log n & f(n)=O(g(n)) \\
-f(n)=n ; g(n)=\log ^{2} n & f(n)=\Omega(g(n)) \\
-f(n)=n \log n+n ; g(n)=\log n & f(n)=\Omega(g(n)) \\
-f(n)=10 ; g(n)=\log 10 & f(n)=\Theta(g(n)) \\
-f(n)=2 n ; g(n)=10 n^{2} & f(n)=\Omega(g(n)) \\
-f(n)=2 n ; g(n)=3^{n} & f(n)=O(g(n))
\end{array}
$$

Other Asymptotic Notations	
```- A function \(f(n)\) is \(\omega(g(n))\) if for any positive constant \(c\), there exists \(n_{0}\) such that \(c \mathrm{~g}(\mathrm{n})<\mathrm{f}(\mathrm{n}) \forall \mathrm{n} \geq n_{0}\) or \(\quad \lim (f(n) / g(n))=\infty\) \(n \rightarrow \infty\)```	


Intuitions		
- Intuitively,		
- o() is like <   - O() is like $\leq$	- $\omega()$ is like >   $-\Omega()$ is like $\geq$	$-\Theta()$ is like $=$

## Typical Running Time Functions

- $\Theta$ (1) (constant running time):
- Instructions are executed once or a few times $\qquad$
- $\Theta(\log N)$ (logarithmic)
- A big problem is solved by cutting the original problem in smaller sizes, by a constant fraction at each step
- $\Theta(N)$ (linear)
- A small amount of processing is done on each input element $\qquad$
- $\Theta(N \log N)$
- A problem is solved by dividing it into smaller problems, solving them $\qquad$ independently and combining the solution


## Typical Running Time Functions

- $\Theta\left(\mathrm{N}^{2}\right)$ (quadratic)
- Typical for algorithms that process all pairs of data items (double nested
$\qquad$ loops)
- $\Theta\left(\mathrm{N}^{3}\right)$ (cubic)
- Processing of triples of data (triple nested loops)
- $\Theta\left(\mathrm{N}^{\mathrm{K}}\right)$ (polynomial)
- $\Theta\left(2^{N}\right)$ (exponential)
- Few exponential algorithms are appropriate for practical use


## Some Simple Summation Formulas

- Arithmetic series:	$\sum_{k=1}^{n} k=1+2+\ldots+n=\frac{n(n+1)}{2}$
- Geometric series:	$\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\ldots+x^{n}=\frac{x^{n+1}-1}{x-1}(x \neq 1)$
- Special case: $x<1:$	$\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$
- Harmonic series:	$\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\ldots+\frac{1}{n} \approx \ln n$
- Other important formulas:	$\sum_{k=1}^{n} \lg k=\lg (k!) \approx n \lg n$
	$\sum_{k=1}^{n} k^{p}=1^{p}+2^{p}+\ldots+n^{p} \approx \frac{1}{p+1} n^{p+1}$

