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Chapter 1

Introduction

This manual contains documentation for libraries which are still part of the ECLiPSe dis-
tribution, but whose use is deprecated. Typically, the libraries have been replaced by newer
implementation which provide similar or extended functionality. The old documentation is
provided here mainly to ease the task of porting existing code to the newer libraries. Documen-
tation for the new libraries can be found in the Constraint Library Manual and the Reference
Manual. Here is a short overview of the obsolete libraries and where to find replacement
functionality:

fd The numeric functionality of the finite-domain library is subsumed by the ic interval solver
library. The symbolic domain constraints are provided by the ic symbolic library.
The branch-and-bound functionality can now be found in more generic form in the
branch and bound library.

conjunto Most of this set solver’s functionality is available in the new ic sets library.

range Now subsumed by the ic library.

ria Now subsumed by the ic library.

ic eplex, range eplex Now replaced by standalone eplex (lib(eplex) now loads standalone
eplex instead of range_eplex).
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Chapter 2

The Finite Domains Library

The library fd.pl implements constraints over finite domains that can contain integer as well
as atomic (i.e. atoms, strings, floats, etc.) and ground compound (e.g. f(a, b)) elements.
Modules that use the library must start with the directive

:- use module(library(fd)).

2.1 Terminology

Some of the terms frequently used in this chapter are explained below.

domain variable A domain variable is a variable which can be instantiated only to a value
from a given finite set. Unification with a term outside of this domain fails. The domain
can be associated with the variable using the predicate ::/2. Built-in predicates that
expect domain variables treat atomic and other ground terms as variables with singleton
domains.

integer domain variable An integer domain variable is a domain variable whose domain
contains only integer numbers. Only such variables are accepted in inequality constraints
and in rational terms. Note that a non-integer domain variable can become an integer
domain variable when the non-integer values are removed from its domain.

integer interval An integer interval is written as

Min .. Max

with integer expressions Min ≤ Max and it represents the set

{Min, Min + 1, . . . , Max}.

linear term A linear term is a linear integer combination of integer domain variables. The
constraint predicates accept linear terms even in a non-canonical form, containing func-
tors +, - and *, e.g.

5 ∗ (3 + (4 − 6) ∗ Y − X ∗ 3).
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If the constraint predicates encounter a variable without a domain, they give it a de-
fault domain -10000000..10000000. Note that arithmetic operations on linear terms are
performed with standard machine word integers without any overflow checks. If the
domain ranges or coefficients are too large, the operation will not yield correct results.
Both the maximum and minimum value of a linear term must be representable in a
machine word, and so must the maximum and minimum value of every cixi term.

rational term A rational term is a term constructed from integers and integer domain vari-
ables using the arithmetic operations +,−, ∗, /. Besides that, every subexpression
of the form VarA/VarB must have an integer value in the solution. The system re-
places such a subexpression by a new variable X and adds a new constraint VarA #=
VarB * X. Similarly, all subexpressions of the form VarA*VarB are replaced by a new
variable X and a new constraint X #= VarA * VarB is added, so that in the internal
representation, the term is converted to a linear term.

constraint expression A constraint expression is either an arithmetic constraint or a com-
bination of constraint expressions using the logical FD connectives #/\/2, #\//2,
#=>/2, #<=>/2, #\+/1.

2.2 Constraint Predicates

?Vars :: ?Domain
Vars is a variable or a list of variables with the associated domain Domain. Domain

can be a closed integer interval denoted as Min .. Max, or a list of intervals and/or
atomic or ground elements. Although the domain can contain any compound terms
that contain no variable, the functor ../2 is reserved to denote integer intervals and
thus 1..10 always means an interval and a..b is not accepted as a compound domain
element.

If Vars is already a domain variable, its domain will be updated according to the new
domain; if it is instantiated, the predicate checks if the value lies in the domain. Other-
wise, if Vars is a free variable, it is converted to a domain variable. If Vars is a domain
variable and Domain is free, it is bound to the list of elements and integer intervals
representing the domain of the variable (see also dvar domain/2 which returns the
actual domain).

When a free variable obtains a finite domain or when the domain of a domain variable
is updated, the constrained list of its suspend attribute is woken, if it has one.

integers(+Vars)
This constrains the list of variables Vars to have integer domains. Any non-domain

variables in Vars will be given the default integer domain.

::(?Var, ?Domain, ?B)
B is equal to 1 iff the domain of the finite domain variable Var is a subset of Domain

and 0 otherwise.

atmost(+Number, ?List, +Val)
At most Number elements of the list List of domain variables and ground terms are

equal to the ground value Val.
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constraints number(+DVar, -Number)
Number is the number of constraints and suspended goals currently attached to the

variable DVar. Note that this number may not correspond to the exact number of
different constraints attached to DVar, as goals in different suspending lists are counted
separately. This predicate is often used when looking for the most or least constrained
variable from a set of domain variables (see also deleteffc/3).

element(?Index, +List, ?Value)
The Index’th element of the ground list List is equal to Value. Index and Value can

be either plain variables, in which case a domain will be associated to them, or domain
variables. Whenever the domain of Index or Value is updated, the predicate is woken
and the domains are updated accordingly.

fd eval(+E)
The constraint expression E is evaluated on runtime and no compile-time processing

is performed. This might be necessary in the situations where the default compile-time
transformation of the given expression is not suitable, e.g. because it would require type
or mode information.

indomain(+DVar)
This predicate instantiates the domain variable DVar to an element of its domain; on

backtracking the subsequent values are taken. It is used, for example, to find a value
of DVar which is consistent with all currently imposed constraints. If DVar is a ground
term, it succeeds. Otherwise, if it is not a domain variable, an error is raised.

is domain(?Term)
Succeeds if Term is a domain variable.

is integer domain(?Term)
Succeeds if Term is an integer domain variable.

min max(+Goal, ?C)
If C is a linear term, a solution of the goal Goal is found that minimises the value of

C. If C is a list of linear terms, the returned solution minimises the maximum value of
terms in the list. The solution is found using the branch and bound method; as soon as a
partial solution is found that is worse than a previously found solution, failure is forced
and a new solution is searched for. When a new better solution is found, the bound is
updated and the search restarts from the beginning. Each time a new better solution is
found, the event 280 is raised. If a solution does not make C ground, an error is raised,
unless exactly one variable in the list C remains free, in which case the system tries to
instantiate it to its minimum.

minimize(+Goal, ?Term)
Similar to min max/2, but Term must be an integer domain variable. When a new

better solution is found, the search does not restart from the beginning, but a failure
is forced and the search continues. Each time a new better solution is found, the event
280 is raised. Often minimize/2 is faster than min max/2, sometimes min max/2
might run faster, but it is difficult to predict which one is more appropriate for a given
problem.
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min max(+Goal, ?Template, ?Solution, ?C)

minimize(+Goal, ?Template, ?Solution, ?Term)
Similar to min max/2 and minimize/2, but the variables in Goal do not get in-

stantiated to their optimum solutions. Instead, Solutions will be unified with a copy of
Template where the variables are replaced with their minimized values. Typically, the
template will contain all or a subset of Goal’s variables.

min max(+Goal, ?C, +Low, +High, +Percent)

minimize(+Goal, ?Term, +Low, +High, +Percent)
Similar to min max/2 and minimize/2, however the branch and bound method

starts with the assumption that the value to be minimised is less than or equal to High.
Moreover, as soon as a solution is found whose minimised value is less than Low, this
solution is returned. Solutions within the range of Percent % are considered equivalent
and so the search for next better solution starts with a minimised value Percent % less
than the previously found one. Low, High and Percent must be integers.

min max(+Goal, ?C, +Low, +High, +Percent, +Timeout)

minimize(+Goal, ?Term, +Low, +High, +Percent, +Timeout)
Similar to min max/5 and minimize/5, but after Timeout seconds the search is

aborted and the best solution found so far is returned.

min max(+Goal, ?Template, ?Solution, ?C, +Low, +High, +Percent, +Time-
out)

minimize(+Goal, ?Template, ?Solution, ?Term, +Low, +High, +Percent, +Time-
out)
The most general variants of the above, with all the optinal parameters.

2.3 Arithmetic Constraint Predicates

?T1 #\= ?T2 The value of the rational term T1 is not equal to the value of the rational
term T2.

?T1 #< ?T2 The value of the rational term T1 is less than the value of the rational term
T2.

?T1 #<= ?T2 The value of the rational term T1 is less than or equal to the value of the
rational term T2.

?T1 #= ?T2 The value of the rational term T1 is equal to the value of the rational term
T2.

?T1 #> ?T2 The value of the rational term T1 is greater than the value of the rational
term T2.

?T1 #>= ?T2 The value of the rational term T1 is greater than or equal to the value of
the rational term T2.
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2.4 Logical Constraint Predicates

The logical constraints can be used to combine simpler constraints and to build complex logical
constraint expressions. These constraints are preprocessed by the system and transformed
into a sequence of evaluation constraints and arithmetic constraints. The logical operators
are declared with the following precedences:

:- op(750, fy, #\+).

:- op(760, yfx, #/\).

:- op(770, yfx, #\/).

:- op(780, yfx, #=>).

:- op(790, yfx, #<=>).

#\+ +E1 E1 is false, i.e. the logical negation of the constraint expression E1 is imposed.

+E1 #/\+E2 Both constraint expressions E1 and E2 are true. This is equivalent to normal
conjunction (E1, E2).

+E1 #\/+E2 At least one of constraint expressions E1 and E2 is true. As soon as one of
E1 or E2 becomes false, the other constraint is imposed.

+E1 #=> +E2 The constraint expression E1 implies the constraint expression E2. If E1
becomes true, then E2 is imposed. If E2 becomes false, then the negation of E1 will be
imposed.

+E1 #<=> +E2 The constraint expression E1 is equivalent to the constraint expression
E2. If one expression becomes true, the other one will be imposed. If one expression
becomes false, the negation of the other one will be imposed.

2.5 Evaluation Constraint Predicates

These constraint predicates evaluate the given constraint expression and associate its truth
value with a boolean variable. They can be very useful for defining more complex constraints.
They can be used both to test entailment of a constraint and to impose a constraint or its
negation on the current constraint store.

?B isd +Expr B is equal to 1 iff the constraint expression Expr is true, 0 otherwise. This
predicate is the constraint counterpart of is/2 — it takes a constraint expression, trans-
forms all its subexpressions into calls to predicates with arity one higher and combines
the resulting boolean values to yield B. For instance,

B isd X #= Y

is equivalent to

#=(X, Y, B)

#<(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1 is less than the
value of the rational term T2, 0 otherwise.
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#<=(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1 is less than or
equal to the value of the rational term T2, 0 otherwise.

#=(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1 is equal to the value
of the rational term T2, 0 otherwise.

#\=(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1 is different from
the value of the rational term T2, 0 otherwise.

#>(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1 is greater than the
value of the rational term T2, 0 otherwise.

#>=(?T1, ?T2, ?B) B is equal to 1 iff the value of the rational term T1 is greater than
or equal to the value of the rational term T2, 0 otherwise.

#/\(+E1, +E2, ?B) B is equal to 1 iff both constraint expressions E1 and E2 are true, 0
otherwise.

#\/(+E1, +E2, ?B) B is equal to 1 iff at least one of the constraint expressions E1 and
E2 is true, 0 otherwise.

#<=>(+E1, +E2, ?B) B is equal to 1 iff the constraint expression E1 is equivalent to the
constraint expression E2, 0 otherwise.

#=>(+E1, +E2, ?B) B is equal to 1 iff the constraint expression E1 implies the constraint
expression E2, 0 otherwise.

#\+(+E1, ?B) B is equal to 1 iff E1 is false, 0 otherwise.

2.6 CHIP Compatibility Constraints Predicates

These constraints, defined in the module fd chip, are provided for CHIP v.3 compatibility
and they are defined using native ECLiPSe constraints. Their source is available in the file
fd chip.pl.

?T1 ## ?T2 The value of the rational term T1 is not equal to the value of the rational
term T2.

alldistinct(?List) All elements of List (domain variables and ground terms) are pairwise
different.

deleteff(?Var, +List, -Rest) This predicate is used to select a variable from a list of do-
main variables which has the smallest domain. Var is the selected variable from List,
Rest is the rest of the list without Var.

deleteffc(?Var, +List, -Rest) This predicate is used to select the most constrained vari-
able from a list of domain variables. Var is the selected variable from List which has
the least domain and which has the most constraints attached to it. Rest is the rest of
the list without Var.

