Algorithms and Data Structures CS 372

Asymptotic notations

(Based on slides by M. Nicolescu)

Algorithm Analysis

- The amount of resources used by the algorithm Space
 - Computational time
- Running time:
 - The number of primitive operations (steps) executed before termination
- · Order of growth
 - The leading term of a formula
 - Expresses the behavior of a function toward infinity

Asymptotic Notations

- A way to describe behavior of functions in the limit
 - How we indicate running times of algorithms
 - Describe the running time of an algorithm as n grows to ∞
- O notation: asymptotic "less than": f(n) "≤" g(n)
- Ω notation: asymptotic "greater than": $f(n) \cong g(n)$
- • onotation: asymptotic "equality": f(n) "=" g(n)

Examples

-
$$2n^2 = O(n^3)$$
: $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1$ and $n_0=2$

-
$$n^2 = O(n^2)$$
: $n^2 \le cn^2 \Rightarrow c \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

- 1000n²+1000n = O(n²):

1000n²+1000n \leq 1000n²+1000n²=2000n² \Rightarrow c=2000 and n_0 = 1

- n = O(n²): n \leq cn² \Rightarrow cn \geq 1 \Rightarrow c = 1 and n₀= 1

Examples		
- 5n2 = Ω(n) ∃ c, n0 such that: 0 ≤ cn ≤ 5n2 ⇒ cn ≤ 5n2 ⇒ c = 1 c	and n _o = 1	
- 100n + 5 $\neq \Omega(n^2)$ $\exists c, n_0 \text{ such that: } 0 \le cn^2 \le 100n + 5$ 100n + 5 $\le 100n + 5n (\forall n \ge 1) = 105n$ $cn^2 \le 105n \Rightarrow r(cn = 105) \le 0$		
$cn^2 \le 105n \Rightarrow n(cn - 105) \le 0$ Since n is positive $\Rightarrow cn - 105 \le 0 \Rightarrow n \le 105$, \Rightarrow contradiction: n cannot be smaller than a contradiction: n cannot be smaller than a contradiction.		
- n = Ω(2n), n³ = Ω(n²), n = Ω(logn)	8	

Examples

- n²/2 -n/2 = ⊕(n²)
 - $\frac{1}{2} n^2 \frac{1}{2} n \le \frac{1}{2} n^2 \forall n \ge 0 \implies c_2 = \frac{1}{2}$
 - $\bullet \ \ 1_2 n^2 1_2 n \geq 1_2 n^2 1_2 n \geq 1_2 n^2 1_2 n \ \ast 1_2 n \ (\ \forall n \geq 2 \) = 1_4 n^2 \Rightarrow \ \ c_1 = 1_4$
- n ≠ $\Theta(n^2)$: $c_1 n^2 \le n \le c_2 n^2 \Rightarrow$ only holds for: n ≤ 1/ c_1
- $6n^3 \neq \Theta(n^2)$: $c_1 n^2 \le 6n^3 \le c_2 n^2 \Rightarrow$ only holds for: $n \le c_2 / 6$
- $n \neq \Theta(\log n)$: $C_1 \log n \le n \le c_2 \log n$
 - $\Rightarrow c_2 \geqq \text{ n/logn, } \forall \text{ n} \geqq n_0 \text{ impossible}$

More on Asymptotic Notations

- There is no unique set of values for n₀ and c in proving the asymptotic bounds
- Prove that 100n + 5 = O(n²)
 - 100n + 5 ≤ 100n + n = 101n ≤ $101n^2$

for all n ≥ 5

- $n_0 = 5$ and c = 101 is a solution
- 100n + 5 ≤ 100n + 5n = 105n ≤ 105n²

for all $n \ge 1$

- $n_0 = 1$ and c = 105 is also a solution
- Must find $\ensuremath{\textbf{SOME}}$ constants c and n_0 that satisfy the asymptotic notation relation

Comparisons of Functions

• Theorem:

- $f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n)) \text{ and } f = \Omega(g(n))$
- Transitivity:
 - f(n) = $\Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
 - Same for O and Ω
- Reflexivity:
 - $f(n) = \Theta(f(n))$
 - Same for O and Ω
- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

12

10

- On the right-hand side - $\Theta(n^2)$ stands for some anonymous function in $\Theta(n^2)$ $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means: There exists a function $f(n) \in \Theta(n)$ such that $2n^2 + 3n + 1 = 2n^2 + f(n)$
- On the left-hand side 2n² + Θ(n) = Θ(n²) No matter how the anonymous function is chosen on the left-hand side, there is a way to choose the anonymous function on the right-hand side to make the equation valid.

Asymptotic Notations	- Examples	
 For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is Ω(g(n)), or f(n) = Θ(g(n)). Determine which relationship holds. 		
- f(n) = log n²; g(n) = log n + 5	f(n) = ⊕ (g(n))	
- f(n) = n; g(n) = log n ²	$f(n) = \Omega(g(n))$	
- f(n) = log log n; g(n) = log n	f(n) = O(g(n))	
- f(n) = n; g(n) = log² n	f(n) = Ω(g(n))	
- f(n) = n log n + n; g(n) = log n	f(n) = Ω(g(n))	
- f(n) = 10; g(n) = log 10	f(n) = ⊖(g(n))	
$- f(n) = 2^n; g(n) = 10n^2$	f(n) = Ω(g(n))	
$- f(n) = 2^n; g(n) = 3^n$	f(n) = O(g(n))	
-	18	

Other Asymptotic Notations

- A function f(n) is o(g(n)) if for any positive constant c, there exists n₀ such that f(n) < c g(n) ∀ n ≥ n₀
- or $\lim_{n \to \infty} (f(n)/g(n)) = 0$

19

- A function f(n) is ω(g(n)) if for any positive constant *c*, there exists n₀ such that c g(n) < f(n) ∀ n ≥ n₀
- or $\lim_{n\to\infty} (f(n)/g(n)) = \infty$

Intuitions		
Intuitively,		
 – o() is like < – O() is like ≤ 	- ω() is like > - Ω() is like ≥	$-\Theta()$ is like =
		21

- Θ (1) (constant running time):
 - Instructions are executed once or a few times
- - A big problem is solved by cutting the original problem in smaller sizes, by a constant fraction at each step
- • (N) (linear)
 - A small amount of processing is done on each input element

• ⊕ (N logN)

 A problem is solved by dividing it into smaller problems, solving them independently and combining the solution

22

Typical Running Time Functions

- - Typical for algorithms that process all pairs of data items (double nested loops)
- Θ (N³) (cubic)
 - Processing of triples of data (triple nested loops)
- Θ (N^K) (polynomial)
- Θ (2^N) (exponential)
 - Few exponential algorithms are appropriate for practical use