8



deletemin(?Var, +List, -Rest) This predicate is used to select the domain variable with
the smallest lower domain bound from a list of domain variables. Var is the selected
variable from List, Rest is the rest of the list without Var.

List is a list of domain variables or integers. Integers are treated as if they were variables
with singleton domains.

dom(+DVar, -List) List is the list of elements in the domain of the domain variable DVar.
The predicate ::/2 can also be used to query the domain of a domain variable, however
it yields a list of intervals.

NOTE: This predicate should not be used in ECLiPSe programs, because all intervals
in the domain will be expanded into element lists which causes unnecessary space and
time overhead. Unless an explicit list representation is required, finite domains should
be processed by the family of the dom * predicates in sections 2.14.2 and 2.14.3.

maxdomain(+DVar, -Max) Max is the maximum value in the domain of the integer do-
main variable DVar.

mindomain(+DVar, -Min) Min is the minimum value in the domain of the integer domain
variable DVar.

2.7 Utility Constraints Predicates

These constraints are defined in the module fd util and they consist of useful predicates that
are often needed in constraint programs. Their source code is available in the file fd util.pl.

#(?Min, ?CstList, ?Max) The cardinality operator. CstList is a list of constraint ex-
pressions and this operator states that at least Min and at most Max out of them are
valid.

dvar domain list(?Var, ?List) List is the list of elements in the domain of the domain
variable or ground term DVar. The predicate ::/2 can also be used to query the domain
of a domain variable, however it yields a list of intervals.

outof(?Var, +List) The domain variable Var is different from all elements of the list List.

labeling(+List) The elements of the List are instantiated using the indomain/1 predicate.

2.8 Search Methods

A library of different search methods for finite domain problems is available as library(fd search).
See the Reference Manual for details.

2.9 Domain Output

The library fd domain.pl contains output macros which cause an fd attribute as well as
a domain to be printed as lists that represent the domain values. A domain variable is an
attributed variable whose fd attribute has a print handler which prints it in the same format.
For instance,
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[eclipse 4]: X::1..10, dvar_attribute(X, A), A = fd with domain:D.

X = X{[1..10]}

D = [1..10]

A = [1..10]

yes.

[eclipse 5]: A::1..10, printf("%mw", A).

A{[1..10]}

A = A{[1..10]}

yes.

2.10 Debugging Constraint Programs

The ECLiPSe debugger is a low-level debugger which is suitable only to debug small constraint
programs or to debug small parts of larger programs. Typically, one would use this debugger
to debug user-defined constraints and Prolog data processing. When they are known to work
properly, this debugger may not be helpful enough to find bugs (correctness debugging) or
to speed up a working program (performance debugging). For this, the display matrix tool
from tkeclipse may be the appropriate tool.

2.11 Debugger Support

The ECLiPSe debugger supports debugging and tracing of finite domain programs in various
ways. First of all, the debugger commands that handle suspended goals can be used to display
suspended constraints (d, ^, u) or to skip to a particular constraint (w, i). Note that most
of the constraints are displayed using a write macro, their internal form is different.

Successive updates of a domain variable can be traced using the debug event Hd. When used,
the debugger prompts for a variable name and then it skips to the port at which the domain
of this variable was reduced. When a newline is typed instead of a variable name, it skips to
the update of the previously entered variable.

A sequence of woken goals can be skipped using the debug event Hw.

2.12 Examples

A very simple example of using the finite domains is the send more money puzzle:

:- use_module(library(fd)).

send(List) :-

List = [S, E, N, D, M, O, R, Y],

List :: 0..9,

alldifferent(List),

1000*S+100*E+10*N+D + 1000*M+100*O+10*R+E #=

10000*M+1000*O+100*N+10*E+Y,

M #\= 0,
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S #\= 0,

labeling(List).

The problem is stated very simply, one just writes down the conditions that must hold for
the involved variables and then uses the default labeling procedure, i.e. the order in which
the variables will be instantiated. When executing send/1, the variables S, M and O are
instantiated even before the labeling procedure starts. When a consistent value for the variable
E is found (5), and this value is propagated to the other variables, all variables become
instantiated and thus the rest of the labeling procedure only checks groundness of the list.

A slightly more elaborate example is the eight queens puzzle. Let us show a solution for this
problem generalised to N queens and also enhanced by a cost function that evaluates every
solution. The cost can be for example coli − rowi for the i-th queen. We are now looking
for the solution with the smallest cost, i.e. one for which the maximum of all coli − rowi is
minimal:

:- use_module(library(fd)).

% Find the minimal solution for the N-queens problem

cqueens(N, List) :-

make_list(N, List),

List :: 1..N,

constrain_queens(List),

make_cost(1, List, C),

min_max(labeling(List), C).

% Set up the constraints for the queens

constrain_queens([]).

constrain_queens([X|Y]) :-

safe(X, Y, 1),

constrain_queens(Y).

safe(_, [], _).

safe(X, [Y|T], K) :-

noattack(X, Y, K) ,

K1 is K + 1 ,

safe(X, T, K1).

% Queens in rows X and Y cannot attack each other

noattack(X, Y, K) :-

X #\= Y,

X + K #\= Y,

X - K #\= Y.

% Create a list with N variables

make_list(0, []) :- !.

make_list(N, [_|Rest]) :-

N1 is N - 1,
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make_list(N1, Rest).

% Set up the cost expression

make_cost(_, [], []).

make_cost(N, [Var|L], [N-Var|Term]) :-

N1 is N + 1,

make_cost(N1, L, Term).

labeling([]) :- !.

labeling(L) :-

deleteff(Var, L, Rest),

indomain(Var),

labeling(Rest).

The approach is similar to the previous example: first we create the domain variables, one
for each column of the board, whose values will be the rows. We state constraints which
must hold between every pair of queens and finally we make the cost term in the format
required for the min max/2 predicate. The labeling predicate selects the most constrained
variable for instantiation using the deleteff/3 predicate. When running the example, we get
the following result:

[eclipse 19]: cqueens(8, X).

Found a solution with cost 5

Found a solution with cost 4

X = [5, 3, 1, 7, 2, 8, 6, 4]

yes.

The time needed to find the minimal solution is about five times shorter than the time to
generate all solutions. This shows the advantage of the branch and bound method. Note also
that the board for this ‘minimal’ solution looks very nice.

2.13 General Guidelines to the Use of Domains

The send more money example already shows the general principle of solving problems using
finite domain constraints:

• First the variables are defined and their domains are specified.

• Then the constraints are imposed on these variables. In the above example the con-
straints are simply built-in predicates. For more complicated problems it is often nec-
essary to define Prolog predicates that process the variables and impose constraints on
them.

• If stating the constraints alone did not solve the problem, one tries to assign values
to the variables. Since every instantiation immediately wakes all constraints associ-
ated with the variable, and changes are propagated to the other variables, the search
space is usually quickly reduced and either an early failure occurs or the domains of
other variables are reduced or directly instantiated. This labeling procedure is therefore
incomparably more efficient than the simple generate and test algorithm.
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The complexity of the program and the efficiency of the solving depends very much on the way
these three points are performed. Quite frequently it is possible to state the same problem
using different sets of variables with different domains. A guideline is that the search space
should be as small as possible, and thus e.g. five variables with domain 1..10 (i.e. search space
size is 105) are likely to be better than twenty variables with domain 0..1 (space size 220).
The choice of constraints is also very important. Sometimes a redundant constraint, i.e. one
that follows from the other constraints, can speed up the search considerably. This is because
the system does not propagate all information it has to all concerned variables, because most
of the time this would not bring anything, and thus it would slow down the search. Another
reason is that the library performs no meta-level reasoning on constraints themselves (unlike
the CHR library). For example, the constraints

X + Y #= 10, X + Y + Z #= 14

allow only the value 4 for Z, however the system is not able to deduce this and thus it has to
be provided as a redundant constraint.
The constraints should be stated in such a way that allows the system to propagate all
important domain updates to the appropriate variables.
Another rule of thumb is that creation of choice points should be delayed as long as possible.
Disjunctive constraints, if there are any, should be postponed as much as possible. Labeling,
i.e. value choosing, should be done after all deterministic operations are carried out.
The choice of the labeling procedure is perhaps the most sensitive one. It is quite common
that only a very minor change in the order of instantiated variables can speed up or slow
down the search by several orders of magnitude. There are very few common rules available.
If the search space is large, it usually pays off to spend more time in selecting the next
variable to instantiate. The provided predicates deleteff/3 and deleteffc/3 can be used to
select the most constrained variable, but in many problems it is possible to extract even more
information about which variable to instantiate next.
Often it is necessary to try out several approaches and see how they work, if they do. The
profiler and the statistics package can be of a great help here, it can point to predicates which
are executed too often, or choice points unnecessarily backtracked over.

2.14 User-Defined Constraints

The fd.pl library defines a set of low-level predicates which allow the user to process domain
variables and their domains, modify them and write new constraint predicates.

2.14.1 The fd Attribute

A domain variable is a metaterm. The fd.pl library defines a metaterm attribute

fd with [domain : D,min : Mi,max : Ma,any : A]

which stores the domain information together with several suspension lists. The attribute
arguments have the following meaning:

• domain - the representation of the domain itself. Domains are treated as abstract data
types, the users should not access them directly, but only using access and modification
predicates listed below.
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• min - a suspension list that should be woken when the minimum of the domain is
updated

• max - a suspension list that should be woken when the maximum of the domain is
updated

• any - a suspension list that should be woken when the domain is reduced no matter
how.

The suspension list names can be used in the predicate suspend/3 to denote an appropriate
waking condition.

The attribute of a domain variable can be accessed with the predicate dvar attribute/2 or
by unification in a matching clause:

get_attribute(_{fd:Attr}, A) :-

-?->

Attr = A.

Note however, that this matching clause succeeds even if the first argument is a metaterm
but its fd attribute is empty. To succeed only for domain variables, the clause must be

get_attribute(_{fd:Attr}, A) :-

-?->

nonvar(Attr),

Attr = A.

or to access directly attribute arguments, e.g. the domain

get_domain(_{fd:fd with domain:D}, Dom) :-

-?->

D = Dom.

The dvar attribute/2 has the advantage that it returns an attribute-like structure even if
its argument is already instantiated, which is quite useful when coding fd constraints.

The attribute arguments can be accessed by macros from the structures.pl library, if e.g.
Attr is the attribute of a domain variable, the max list can be obtained as

arg(max of fd, Attr, Max)

or, using a unification

Attr = fd with max:Max

2.14.2 Domain Access

The domains are represented as abstract data types, the users are not supposed to access
them directly, instead a number of predicates and macros are available to allow operations on
domains.

dom check in(+Element, +Dom) Succeed if the integer Element is in the domain Dom.
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dom compare(?Res, +Dom1, +Dom2) Works like compare/3 for terms. Res is unified
with

• = iff Dom1 is equal to Dom2,

• < iff Dom1 is a proper subset of Dom2,

• > iff Dom2 is a proper subset of Dom1.

Fails if neither domain is a subset of the other one.

dom member(?Element, +Dom) Successively instantiate Element to the values in the
domain Dom (similar to indomain/1).

dom range(+Dom, ?Min, ?Max) Return the minimum and maximum value in the in-
teger domain Dom. Fails if Dom is a domain containing non-integer elements. This
predicate can also be used to test if a given domain is integer or not.

dom size(+Dom, ?Size) Size is the number of elements in the domain Dom.

2.14.3 Domain Operations

The following predicates operate on domains alone, without modifying domain variables. Most
of them return the size of the resulting domain which can be used to test if any modification
was done.

dom copy(+Dom1, -Dom2) Dom2 is a copy of the domain Dom1. Since the updates are
done in-place, two domain variables must not share the same physical domain and so
when defining a new variable with an existing domain, the domain has to be copied
first.

dom difference(+Dom1, +Dom2, -DomDiff, ?Size) The domain DomDifference is Dom1
\ Dom2 and Size is the number of its elements. Fails if Dom1 is a subset of Dom2.

dom intersection(+Dom1, +Dom2, -DomInt, ?Size) The domain DomInt is the inter-
section of domains Dom1 and Dom2 and Size is the number of its elements. Fails if the
intersection is empty.

dom union(+Dom1, +Dom2, -DomUnion, ?Size) The domain DomUnion is the union
of domains Dom1 and Dom2 and Size is the number of its elements. Note that the main
use of the predicate is to yield the most specific generalisation of two domains, in the
usual cases the domains become smaller, not bigger.

list to dom(+List, -Dom) Convert a list of ground terms and integer intervals into a do-
main Dom. It does not have to be sorted and integers and intervals may overlap.

integer list to dom(+List, -Dom) Similar to list to dom/2 , but the input list should
contain only integers and integer intervals and it should be sorted. This predicate will
merge adjacent integers and intervals into larger intervals whenever possible. typically,
this predicate should be used to convert a sorted list of integers into a finite domain. If
the list is known to already contain proper intervals, sorted list to dom/2 could be
used instead.
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sorted list to dom(+List, -Dom) Similar to list to dom/2, but the input list is assumed
to be already in the correct format, i.e. sorted and with correct integer and interval
values. No checking on the list contents is performed.

2.14.4 Accessing Domain Variables

The following predicates perform various operations:

dvar attribute(+DVar, -Attrib) Attrib is the attribute of the domain variable DVar. If
DVar is instantiated, Attrib is bound to an attribute with a singleton domain and empty
suspension lists.

dvar domain(+DVar, -Dom) Dom is the domain of the domain variable DVar. If DVar
is instantiated, Dom is bound to a singleton domain.

var fd(?Var, +Dom) If Var is a free variable, it becomes a domain variable with the domain
Dom and with empty suspension lists. The domain Dom is copied to make in-place
updates logically sound. If Var is already a domain variable, its domain is intersected
with the domain Dom. Fails if Var is not a variable.

dvar msg(+DVar1, +DVar2, -MsgDVar) MsgVar is a domain variable which is the most
specific generalisation of domain variables or ground values Var1 and Var2.

2.14.5 Modifying Domain Variables

When the domain of a domain variable is reduced, some suspension lists stored in the attribute
have to be scheduled and woken.

NOTE: In the fd.pl library the suspension lists are woken precisely when the event associated
with the list occurs. Thus e.g. the min list is woken if and only if the minimum value of the
variable’s domain is changed, but it is not woken when the variable is instantiated to this
minimum or when another element from the domain is removed. In this way, user-defined
constraints can rely on the fact that when they are executed, the domain was updated in the
expected way. On the other hand, user-defined constraints should also comply with this rule
and they should take care not to wake lists when their waking condition did not occur. Most
predicates in this section actually do all the work themselves so that the user predicates may
ignore scheduling and waking completely.

dvar remove element(+DVar, +El) The element El is removed from the domain of DVar
and all concerned lists are woken. If the resulting domain is empty, this predicate fails.
If it is a singleton, DVar is instantiated. If the domain does not contain the element,
no updates are made.

dvar remove smaller(+DVar, +El) Remove all elements in the domain of DVar which
are smaller than the integer El and wake all concerned lists. If the resulting domain is
empty, this predicate fails; if it is a singleton, DVar is instantiated.

dvar remove greater(+DVar, +El) Remove all elements in the domain of DVar which
are greater than the integer El and wake all concerned lists. If the resulting domain is
empty, this predicate fails; if it is a singleton, DVar is instantiated.
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dvar update(+DVar, +NewDom) If the size of the domain NewDom is 0, the predicate
fails. If it is 1, the domain variable DVar is instantiated to the value in the domain.
Otherwise, if the size of the new domain is smaller than the size of the domain variable’s
domain, the domain of DVar is replaced by NewDom, the appropriate suspension lists
in its attribute are passed to the waking scheduler and so is the constrained list in the
suspend attribute of the domain variable. If the size of the new domain is equal to the
old one, no updates and no waking is done, i.e. this predicate does not check an explicit
equality of both domains. If the size of the new domain is greater than the old one, an
error is raised.

dvar replace(+DVar, +NewDom) This predicate is similar to dvar update/2, but it
does not propagate the changes, i.e. no waking is done. If the size of the new domain
is 1, DVar is not instantiated, but it is given this singleton domain. This predicate is
useful for local consistency checks.

2.15 Extensions

The fd.pl library can be used as a basis for further extensions. There are several hooks that
make the interfacing easier:

• Each time a new domain variable is created, either in the ::/2 predicate or by giving it a
default domain in a rational arithmetic expression, the predicate new domain var/1
is called with the variable as argument. Its default definition does nothing. To use it,
it is necessary to redefine it, i.e. to recompile it in the fd module, e.g. using compile/2
or the tool body of compile term/1.

• Default domains are created in the predicate default domain/1 in the fd module, its
default definition is

default domain(Var) :- Var :: -10000000..10000000.

It is possible to change default domains by redefining this predicate in the fd module.

2.16 Example of Defining a New Constraint

We will demonstrate creation of new constraints on the following example. To show that the
constraints are not restricted to linear terms, we can take the constraint

X2 + Y 2 ≤ C.

Assuming that X and Y are domain variables, we would like to define such a predicate that
will be woken as soon as one or both variables’ domains are updated in such a way that
would require updating the other variable’s domain, i.e. updates that would propagate via
this constraint. For simplicity we assume that X and Y are nonnegative. We will define the
predicate sq(X, Y, C) which will implement this constraint:

:- use_module(library(fd)).

17



% A*A + B*B <= C

sq(A, B, C) :-

dvar_domain(A, DomA),

dvar_domain(B, DomB),

dom_range(DomA, MinA, MaxA),

dom_range(DomB, MinB, MaxB),

MiA2 is MinA*MinA,

MaB2 is MaxB*MaxB,

(MiA2 + MaB2 > C ->

NewMaxB is fix(sqrt(C - MiA2)),

dvar_remove_greater(B, NewMaxB)

;

NewMaxB = MaxB

),

MaA2 is MaxA*MaxA,

MiB2 is MinB*MinB,

(MaA2 + MiB2 > C ->

NewMaxA is fix(sqrt(C - MiB2)),

dvar_remove_greater(A, NewMaxA)

;

NewMaxA = MaxA

),

(NewMaxA*NewMaxA + NewMaxB*NewMaxB =< C ->

true

;

suspend(sq(A, B, C), 3, (A, B)->min)

),

wake. % Trigger the propagation

The steps to be executed when this constraint becomes active, i.e. when the predicate sq/3
is called or woken are the following:

1. We access the domains of the two variables using the predicate dvar domain/2 and
and obtain their bounds using dom range/3. Note that it may happen that one of the
two variables is already instantiated, but these predicates still work as if the variable
had a singleton domain.

2. We check if the maximum of one or the other variable is still consistent with this con-
straint, i.e. if there is a value in the other variable’s domain that satisfies the constraint
together with this maximum.

3. If the maximum value is no longer consistent, we compute the new maximum of the
domain, and then update the domain so that all values greater than this value are
removed using the predicate dvar remove greater/2. This predicate also wakes all
concerned suspension lists and instantiates the variable if its new domain is a singleton.

4. After checking the updates for both variables we test if the constraint is now satisfied for
all values in the new domains. If this is not the case, we have to suspend the predicate
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so that it is woken as soon as the minimum of either domain is changed. This is done
using the predicate suspend/3.

5. The last action is to trigger the execution of all goals that are waiting for the updates
we have made. It is necessary to wake these goals after inserting the new suspen-
sion, otherwise updates made in the woken goals would not be propagated back to this
constraint.

Here is what we get:

[eclipse 20]: [X,Y]::1..10, sq(X, Y, 50).

X = X{[1..7]}

Y = Y{[1..7]}

Delayed goals:

sq(X{[1..7]}, Y{[1..7]}, 50)

yes.

[eclipse 21]: [X,Y]::1..10, sq(X, Y, 50), X #> 5.

Y = Y{[1..3]}

X = X{[6, 7]}

Delayed goals:

sq(X{[6, 7]}, Y{[1..3]}, 50)

yes.

[eclipse 22]: [X,Y]::1..10, sq(X, Y, 50), X #> 5, Y #> 1.

X = 6

Y = Y{[2, 3]}

yes.

[eclipse 23]: [X,Y]::1..10, sq(X, Y, 50), X #> 5, Y #> 2.

X = 6

Y = 3

yes.

2.17 Program Examples

In this section we present some FD programs that show various aspects of the library usage.
More examples can be found on the ECLiPSe web site http://www.icparc.ic.ac.uk/eclipse/.

2.17.1 Constraining Variable Pairs

The finite domain library gives the user the possibility to impose constraints on the value of
a variable. How, in general, is it possible to impose constraints on two or more variables?
For example, let us assume that we have a set of colours and we want to define that some
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colours fit with each other and others do not. This should work in such a way as to propagate
possible changes in the domains as soon as this becomes possible.

Let us assume we have a symmetric relation that defines which colours fit with each other:

% The basic relation

fit(yellow, blue).

fit(yellow, red).

fit(blue, yellow).

fit(red, yellow).

fit(green, orange).

fit(orange, green).

The predicate nice pair(X, Y) is a constraint and any change of the possible values of X
or Y is propagated to the other variable. There are many ways in which this pairing can be
defined in ECLiPSe. They are different solutions with different properties, but they yield the
same results.

2.17.1.1 User-Defined Constraints

We use more or less directly the low-level primitives to handle finite domain variables. We
collect all consistent values for the two variables, remove all other values from their domains
and then suspend the predicate until one of its arguments is updated:

nice_pair(A, B) :-

% get the domains of both variables

dvar_domain(A, DA),

dvar_domain(B, DB),

% make a list of respective matching colours

setof(Y, X^(dom_member(X, DA), fit(X, Y)), BL),

setof(X, Y^(dom_member(Y, DB), fit(X, Y)), AL),

% convert the lists to domains

sorted_list_to_dom(AL, DA1),

sorted_list_to_dom(BL, DB1),

% intersect the lists with the original domains

dom_intersection(DA, DA1, DA_New, _),

dom_intersection(DB, DB1, DB_New, _),

% and impose the result on the variables

dvar_update(A, DA_New),

dvar_update(B, DB_New),

% unless one variable is already instantiated, suspend

% and wake as soon as any element of the domain is removed

(var(A), var(B) ->

suspend(nice_pair(A, B), 2, [A,B]->any)

;

true

).

% Declare the domains
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colour(A) :-

findall(X, fit(X, _), L),

A :: L.

After defining the domains, we can state the constraints:

[eclipse 5]: colour([A,B,C]), nice_pair(A, B), nice_pair(B, C), A #\= green.

B = B{[blue, green, red, yellow]}

C = C{[blue, orange, red, yellow]}

A = A{[blue, orange, red, yellow]}

Delayed goals:

nice_pair(A{[blue, orange, red, yellow]}, B{[blue, green, red, yellow]})

nice_pair(B{[blue, green, red, yellow]}, C{[blue, orange, red, yellow]})

This way of defining new constraints is often the most efficient one, but usually also the most
tedious one.

2.17.1.2 Using the element Constraint

In this case we use the available primitive in the fd library. Whenever it is necessary to
associate a fd variable with some other fd variable, the element/3 constraint is a likely
candidate. Sometimes it is rather awkward to use, because additional variables must be used,
but it gives enough power:

nice_pair(A, B) :-

element(I, [yellow, yellow, blue, red, green, orange], A),

element(I, [blue, red, yellow, yellow, orange, green], B).

We define a new variable I which is a sort of index into the clauses of the fit predicate. The
first colour list contains colours in the first argument of fit/2 and the second list contains
colours from the second argument. The propagation is similar to that of the previous one.
When element/3 can be used, it is usually faster than the previous approach, because
element/3 is partly implemented in C.

2.17.1.3 Using Evaluation Constraints

We can also encode directly the relations between elements in the domains of the two variables:

nice_pair(A, B) :-

np(A, B),

np(B, A).

np(A, B) :-

[A,B] :: [yellow, blue, red, orange, green],

A #= yellow #=> B :: [blue, red],

A #= blue #=> B #= yellow,

A #= red #=> B #= yellow,

A #= green #=> B #= orange,

A #= orange #=> B #= green.
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This method is quite simple and does not need any special analysis; on the other hand it
potentially creates a huge number of auxiliary constraints and variables.

2.17.1.4 Using Generalised Propagation

Propia is the first candidate to convert an existing relation into a constraint. One can simply
use infers most to achieve the propagation:

nice_pair(A, B) :-

fit(A, B) infers most.

Using Propia is usually very easy and the programs are short and readable, so that this style of
constraints writing is quite useful e.g. for teaching. It is not as efficient as with user-defined
constraints, but if the amount of propagation is more important that the efficiency of the
constraint itself, it can yield good results, too.

2.17.1.5 Using Constraint Handling Rules

The domain solver in CHR can be used directly with the element/3 constraint as well,
however it is also possible to define directly domains consisting of pairs:

:- lib(chr).

:- chr(lib(domain)).

nice_pair(A, B) :-

setof(X-Y, fit(X, Y), L),

A-B :: L.

The pairs are then constrained accordingly:

[eclipse 2]: nice_pair(A, B), nice_pair(B, C), A ne orange.

B = B

C = C

A = A

Constraints:

(9) A_g1484 - B_g1516 :: [blue - yellow, green - orange, red - yellow,

yellow - blue, yellow - red]

(10) A_g1484 :: [blue, green, red, yellow]

(12) B_g1516 - C_g3730 :: [blue - yellow, orange - green, red - yellow,

yellow - blue, yellow - red]

(13) B_g1516 :: [blue, orange, red, yellow]

(14) C_g3730 :: [blue, green, red, yellow]

2.17.2 Puzzles

Various kinds of puzzles can be easily solved using finite domains. We show here the classical
Lewis Carrol’s puzzle with five houses and a zebra:
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Five men with different nationalities live in the first five houses

of a street. They practise five distinct professions, and each of

them has a favourite animal and a favourite drink, all of them

different. The five houses are painted in different colours.

The Englishman lives in a red house.

The Spaniard owns a dog.

The Japanese is a painter.

The Italian drinks tea.

The Norwegian lives in the first house on the left.

The owner of the green house drinks coffee.

The green house is on the right of the white one.

The sculptor breeds snails.

The diplomat lives in the yellow house.

Milk is drunk in the middle house.

The Norwegian’s house is next to the blue one.

The violinist drinks fruit juice.

The fox is in a house next to that of the doctor.

The horse is in a house next to that of the diplomat.

Who owns a Zebra, and who drinks water?

One may be tempted to define five variables Nationality, Profession, Colour, etc. with atomic
domains to represent the problem. Then, however, it is quite difficult to express equalities
over these different domains. A much simpler solution is to define 5x5 integer variables for
each mentioned item, to number the houses from one to five and to represent the fact that
e.g. Italian drinks tea by equating Italian = Tea. The value of both variables represents then
the number of their house. In this way, no special constraints are needed and the problem is
very easily described:

:- lib(fd).

zebra([zebra(Zebra), water(Water)]) :-

Sol = [Nat, Color, Profession, Pet, Drink],

Nat = [English, Spaniard, Japanese, Italian, Norwegian],

Color = [Red, Green, White, Yellow, Blue],

Profession = [Painter, Sculptor, Diplomat, Violinist, Doctor],

Pet = [Dog, Snails, Fox, Horse, Zebra],

Drink = [Tea, Coffee, Milk, Juice, Water],

% we specify the domains and the fact

% that the values are exclusive

Nat :: 1..5,

Color :: 1..5,

Profession :: 1..5,

Pet :: 1..5,

Drink :: 1..5,

alldifferent(Nat),
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alldifferent(Color),

alldifferent(Profession),

alldifferent(Pet),

alldifferent(Drink),

% and here follow the actual constraints

English = Red,

Spaniard = Dog,

Japanese = Painter,

Italian = Tea,

Norwegian = 1,

Green = Coffee,

Green #= White + 1,

Sculptor = Snails,

Diplomat = Yellow,

Milk = 3,

Dist1 #= Norwegian - Blue, Dist1 :: [-1, 1],

Violinist = Juice,

Dist2 #= Fox - Doctor, Dist2 :: [-1, 1],

Dist3 #= Horse - Diplomat, Dist3 :: [-1, 1],

flatten(Sol, List),

labeling(List).

2.17.3 Bin Packing

In this type of problems the goal is to pack a certain amount of different things into the
minimal number of bins under specific constraints. Let us solve an example given by Andre
Vellino in the Usenet group comp.lang.prolog, June 93:

• There are 5 types of components:

glass, plastic, steel, wood, copper

• There are three types of bins:

red, blue, green

• whose capacity constraints are:

– red has capacity 3

– blue has capacity 1

– green has capacity 4

• containment constraints are:

– red can contain glass, wood, copper

– blue can contain glass, steel, copper

– green can contain plastic, wood, copper
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• and requirement constraints are (for all bin types):

wood requires plastic

• Certain component types cannot coexist:

– glass exclusive copper

– copper exclusive plastic

• and certain bin types have capacity constraint for certain components

– red contains at most 1 of wood

– green contains at most 2 of wood

• Given an initial supply of: 1 of glass, 2 of plastic, 1 of steel, 3 of wood, 2 of copper,
what is the minimum total number of bins required to contain the components?

To solve this problem, it is not enough to state constraints on some variables and to start a
labeling procedure on them. The variables are namely not known, because we don’t know how
many bins we should take. One possibility would be to take a large enough number of bins
and to try to find a minimum number. However, usually it is better to generate constraints
for an increasing fixed number of bins until a solution is found.

The predicate solve/1 returns the solution for this particular problem, solve bin/2 is the
general predicate that takes an amount of components packed into a cont/5 structure and it
returns the solution.

solve(Bins) :-

solve_bin(cont(1, 2, 1, 3, 2), Bins).

solve bin/2 computes the sum of all components which is necessary as a limit value for
various domains, calls bins/4 to generate a list Bins with an increasing number of elements
and finally it labels all variables in the list:

solve_bin(Demand, Bins) :-

Demand = cont(G, P, S, W, C),

Sum is G + P + S + W + C,

bins(Demand, Sum, [Sum, Sum, Sum, Sum, Sum, Sum], Bins),

label(Bins).

The predicate to generate a list of bins with appropriate constraints works as follows: first it
tries to match the amount of remaining components with zero and the list with nil. If this
fails, a new bin represented by a list

[Colour,Glass,Plastic,Steel,Wood,Copper]

is added to the bin list, appropriate constraints are imposed on all the new bin’s variables,
its contents is subtracted from the remaining number of components, and the predicate calls
itself recursively:
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bins(cont(0, 0, 0, 0, 0), 0, _, []).

bins(cont(G0, P0, S0, W0, C0), Sum0, LastBin, [Bin|Bins]) :-

Bin = [_Col, G, P, S, W, C],

bin(Bin, Sum),

G2 #= G0 - G,

P2 #= P0 - P,

S2 #= S0 - S,

W2 #= W0 - W,

C2 #= C0 - C,

Sum2 #= Sum0 - Sum,

ordering(Bin, LastBin),

bins(cont(G2, P2, S2, W2, C2), Sum2, Bin, Bins).

The ordering/2 constraints are strictly necessary because this problem has a huge number
of symmetric solutions.
The constraints imposed on a single bin correspond exactly to the problem statement:

bin([Col, G, P, S, W, C], Sum) :-

Col :: [red, blue, green],

[Capacity, G, P, S, W, C] :: 0..4,

G + P + S + W + C #= Sum,

Sum #> 0, % no empty bins

Sum #<= Capacity,

capacity(Col, Capacity),

contents(Col, G, P, S, W, C),

requires(W, P),

exclusive(G, C),

exclusive(C, P),

at_most(1, red, Col, W),

at_most(2, green, Col, W).

We will code all of the special constraints with the maximum amount of propagation to show
how this can be achieved. In most programs, however, it is not necessary to propagate all
values everywhere which simplifies the code quite considerably. Often it is also possible to
use some of the built-in symbolic constraints of ECLiPSe, e.g. element/3 or atmost/3.

2.17.3.1 Capacity Constraints

capacity(Color, Capacity) should instantiate the capacity if the colour is known, and
reduce the colour values if the capacity is known to be greater than some values. If we use
evaluation constraints, we can code the constraint directly, using equivalences:

capacity(Color, Capacity) :-

Color #= blue #<=> Capacity #= 1,

Color #= green #<=> Capacity #= 4,

Color #= red #<=> Capacity #= 3.

A more efficient code would take into account the ordering on the capacities. Concretely, if
the capacity is greater than 1, the colour cannot be blue and if it is greater than 3, it must
be green:
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capacity(Color, Capacity) :-

var(Color),

!,

dvar_domain(Capacity, DC),

dom_range(DC, MinC, _),

(MinC > 1 ->

Color #\= blue,

(MinC > 3 ->

Color = green

;

suspend(capacity(Color, Capacity), 3, (Color, Capacity)->inst)

)

;

suspend(capacity(Color, Capacity), 3, [Color->inst, Capacity->min])

).

capacity(blue, 1).

capacity(green, 4).

capacity(red, 3).

Note that when suspended, the predicate waits for colour instantiation or for minimum of
the capacity to be updated (except that 3 is one less than the maximum capacity and thus
waiting for its instantiation is equivalent).

2.17.3.2 Containment Constraints

The containment constraints are stated as logical expressions and this is also the easiest way
to medel them. The important point to remember is that a condition like red can contain
glass, wood, copper actually means red cannot contain plastic or steel which can be written as

contents(Col, G, P, S, W, _) :-

Col #= red #=> P #= 0 #/\ S #= 0,

Col #= blue #=> P #= 0 #/\ W #= 0,

Col #= green #=> G #= 0 #/\ S #= 0.

If we want to model the containment with low-level domain predicates, it is easier to state
them in the equivalent conjugate form:

• glass can be contained in red or blue

• plastic can be contained in green

• steel can be contained in blue

• wood can be contained in red, green

• copper can be contained in red, blue, green

or in a further equivalent form that uses at most one bin colour:

• glass can not be contained in green
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• plastic can be contained in green

• steel can be contained in blue

• wood can not be contained in blue

• copper can be contained in anything

contents(Col, G, P, S, W, _) :-

not_contained_in(Col, G, green),

contained_in(Col, P, green),

contained_in(Col, S, blue),

not_contained_in(Col, W, blue).

contained in(Color, Component, In) states that if Color is different from In, there can
be no such component in it, i.e. Component is zero:

contained_in(Col, Comp, In) :-

nonvar(Col),

!,

(Col \== In ->

Comp = 0

;

true

).

contained_in(Col, Comp, In) :-

dvar_domain(Comp, DM),

dom_range(DM, MinD, _),

(MinD > 0 ->

Col = In

;

suspend(contained_in(Col, Comp, In), 2, [Comp->min, Col->inst])

).

not contained in(Color, Component, In) states that if the bin is of the given colour, the
component cannot be contained in it:

not_contained_in(Col, Comp, In) :-

nonvar(Col),

!,

(Col == In ->

Comp = 0

;

true

).

not_contained_in(Col, Comp, In) :-

dvar_domain(Comp, DM),

dom_range(DM, MinD, _),

(MinD > 0 ->

28



Col #\= In

;

suspend(not_contained_in(Col, Comp, In), 2, [Comp->min, Col->any])

).

As you can see again, modeling with the low-level domain predicates might give a faster and
more precise programs, but it is much more difficult than using constraint expressions and
evaluation constraints. A good approach is thus to start with constraint expressions and only
if they are not efficient enough, to (stepwise) recode some or all constraints with the low-level
predicates.

2.17.3.3 Requirement Constraints

The constraint ‘A requires B’ is written as

requires(A, B) :-

A #> 0 #=> B #> 0.

With low-level predicates, the constraint ‘A requires B’ is woken as soon as some A is present
or B is known:

requires(A, B) :-

nonvar(B),

!,

( B = 0 ->

A = 0

;

true

).

requires(A, B) :-

dvar_domain(A, DA),

dom_range(DA, MinA, _),

( MinA > 0 ->

B #> 0

;

suspend(requires(A, B), 2, [A->min, B->inst])

).

2.17.3.4 Exclusive Constraints

The exclusive constraint can be written as

exclusive(A, B) :-

A #> 0 #=> B #= 0,

B #> 0 #=> A #= 0.

however a simple form with one disjunction is enough:

exclusive(A, B) :-

A #= 0 #\/ B #= 0.
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With low-level domain predicates, the exclusive constraint defines a suspension which is woken
as soon as one of the two components is present:

exclusive(A, B) :-

dvar_domain(A, DA),

dom_range(DA, MinA, MaxA),

( MinA > 0 ->

B = 0

; MaxA = 0 ->

% A == 0

true

;

dvar_domain(B, DB),

dom_range(DB, MinB, MaxB),

( MinB > 0 ->

A = 0

; MaxB = 0 ->

% B == 0

true

;

suspend(exclusive(A, B), 3, (A,B)->min)

)

).

2.17.3.5 Atmost Constraints

at most(N, In, Colour, Components) states that if Colour is equal to In, then there can
be at most N Components and vice versa, if there are more than N Components, the colour
cannot be In. With constraint expressions, this can be simply coded as

at_most(N, In, Col, Comp) :-

Col #= In #=> Comp #<= N.

A low-level solution looks as follows:

at_most(N, In, Col, Comp) :-

nonvar(Col),

!,

(In = Col ->

Comp #<= N

;

true

).

at_most(N, In, Col, Comp) :-

dvar_domain(Comp, DM),

dom_range(DM, MinM, _),

(MinM > N ->

Col #\= In

;
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suspend(at_most(N, In, Col, Comp), 2, [In->inst, Comp->min])

).

2.17.3.6 Ordering Constraints

To filter out symmetric solutions we can e.g. impose a lexicographic ordering on the bins
in the list, i.e. the second bin must be lexicographically greater or equal than the first one
etc. As long as the corresponding most significant variables in two consecutive bins are not
instantiated, we cannot constrain the following ones and thus we suspend the ordering on the
inst lists:

ordering([], []).

ordering([Val1|Bin1], [Val2|Bin2]) :-

Val1 #<= Val2,

(integer(Val1) ->

(integer(Val2) ->

(Val1 = Val2 ->

ordering(Bin1, Bin2)

;

true

)

;

suspend(ordering([Val1|Bin1], [Val2|Bin2]), 2, Val2->inst)

)

;

suspend(ordering([Val1|Bin1], [Val2|Bin2]), 2, Val1->inst)

).

There is a problem with the representation of the colour: If the colour is represented by an
atom, we cannot apply the #<=/2 predicate on it. To keep the ordering predicate simple and
still have a symbolic representation of the colour in the program, we can define input macros
that transform the colour atoms into integers:

:- define_macro(no_macro_expansion(blue)/0, tr_col/2, []).

:- define_macro(no_macro_expansion(green)/0, tr_col/2, []).

:- define_macro(no_macro_expansion(red)/0, tr_col/2, []).

tr_col(no_macro_expansion(red), 1).

tr_col(no_macro_expansion(green), 2).

tr_col(no_macro_expansion(blue), 3).

2.17.3.7 Labeling

A straightforward labeling would be to flatten the list with the bins and use e.g. deleteff/3 to
label a variable out of it. However, for this example not all variables have the same importance
— the colour variables propagate much more data when instantiated. Therefore, we first filter
out the colours and label them before all the component variables:
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label(Bins) :-

colours(Bins, Colors, Things),

flatten(Things, List),

labeleff(Colors),

labeleff(List).

colours([], [], []).

colours([[Col|Rest]|Bins], [Col|Cols], [Rest|Things]) :-

colours(Bins, Cols, Things).

labeleff([]).

labeleff(L) :-

deleteff(V, L, Rest),

indomain(V),

labeleff(Rest).

Note also that we need a special version of flatten/3 that works with nonground lists.

2.18 Current Known Restrictions and Bugs

1. The default domain for integer finite domain variables is -10000000..10000000. Larger
domains must be stated explicitly using the ::/2 predicate, however neither bound can
be outside the standard integer range for the machine (usually 32 bits).

2. Linear integer terms are processed using machine integers and thus if the maximum or
minimum value of a linear term overflows this range (usually 32 bits), incorrect results
are reported. This may occur if large coefficients are used, if domains are too large or
a combination of the two.
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Chapter 3

The Set Domain Library

Note: As of ECLiPSe release 5.1, the library described in this chapter is being
phased out and replaced by the new set solver library lib(ic sets). See the cor-
responding chapters in the Library Manual and the Reference Manual for details.

Conjunto is a system to solve set constraints over finite set domain terms. It has been
developed using the kernel of ECLiPSe based on metaterms. It contains the finite domain
library of ECLiPSe. The library conjunto.pl implements constraints over set domain terms
that contain herbrand terms as well as ground sets. Modules that use the library must start
with the directive

:- use_module(library(conjunto))

For those who are already familiar with the ECLiPSe constraint library manual this manual
follows the finite domain library structure.

For further information about this library, please email to c.gervet@icparc.ic.ac.uk.

3.1 Terminology

The computation domain of Conjunto is finite so set domain and set term will stand respec-
tively for finite set domain and finite set term in the following. Here are defined some of the
terms mainly used in the predicate description.

Ground set

A known finite set containing only atoms from the Herbrand Universe or its pow-
erset but without any variable.

Set domain

A discrete lattice or powerset D attached to a set variable S. D is defined by
{S ∈ 2lubs | glbs ⊆ S} under inclusion specified by the notation Glbs..Lubs.
Glbs and Lubs represent respectively the intersection and union of elements of D.
Thus they are both ground sets. S is then called a set domain variable.

Weighted set domain
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A specific set domain WD attached to a set variable S where each element of WD
is of the form e(s,w). s is a ground set representing a possible value of the set
variable and w is the weight or cost associated to this value. e.g.

WD = {e(1,50),e({1,3},20)}..{e(1,50),e({1,3},20),e(f(a),100)}.

D would have been:

{1,{1,3}}..{1,{1,3},f(a)}.

Set expression

A composition of set domain variables or ground sets together with set operator
symbols which are the standard ones coming from set theory. S ::= S1 ∩ S2 |
S1 ∪ S2 | S1 \ S2

Set term

Any term of the followings: (1) a ground set, (2) a set domain variable or (3) a
set expression. All set built-in predicates deal with set terms thus with any of the
three cases.

3.2 Syntax

• A ground set is written using the characters { and }, e.g. S = {1,3,{a,g}, f(2)}

• A domain D attached to a set variable is specified by two ground sets : Glbs..Lubs

• Set expressions: Unfortunately the characters representing the usual set operators are
not available on our monitors so we use a specific syntax making the connection with
arithmetic operators:

– ∪ is represented by \/

– ∩ is represented by /\

– \ is represented by \

3.3 The solver

The Conjunto solver acts in a data driven way using a relation between states. The transfor-
mation performs interval reduction over the set domain bounds. The set expression domains
are approximated in terms of the domains of the set variables involved. From a constraint
propagation viewpoint this means that constraints over set expressions can be approximated
in terms of constraints over set variables. A failure is detected in the constraint propagation
phase as soon as one domain lower bound glbs is not included in its associated upper bound
lubs. Once a solved form has been reached all the constraints which are not definitely solved
are delayed and attached to the concerned set variables.

34



3.4 Constraint predicates

?Svar ‘:: ++Glb..++Lub

attaches a domain to the set variable or to a list of set variables Svar. If Glb 6⊆ Lub
it fails. If Svar is already a domain variable its domain will be updated according
to the new domain; if Svar is instantiated it fails. Otherwise if Svar is free it
becomes a set variable.

set(?Term)

succeeds if Term is a ground set.

?S ‘= ?S1

The value of the set term S is equal to the value of the set term S1.

?E in ?S

The element E is an element of S. If E is ground it is added to the lower bound of
the domain of S, otherwise the constraint is delayed. If E is ground and does not
belong to the upper bound of S domain, it fails.

?E notin ?S

The element E does not belong to S. If E is ground it is removed from the upper
bound of S, otherwise the constraint is delayed. If E is ground and belongs to
the upper bound of the domain of S, it is removed from the upper bound and the
constraint is solved. If E is ground and belongs to the lower bound of S domain,
it fails.

?S ‘< ?S1

The value of the set term S is a subset of the value of the set term S1. If the
two terms are ground sets it just checks the inclusion and succeeds or fails. If the
lower bound of the domain of S is not included in the upper bound of S1 domain,
it fails. Otherwise it checks the inclusion over the bounds. The constraint is then
delayed.

?S ‘<> ?S1

The domains of S and S1 are disjoint (intersection empty).

all_union(?Lsets, ?S)

Lsets is a list of set variables or ground sets. S is a set term which is the union
of all these sets. If S is a free variable, it becomes a set variable and its attached
domain is defined from the union of the domains or ground sets in Lsets.

all_disjoint(?Lsets)

Lsets is a list of set variables of ground sets. All the sets are pairwise disjoint.

#(?S,?C)
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S is a set term and C its cardinality. C can be a free variable, a finite domain
variable or an integer. If C is free, this predicate is a mean to access the set
cardinality and attach it to C. If not, the cardinality of S is constrained to be C.

sum_weight(?S,?W)

S is a set variable whose domain is a weighted domain. W is the weight of S. If W
is a free variable, this predicate is a mean to access the set weight and attach it
to W. If not, the weight of S is constrained to be W. e.g.

S ‘:: {e(2,3)}..{e(2,3), e(1,4)}, sum_weight(S, W)

returns W :: 3..7.

refine(?Svar)

If Svar is a set variable, it labels Svar to its first possible domain value. If there
are several instances of Svar, it creates choice points. If Svar is a ground set,
nothing happens. Otherwise it fails.

3.5 Examples

3.5.1 Set domains and interval reasoning

First we give a very simple example to demonstrate the expressiveness of set constraints and
the propagation mechanism.

:- use_module(library(conjunto)).

[eclipse 2]: Car ‘:: {renault} .. {renault, bmw, mercedes, peugeot},

Type_french = {renault, peugeot} , Choice ‘= Car /\ Type_french.

Choice = Choice{{renault} .. {peugeot, renault}}

Car = Car{{renault} .. {bmw, mercedes, peugeot, renault}}

Type_french = {peugeot, renault}

Delayed goals:

inter_s({peugeot, renault}, Car{{renault}..{bmw, mercedes,

peugeot, renault}}, Choice{{renault} .. {peugeot, renault}})

yes.

If now we add one cardinality constraint:

[eclipse 3]: Car ‘:: {renault} .. {renault, bmw, mercedes, peugeot},

Type_french = {renault, peugeot} , Choice ‘= Car /\ Type_french,

#(Choice, 2).

Car = Car{{peugeot, renault} .. {bmw, mercedes, peugeot, renault}}

Type_french = {peugeot, renault}

Choice = {peugeot, renault}

yes.
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The first example gives a set of cars from which we know renault belongs to. The other labels
{renault, bmw, mercedes, peugeot} are possible elements of this set. The Type_french

set is ground and Choice is the set term resulting from the intersection of the first two sets.
The first execution tells us that renault is element of Choice and peugeot might be one. The
intersection constraint is partially satisfied and might be reconsidered if one of the domain of
the set terms involved changes. The cosntraint is delayed.
In the second example an additional constraint restricts the cardinality of Choice to 2. Sat-
isfying this constraint implies setting the Choice set to {peugeot, renault}. The domain
of this set has been modified so is the intersection constraint activated and solved again. The
final result adds peugeot to the Car set variable. The intersection constraint is now satisfied
and removed from the constraint store.

3.5.2 Subset-sum computation with convergent weight

A more elaborate example is a small decision problem. We are given a finite weighted set
and a target t ∈ N . We ask whether there is a subset s′ of S whose weight is t. This also
corresponds to having a single weighted set domain and to look for its value such that its
weight is t.
This problem is NP-complete. It is approximated in Integer Programming using a procedure
which ”trims” a list according to a given parameter. For example, the set variable

S ‘:: {}..{e(a,104), e(b,102), e(c,201) ,e(d,101)}

is approximated by the set variable

S’ ‘:: {}..{e(c,201) ,e(d, 101)}

if the parameter delta is 0.04 (0.04 = 0.2 ÷ n where n = #S).

:- use_module(library(conjunto)).

% Find the optimal solution to the subset-sum problem

solve(S1, Sum) :-

getset(S),

S1 ‘:: {}.. S,

trim(S, S1),

constrain_weight(S1, Sum),

sum_weight(S1, W),

Cost = Sum - W,

min_max(labeling(S1), Cost).

% The set weight has to be less than Sum

constrain_weight(S1, Sum) :-

sum_weight(S1, W),

W #<= Sum.

% Get rid of a set of elements of the set according to a given delta

trim(S, S1) :-

set2list(S, LS),
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trim1(LS, S1).

trim1(LS, S1) :-

sort(2, =<, LS, [E | LSorted]),

getdelta(D),

testsubsumed(D, E, LSorted, S1).

testsubsumed(_, _, [], _).

testsubsumed(D, E, [F | LS], S1) :-

el_weight(E, We),

el_weight(F, Wf),

( We =< (1 - D) * Wf ->

testsubsumed(D, F, LS, S1)

;

F notin S1,

testsubsumed(D, E, LS, S1)

).

% Instantiation procedure

labeling(Sub) :-

set(Sub),!.

labeling(Sub) :-

max_weight(Sub, X),

( X in Sub ; X notin Sub ),

labeling(Sub).

% Some sample data

getset(S) :- S = {e(a,104), e(b,102), e(c,201), e(d,101), e(e,305),

e(f,50), e(g,70),e(h,102)}.

getdelta(0.05).

The approach is is the following: first create the set domain variable(s), here there is only
one which is the set we want to find. We state constraints which limit the weight of the
set. We apply the “trim” heuristics which removes possible elements of the set domain. And
finally we define the cost term as a finite domain used in the min_max/2 predicate. The
cost term is an integer. The conjunto.pl library makes sure that any modification of an
fd term involved with a set term is propagated on the set domain. The labeling procedure
refines a set domain by selecting the element of the set domain which has the biggest weight
using max_weight(Sub, X), and by adding it to the lower bound of the set domain. When
running the example, we get the following result:

[eclipse 3]: solve(S, 550).

Found a solution with cost 44

Found a solution with cost 24

S = {e(d, 101), e(e, 305), e(f, 50), e(g, 70)}

yes.
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An interesting point is that in set based problems, the optimization criteria mainly concern
the cardinality or the weight of a set term. So in practice we just need to label the set
term while applying the fd optimization predicates upon the set cardinality or the set weight.
There is no need to define additional optimization predicates.

3.5.3 The ternary Steiner system of order n

A ternary Steiner system of order n is a set of n ∗ (n − 1) \ 6 triplets of distinct elements
taking their values between 1 and n, such that all the pairs included in two different triplets
are different.

This problem is very well dedicated to be solved using set constraints: (i) no order is required
in the triplet elements and (ii) the constraint of the problem can be easily written with set
constraints saying that any intersection of two set terms contains at most one element. With
a finite domain approach, the list of domain variables which should be distinct requires to be
given explicitely, thus the problem modelling is would be bit ad-hoc and not valid for any n.

:- use_module(library(conjunto)).

% Gives one solution to the ternary steiner problem.

% n has to be congruent to 1 or 3 modulo 6.

steiner(N, LS) :-

make_nbsets(N,NB),

make_domain(N, Domain),

init_sets(NB, Domain, LS),

card_all(LS, 3),

labeling(LS, []).

labeling([], _).

labeling([S | LS], L) :-

refine(S),

(LS = [] ; LS = [L2 | _Rest],

all_distincts([S | L], L2),

labeling(LS, [S | L])).

% the labeled sets are distinct from the set to be labeled

% this constraint is a disjonction so it is useless to put it

% before the labeling as no information would be deduced anyway

all_distincts([], _).

all_distincts([S1 |L], L2) :-

distinctsfrom(S1, L2),

all_distincts(L, L2).

distinctsfrom(S, S1) :-

#(S /\ S1,C),

fd:(C #<= 1).
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% creates the required number of set variables according to n

make_nbsets(N,NB) :-

NB is N * (N-1) // 6.

% initializes the domain of the variables according to n

make_domain(N, Domain) :-

D :: 1.. N,

dom(D, L),

list2set(L, Domain).

init_sets(0, _Domain, []) :- !.

init_sets(NB, Domain, Sol) :-

NB1 is NB-1,

init_sets(NB1, Domain, Sol1),

S ‘:: {} .. Domain,

Sol = [S | Sol1].

% constrains the cardinality of each set variable to be equal to V (=3)

card_all([], _V).

card_all([Set1|LSets], V) :-

#(Set1, V),

card_all(LSets, V).

The approach with sets is the following: first we create the number of set variables required
according to the initial problem definition such that each set variable is a triplet. Then to
initialize the domain of these set variables we use the fd predicates which allow to define a
domain by an implicit enumeration approach 1..n. This process is cleaner than enumerating
a list of integer between 1 and n. Once all the domain variables are created, we constrain
their cardinality to be equal to three. Then starts the labeling procedure where all the sets
are labeled one after the other. Each time one set is labeled, constraints are stated between
the labeled set and the next one to be labeled. This constraint states that two sets have
at most one element in common. The semantics of #(S ∩ S1, C), C ≤ 1 is equivalent to
a disjunction between set values. This implies that in the contraint propagation phase, no
information can be deduced until one of the set is ground and some element has been added
to the second one. No additional heuristics or tricks have been added to this simple example
so it works well for n = 7, 9 but with the value 13 it becomes quite long. When running the
example, we get the following result:

[eclipse 4]: steiner(7, S).

6 backtracks

0.75

S = [{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}]

yes.
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3.6 When to use Set Variables and Constraints...

The subset-sum example shows that the general principle of solving problems using set domain
constraints works just like finite domains:

• Stating the variables and assigning an initial set domain to them.

• Constraining the variables. In the above example the constraint is just a built-in con-
straint but usually one needs to define additional constraints.

• Labeling the variables, i.e., assigning values to them. In the set case it would not
be very efficient to select one value for a set variable for the size of a set domain is
exponential in the upper bound cardinality and thus the number of backtracks could
be exponential too. A second reason is that no specific information can be deduced
from a failure (backtrack) whereas if (like in the refine predicate) we add one by one
elements to the set till it becomes ground or some failure is detected, we benefit much
more from the constraint propagation mechanism. Every domain modification activates
some constraints associated to the variable (depending on the modified bound) and
modifications are propagated to the other variables involved in the constraints. The
search space is then reduced and either the goal succeeds or it fails. In case of failure
the labeling procedure backtracks and removes the last element added to the set variable
and tries to instanciate the variable by adding another element to its lower bound. In
the subset-sum example the labeling only concerns a single set, but it can deal with a
list of set terms like in the steiner example. Although the choice for the element to
be added can be done without specific criterion like in the steiner example, some user
defined heuristics can be embedded in the labeling procedure like in the subset-sum

example. Then the user needs to define his own refine procedure.

Set constraints propose a new modelling of already solved problems or allows (like for the
subset-sum example) to solve new problems using CLP. Therefore, one should take into ac-
count the problem semantics in order to define the initial search space as small as possible
and to make a powerful use of set constraints. The objective of this library is to bring CLP
to bear on graph-theorical problems like the steiner problem which is a hypergraph computa-
tion problem, thus leading to a better specification and solving of problems as, packing and
partitioning which find their application in many real life problems. A partial list includes:
railroad crew scheduling, truck deliveries, airline crew scheduling, tanker-routing, information
retrieval,time tabling problems, location problems, assembly line balancing, political district-
ing,etc.

Sets seem adequate for problems where one is not interested in each element as a specific
individual but in a collection of elements where no specific distinction is made and thus where
symmetries among the element values need to be avoided (eg. steiner problem). They are
also useful when heterogeneous constraints are involved in the problem like weight constraints
combined with some disjointness constraints.

3.7 User-defined constraints

To define constraints based on set domains one needs to access the properties of a set term
like its domain, its cardinality, its possible weight. As the set variable is a metaterm i.e. an
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abstract data structure, some built-in predicates allow the user to process the set variables
and their domains, modify them and write new constraint predicates.

3.7.1 The abstract set data structure

A set domain variable is a metaterm. The conjunto.pl library defines a metaterm attribute
set with [setdom : [Glb,Lub], card: C, weight: W, del_inst: Dinst, del_glb: Dglb,
del_lub: Dlub, del_any: Dany]
This attribute stores information regarding the set domain, its cardinality, and weight (null
if undefined) and together with four suspension lists. The attribute arguments have the
following meaning:

• setdom The representation of the domain itself. As set domains are treated as abstract
data types, the users should not access them directly, but only using built-in access and
modification predicates presented hereafter.

• card The representation of the set cardinality. The cardinality is initialized as soon as
a set domain is attached to a set variable. It is either a finite domain or an integer. It
can be accessed and modified in the same way as set domains (using specific built-in
predicates).

• weight The representation of the set weight. The weight is intialized to zero if the
domain is not a weighted set domain, otherwise it is computed as soon as a weighted
set domain is attached to a set variable. it can be accessed and modified in the same
way as set domains (using specific built-in predicates).

• del_inst A suspension list that should be woken when the domain is reduced to a single
set value.

• del_glb A suspension list that should be woken when the lower bound of the set domain
is updated.

• del_lub a suspension list that should be woken when the upper bound of the set domain
is updated.

• del_any a suspension list that should be woken when any reduction of the domain is
inferred.

The attribute of a set domain variable can be accessed with the predicate svar_attribute/2
or by unification in a matching clause:

get_attribute(_{set: Attr}, A) :- -?-> nonvar(Attr), Attr = A.

The attribute arguments can be accessed by macros from the ECLiPSestructures.pl library,
if e.g. Attr is the attribute of a set domain variable, the del_inst list can be obtained by:

arg(del_inst of set, Attr, Dinst)

or by using a unification:

Attr = set with del_inst: Dinst
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3.7.2 Set Domain access

The domains are represented as abstract data types, and the users are not supposed to access
them directly. So we provide a number of predicates to allow operations on set domains.
set_range(?Svar,?Glb,?Lub)

If Svar is a set domain variable, it returns the lower and upper bounds of its
domain. Otherwise it fails.

glb(?Svar,?Glb)

If Svar is a set domain variable, it returns the lower bound of its domain. Otherwise
it fails.

lub(?Svar, ?Lub)

If Svar is a set domain variable, it returns the upper bound of its domain. Other-
wise it fails.

el_weight(++E, ?We)

If E is element of a weighted domain, it returns the weight associated to E. Oth-
erwise it fails.

max_weight(?Svar,?E)

If Svar is a set variable, it returns the element of its domain which belongs to
the set resulting from the difference of the upper bound and the lower bound and
which has the greatest weight. If Svar is a ground set, it returns the element with
the biggest weight. Otherwise it fails.

Two specific predicates make a link between a ground set and a list.
set2list(++S, ?L)

If S is a ground set, it returns the corresponding list. If L is also ground it checks
if it is the corresponding list. If not, or if S is not ground, it fails.

list2set(++L, ?S)

If L is a ground list, it returns the corresponding set. If S is also ground it checks
if it is the corresponding set. If not, or if L is not ground, it fails.

3.7.3 Set variable modification

A specific predicate operate on the set domain variables. When a set domain is reduced, some
suspension lists have to be scheduled and woken depending on the bound modified.
NOTE: Their are 4 suspension lists in the conjunto.pl library, which are woken precisely
when the event associated with each list occurs. For example, if the lower bound of a set
variable is modified, two suspension lists will be woken: the one associated to a glb modifi-
cation and the one associated to any modification. This allows user-defined constraints to be
handled efficiently.
modify_bound(Ind, ?S, ++Newbound)
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Ind is a flag which should take the value lub or glb, otherwise it fails ! If S is a
ground set, it succeeds if we have Newbound equal to S. If S is a set variable, its
new lower or upper bound will be updated. For monotonicity reasons, domains
can only get reduced. So a new upper bound has to be contained in the old one
and a new lower bound has to contain the old one. Otherwise it fails.

3.8 Example of defining a new constraint

The following example demonstrates how to create a new set constraint. To show that set
inclusion is not restricted to ground herbrand terms we can take the following constraint
which defines lattice inclusion over lattice domains:

S_1 incl S

Assuming that S and S1 are specific set variables of the form

S ‘:: {} ..{{a,b,c},{d,e,f}}, ..., S_1 ‘:: {} ..{{c},{d,f},{g,f}}

we would like to define such a predicate that will be woken as soon as one or both set variables’
domains are updated in such a way that would require updating the other variable’s domain
by propagating the constraint. This constraint definition also shows that if one wants to
iterate over a ground set (set of known elements) the transformation to a list is convenient.
In fact iterations do not suit sets and benefit much more from a list structure. We define the
predicate incl(S,S1) which corresponds to this constraint:

:- use_module(library(conjunto)).

incl(S,S1) :-

set(S),set(S1),

!,

check_incl(S, S1).

incl(S, S1) :-

set(S),

set_range(S1, Glb1, Lub1),

!,

check_incl(S, Lub1),

S + Glb1 ‘= S1NewGlb,

modify_bound(glb, S1, S1NewGlb).

incl(S, S1) :-

set(S1),

set_range(S, Glb, Lub),

!,

check_incl(Glb, S1),

large_inter(S1, Lub, SNewLub),

modify_bound(lub, S, SNewLub).

incl(S,S1) :-

set_range(S, Glb, Lub),

set_range(S1, Glb1, Lub1),

check_incl(Glb, Lub1),
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Glb \/ Glb1 ‘= S1NewGlb,

large_inter(Lub, Lub1, SNewLub),

modify_bound(glb, S1, S1NewGlb),

modify_bound(lub, S, SNewLub),

( (set(S) ; set(S1)) ->

true

;

make_suspension(incl(S, S1),2, Susp),

insert_suspension([S,S1], Susp, del_any of set, set)

),

wake.

large_inter(Lub, Lub1, NewLub) :-

set2list(Lub, Llub),

set2list(Lub1, Llub1),

largeinter(Llub, Llub1, LNewLub),

list2set(LNewLub, NewLub).

largeinter([], _, []).

largeinter([S | List_set], Lub1, Snew) :-

largeinter(List_set, Lub1, Snew1),

( contained(S, Lub1) ->

Snew = [S | Snew1]

;

Snew = Snew1

).

check_incl({}, _S) :-!.

check_incl(Glb, Lub1) :-

set2list(Glb, Lsets),

set2list(Lub1, Lsets1),

all_union(Lsets, Union),

all_union(Lsets1, Union1),

Union ‘< Union1,!,

checkincl(Lsets,Lsets1).

checkincl([], _Lsets1).

checkincl([S | Lsets],Lsets1):-

contained(S, Lsets1),

checkincl(Lsets,Lsets1).

contained(_S, []) :- fail,!.

contained(S, [Ss | Lsets1]) :-

(S ‘< Ss ->

true

;

contained(S, Lsets1)

).
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The execution of this constraint is dynamic, i.e., the predicate incl/2 is called and woken
following the following steps:

• We check if the two set variables are ground set. If so we just check deterministically if
the first one is included (lattice inclusion) in the second one check_incl. This predicate
checks that any element of a ground set (which is a set itself in this case) is a subset of
at least one element of the second set. If not it fails.

• We check if the first set is ground and the second is a set domain variable. If so,
check_incl is called over the first ground set and the upper bound of the second set. If
it succeeds then the lower bound of the set variable might not be consistent any more,
we compute the new lower bound (i.e., adding elements from the ground set in it (by
using the union predicate) and we modify the bound modify_bound. This predicate
also wakes all concerned suspension lists and instantiates the set variable if its domain
is reduced to a single set (upper bound = lower bound).

• We check if the second set is ground and the first one is a set variable. If so, check_incl
is called over the lower bound of the first set and the second ground set. If it succeeds
then the upper bound of the set variable might not be consistent any more. The new
upper bound is computed by intersecting the first set with the upper bound of the set
variable in the lattice acceptation large_inter and is updated modify_bound.

• we check if both set variables are domain variables. If so the lower bound of the first set
should be included in the lattice sense in the upper bound of the second one check/incl.
If it succeeds, then if the lower bound the second set is no more consistent we compute
the new one by making the union with first sec lower bound. In the same way, the upper
bound of the first set might not be consistent any more. If so, we compute the new one
by intersecting (in the lattice acceptation) the both upper bounds to compute the new
upper bound of the first set large_inter. The upper bound of the first set variable is
updated as well as the lower bound of the second set modify_bound.

• After checking all these updates, we test if the constraint implies an instanciation of
one of the two sets. If this is not the case, we have to suspend the predicate so that
it is woken as soon as any bound of either set domain is changed. The predicate
make_suspension/3 can be used for any ECLiPSe module based on a meta-term struc-
ture. It creates a suspension, and then the predicate insert_suspension/4, puts this
suspension into the appropriate lists (woken when any bound is updated) of both set
variables.

• the last action wake triggers the execution of all goals that are waiting for the updates we
have made. These goals should be woken after inserting the new suspension, otherwise
the new updates coming from these woken goals won’t be propagated on this constraint
!

3.9 Set Domain output

The library conjunto.pl contains output macros which print a set variable as well as a ground
set respectively as an interval of sets or a set. The setdom attribute of a set domain variable
(metaterm) is printed in the simplified form of just the glb..lub interval, e.g.
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[eclipse 2]: S ‘:: {}..{a,v,c}, svar_attribute(S,A), A = set with setdom : D.

S = S{{} .. {a, c, v}}

A = {} .. {a, c, v}

D = [{}, {a, c, v}]

yes.

3.10 Debugger

The ECLiPSe debugger which supports debugging and tracing of finite domain programs in
various ways, can just be used the same way for set domain programs. No specific set domain
debugger has been implemented for this release.
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Chapter 4

RANGE: A Basis For Numeric
Solvers

4.1 Introduction

This library implements variables that range over integer or real intervals. It is largely
supseded by the IC library, which should be preferred. However, the eplex library by de-
fault still uses the range library to represent its variable bounds.

4.2 Usage

Load the library by using

:- lib(range).

You will need ECLiPSe version 3.5.1 or higher.

4.3 Library Predicates

4.3.1 Constraints

4.3.1.1 Vars :: Lo..Hi

Logically: Constrain a variable (or all variables in a list) to take only integer or real values in
a given range. The type of the bounds determines the type of the variable (real or integer).
Also allowed are the (untyped) symbolic bound values inf, +inf and -inf. For instance

X :: 0..1 % boolean

X :: -1..5 % integer between -1 and 5

X :: 1..inf % strictly positive integer

X :: 0.0..10.0 % real between 0.0 and 10.0

X :: 1.5..3.7 % real between 1.5 and 3.7

X :: 0.0..inf % positive real

X :: 0.0..5 % TYPE ERROR

Operationally, the range and type information is immediately stored into the variable’s at-
tribute.
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4.3.1.2 reals(Vars)

The domain of the variables is the real numbers. This is the default, so the declaration
is optional. real(X) is equivalent to X :: -inf..inf. Mathematical Programming style
nonnegative variables are best declared as X :: 0.0..inf.

Note that the notion of real numbers is used here in the pure mathematical sense, where real
numbers subsume the integers. A variable of type real can therefore be instantated to either
a floating point or an integer number.

4.3.1.3 integers(Vars)

Constrain the variables to integer values. Note that this declaration is implicit when speci-
fiying an integer range, e.g. in Y :: 0..99.

4.3.1.4 lwb(?Var, +Bound)

Constrain the variable to be greater or equal to the specified lower bound. A bound update
on a variable may fail (when the update empties the domain), succeed (possibly updating
the variable’s bounds), or instantiate the variable (in case the domain get restricted to a
singleton value). Note that if the variable’s type is integer, its bounds will always be adjusted
to integral values.

Important hint: If the bound is indeed modified, this predicate will invoke sched-
ule suspensions/2 for the corresponding suspension list. This will only schedule the delayed
suspensions for execution, but not actually execute them. The caller therefore has to invoke
wake/0 (the woken goal scheduler) at an appropriate point in the subsequent execution.

4.3.1.5 upb(?Var, +Bound)

As above, but constrains the variable to be less or equal to the specified upper bound.

4.3.1.6 Examples

Every new constraint on a variable is immediately reflected in the range:

[eclipse 2]: X::0.0..9.5, lwb(X,4.5).

X = X{4.5 .. 9.5}

yes.

[eclipse 3]: X::0.0..9.5, lwb(X,4.5), integers([X]).

X = X{5 .. 9}

yes.

[eclipse 4]: X::0.0..9.5, lwb(X,4.5), integers([X]), upb(X,5.9).

X = 5

yes.

[eclipse 5]: X::0.0..9.5, lwb(X,4.5), upb(X,4.3).

no (more) solution.
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4.3.2 Retrieving Domain Information

4.3.2.1 var range(?Var, -Lo, -Hi)

Retrieve the current range of a variable (or number). Lo and Hi return the minimum and
maximum (respectively) of the variable’s range in floating point format (regardless of the
variable’s type). If Var has not been declared before, it will be turned into an unrestricted
real variable. If Var is a number, that number will be returned as both Lo and Hi.

4.3.2.2 var type(?Var, -Type)

Retrieve the type (’real’ or ’integer’) of a variable (or number).

4.3.3 Auxliliary Predicates

4.3.3.1 range msg(?Var1, ?Var2, ?Var3)

The most specific generalisation of two ranges is computed and returned as Var3. Var3 will
range over the smallest interval enclosing the input ranges, and have the more general type
of the input types.

4.3.3.2 print range(?Var, -Range)

Returns the variable’s range in a form that would be acceptable to ::/2, ie. as a Lo..Hi
structure, encoding the variable’s type in the type of the bounds.

4.3.3.3 set range bounds(?Var, +Lo, +Hi)

Imposes lower and upper bounds on the variable (a combination of lwb/2, upb/2 and wake/0).
This is the set bounds-handler (see below).

4.3.4 Handlers

The library installs the following handlers (cf. ECLiPSeUser Manual) in order to implement
the semantics of ranged variables:

unify Unification between two variables amounts to intersecting their ranges and taking the
more restrictive type as the result type. If the intersection is empty, the unification
fails. Unifying a variable with a number involves a check whether the number is within
the variable’s range and of the proper type, otherwise failure occurs.

test unify like unify.

compare instances A range variable is an instance of another when its range is subsumed
by the other range.

copy term Range and type are copied, delayed goals are not.

suspensions, delayed goals number Considers the goals in the two attached suspension
lists.

get bounds get the variable’s bounds, the handler is var range/3.
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set bounds set the variable’s bounds, the handler is set range bounds/3.

print Ranges are printed using print range/2.

Due to the handlers, Unification and instance test take the ranges into account:

[eclipse 6]: X::0.0..5.5, Y::3..8, X=Y.

X = X{3 .. 5}

Y = X{3 .. 5}

yes.

[eclipse 8]: X::0.0..5.5, Y::3..8, instance(X,Y).

no (more) solution.

[eclipse 9]: X::0.0..5.5, Y::3..5, instance(Y,X).

Y = Y{3 .. 5}

X = X{0.0 .. 5.5}

yes.

4.4 Attribute Structure

Ranged variables are implemented as attributed variables. The attribute contains the fol-
lowing fields:

type specifies the variable type, either integer or real.

lo the smallest value the variable can assume

hi the largest value the variable can assume

wake lo list of goals to be woken on lower bound change

wake hi list of goals to be woken on upper bound change

Type and bounds are accessed through the predicates described above. Goals can be delayed
on the waking lists using the suspend/3 predicate, for example:

[eclipse 13]: X::0.0..5.5, suspend(writeln(change), 3, X->wake_lo), lwb(X,1).

change

X = X{1.0 .. 5.5}

yes.

4.5 Writing Higher Level Constraints

The following example can be taken as a scheme for how to write constraints on top of the
facilities of this library. It is a greater-equal constraint for two variables:

ge(X, Y) :- % woken on change of bounds

var_range(X, _, XH),

var_range(Y, YL, _),

( var(X),var(Y) ->

suspend(ge(X,Y), 3, [X->wake_hi, Y->wake_lo])
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;

true),

lwb(X, YL), upb(Y, XH), % impose new bounds

wake. % execute woken goals here

The constraint wakes when either the upper bound of X or the lower bound of Y changes, and
imposes the consequences onto the other variable. When lwb/2 and upb/2 cause further bound
changes, that may wake other goals (ie. they have the effect of schedule suspensions/2)
and we therefore have to invoke the waking scheduler wake/0 afterwards.
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Chapter 5

RIA: ECLiPSe Real Number
Interval Arithmetic

5.1 Introduction

5.1.1 What Ria does

The Ria library solves constraint problems over the reals. It is not limited to linear constraints.
So it can be used to solve general problems like:

[eclipse 2]: ria:(ln(X) >= sin(X)).

X = X{0.36787944117144233 .. Infinity}

yes.

The Ria library has two different algorithms built in. The default one is arc-consistency and
is quite cheap, the other provides a stronger consistency but is slower.

Both algorithms work on the same data representation. That is real numbers in a closed
range between (and including) two floats. The library will reduce this range if possible. It
never gets as far as reducing a variable to a single float.

5.1.2 Usage

Load the library by using

:- lib(ria).

5.1.3 History

This work was triggered by the work of Slava Zilberfaine from the Novosibirsk Institute
of Informatics Systems on an interface between ECLiPSe and Unicalc. A subset of this
functionality was later provided as lib(ria), which does not share any code with Unicalc.
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5.2 Library Predicates

5.2.1 Ranged and Typed Variables

Vars :: Lo..Hi Logically: Constrain a variable (or all variables in a list) to take values
between and including Lo and Hi. The type of the bounds determines the type of the
variable (real or integer). It is possible to use the bounds -inf (or -1.0Inf) and -inf

(or 1.0Inf) to represent infinities. This is the default range used for variables where no
range has been declared.

Operationally: This information is immediately stored into the variable’s attribute. The
bounds are also widened by one float below and above to ensure the bounds are included
in the range.

reals(Vars) Equivalent to Vars :: -inf..inf

integers(Vars) The given variables can only take integer values.

5.2.2 Constraints

ria:(ExprX =:= ExprY) ExprX is equal to ExprY. ExprX and ExprY are general expres-
sions.

ria:(ExprX >= ExprY) ExprX is greater or equal to ExprY. ExprX and ExprY are general
expressions.

ria:(ExprX =< ExprY) ExprX is less or equal to ExprY. ExprX and ExprY are general
expressions.

ExprX #= ExprY ExprX is equal to ExprY. ExprX and ExprY are general expressions,
with the variables constrained to be integers.

ExprX #>= ExprY ExprX is greater or equal to ExprY. ExprX and ExprY are general
expressions, with the variables constrained to be integers.

ExprX #=< ExprY ExprX is less or equal to ExprY. ExprX and ExprY are general ex-
pressions, with the variables constrained to be integers.

ExprX #> ExprY ExprX is less than ExprY. ExprX and ExprY are general expressions,
with the variables constrained to be integers. ExprX is considered equal to ExprY if
their values differ by less than 1.

ExprX #< ExprY ExprX is greater than ExprY. ExprX and ExprY are general expres-
sions, with the variables constrained to be integers. ExprX is considered equal to ExprY
if their values differ by less than 1.

Var iis SimpleExpr This is the simple, uni-directional constraint that is used by the solver
to rewrite all other constraints. It is not meant for use inside a program, but it shows
up among the delayed goals.

The comparison constraints >=/2, =</2, and =:=/2 have the same syntax as their standard
ECLiPSe built-in comparison operators. This ambiguity can be resolved if the user explicitly
qualify which is wanted:
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ria:(A =:= B), % use ria’s =:=/2

eclipse_language: (A =:= B), % use the ECLiPSe built-in

Alternatively, the user can explicitly import the version needed before the first use:

:- import (>=) / 2, (=<) / 2, (=:=) / 2 from ria.

use(X, Y) :-

X >= Y. % this will use ria’s >=/2

If none of the above are done and the user uses the operator unqualified, ECLiPSe will resolve
the ambiguity by importing the built-in version on first use.

5.2.3 Arithmetic Expressions

The following arithmetic expression can be used inside the constraints:

X Variables. If X is not yet a ranged variable, it is turned into one via an implicit declaration
X :: -inf..inf.

123 Integer constants. They are assumed to be exact and are used as is.

0.1 Floating point constants. They are assumed to be inexact and are widened into a narrow
interval that is guaranteed to contain the true value.

exact(0.5) Sometimes the programmer knows that a floating point constant is exact or
meant to be taken literally. In that case, use this form.

pi, e Intervals enclosing the constants pi and e respectively.

inf Floating point infinity.

+Expr Identity.

-Expr Sign change.

+-Expr Expr or -Expr. The result is an interval enclosing both.

abs(Expr) The absolute value of Expr.

E1+E2 Addition.

E1-E2 Subtraction.

E1*E2 Multiplication.

E1/E2 Division.

E1 ∧E2 Exponentiation.

min(E1,E2) Minimum.
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max(E1,E2) Maximum.

sqr(Expr) Square. Logically equivalent to Expr*Expr, but with better operational be-
haviour.

sqrt(Expr) Square root (always positive).

exp(Expr) Same as e ∧Expr.

ln(Expr) Natural logarithm, the reverse of the exp function.

sin(Expr) Sine.

cos(Expr) Cosine.

atan(Expr) Arcus tangens.

rsqr(Expr) Reverse of the sqr function. The same as +-sqrt(Expr).

rpow(Expr,N) Reverse of Expr ∧N, where N is an integer constant.

(E1;E2) E1 or E2. Operationally, this computes the union of two intervals.

sub(Expr) A subinterval of Expr.

5.2.4 Solving by Interval Propagation

Some problems can be solved just by interval propagation, for example:

[eclipse 9]: X :: 0.0..100.0, ria:(sqr(X) =:= 7-X).

X = X{2.1925824014821349 .. 2.1925824127108311}

Delayed goals:

...

yes.

There are two things to note here:

• The solver never instantiates real-variables. They only get reduced to narrow ranges.

• In general, many delayed goals remain at the end of propagation. This reflects the
fact that the variable’s ranges could possibly be further reduced later on during the
computation. It also reflects he fact that

• the solver does not guarantee the existence of solutions in the computed ranges. How-
ever, it guarantees that there are no solutions outside these ranges.

Note that, since variables by default range from minus to plus infinity, we could have written
the above example as:
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[eclipse 2]: ria:(sqr(X) =:= 7-X), ria:(X >= 0).

X = X{2.1925824014821349 .. 2.1925824127108311}

Delayed goals:

...

yes.

If too little information is given, the interval propagation may not be able to infer any inter-
esting bounds:

[eclipse 2]: ria:(sqr(X) =:= 7-X).

X = X{-1.0Inf .. 7.0000000000000009}

Delayed goals:

...

yes.

5.2.5 Reducing Ranges Further

There are two methods for further domain reduction. They both rely on search and splitting
the domains. There are 2 parameters to specify how domains are to be split.

The Precision parameter is used to specify the minimum required precision, i.e. the maximum
size of the resulting intervals. Note that the arc-propagation threshold needs to be one or
several orders of magnitude smaller than precision, otherwise the solver may not be able to
achieve the required precision.

The lin/log parameter guides the way domains are split. If it is set to lin then the split is
in the arithmetic middle. If it is set to log, the split is such as to have the same number of
floats to either side of the split. This is to take the logarithmic distribution of the floats into
account.

If the ranges of variables at the start of the squashing algorithm are known not to span several
orders of magnitude (|max| < 10 ∗ |min|) the somewhat cheaper linear splitting may be used.
In general, log splitting is recommended.

locate(+Vars, +Precision)

locate(+Vars, +Precision, +lin/log) Locate solution intervals for the given variables
with the required precision. This works well if the problem has a finite number of
solutions. locate/2,3 work by nondeterministically splitting the ranges of the variables
until they are narrower than Precision.

squash(+Vars, +Precision, +lin/log) Use the squash algorithm (section 5.3.3) on these
variables. This is a deterministic reduction of the ranges of variables, done by searching
for domain restrictions which cause failure, and then reducing the domain to the comple-
ment of that which caused the failure. This algorithm is appropriate when the problem
has continuous solution ranges (where locate would return many adjacent solutions).
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locate(+LocateVars,+SquashVars,+Precision,+lin/log) A variant of locate/2,3 with
interleaved squashing: The squash algorithm (section 5.3.3) is applied once to the
SquashVars initially, and then again after each splitting step, ie. each time one of
the LocateVars has been split nondeterministically. A variable may occur both in Lo-
cateVars and SquashVars.

5.2.6 Setting the Arc-Propagation Threshold

Limiting the amount of propagation is important for efficiency. A higher threshold speeds up
computations, but reduces precision and may in the extreme case prevent the system from
being able to locate individual solutions.

set threshold(+Threshold) Set the threshold to Threshold which is a small floating-point
number. This means any propagation which results in a domain reduction smaller than
Threshold will not be executed. The default is 1e-8.

get threshold(-Threshold) Read the current threshold.

5.2.7 Obtaining Solver Statistics

Often it is difficult to know where the solver spends its time. The library has built-in counters
which keep track of

• Propagation steps (prop)

• Domain splits in locate/2,3,4 (split)

• Attempts to bound reduction in squash/3 or locate/4 (squash)

The counters are controlled using the primitive

ria stat(on)

ria stat(off) Enables/disable collection of statistics. Default is off.

ria stat(reset) Reset statistics counters.

ria stat(-Stat) Returns a list of CounterName=CounterValue pairs, summarising the com-
putation since the last reset.

ria stat(print) Print statistics counters.

5.3 The Ria library algorithms

5.3.1 Arc consistency

Ria uses an arc consistency propagation algorithm. This terminates when all arcs are consis-
tent, i.e. when for each variable, setting it to a value outside it’s range would violate at least
one constraint.

In a preprocessing step complex constraints are broken up into simple directed constraints.
If necessary, auxiliary variables are introduced. For example:
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X * (Y+Z) = 1

rewrites into

Aux iis Y + Z,

Z iis Aux - Y,

Y iis Aux - Z,

X iis 1 / Aux,

Aux iis 1 / X

Changes in the ranges of the input variables (right hand side) trigger the constraints to
recompute the range for the output variable (left hand side).

At any time several constraints may be triggered. A heuristic favouring constraints that
have been succesful at trimming variable ranges in the past is used for selection of the next
constraint to compute.

5.3.2 Arc consistency threshold

If the execution of a constraint, restricts the range of a variable by a quantity less than the
propagation threshold, this restriction is simply not applied. This terminates propagation
early and prevents almost infinite loops of ever tinier propagations on ill-behaved problems.
For example:

[eclipse 17]: set_threshold(1e-3).

yes.

[eclipse 18]: ria:(sin(X) =:= X).

X = X{-0.18143335721992979 .. 0.18143335721992984}

yes.

[eclipse 19]: Y is 0.18143335721992981 - sin(0.18143335721992981).

Y = 0.00099376872589851394

yes.

For small X X and sin(X) are almost identical, the library in this case will have made two
variables and two directed constraints out of the above example.

These are:

sin(X) -> S

arcsin(S) -> X

Since each propagation only makes tiny differences to the domains of S and X the algorithm
stops.

Intuitively this slowly convergent behaviour happens when the solution is a point where two
curves meet at a tangent.
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Figure 5.1: Propagation with Squash algorithm (example)

5.3.3 Squash algorithm

A stronger propagation algorithm is also included. This is built upon the normal arc consis-
tency. It guarantees that, if you take any variable and restrict its range to a small domain near
one of its bounds, the original arc consistency solver will not find any constraint unsatisfied.
All points (X,Y) Y >= X, lying within the intersection of 2 circles with radius 2, one centred
at (0,0) the other at (1,1).

[eclipse 29]: ria:(4 >= X^2 + Y^2), ria:(4 >= (X-1)^2+(Y-1)^2), ria:(Y >= X).

Y = Y{-1.0000000000000016 .. 2.0000000000000013}

X = X{-1.0000000000000016 .. 2.0000000000000013}

yes.

The arc-consistency solution does not take into account the X >= Y constraint. Intuitively
this is because it passes through the corners of the box denoting the solution to the problem
of simply intersecting the two circles.

[eclipse 29]: ria:(4 >= X^2 + Y^2), ria:(4 >= (X-1)^2+(Y-1)^2),

ria:(Y >= X), squash([X,Y],1e-5,lin).

X = X{-1.0000000000000016 .. 1.4142135999632603}

Y = Y{-0.41421359996326074 .. 2.0000000000000013}

yes.
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Chapter 6

Porting to Standalone Eplex

Since ECLiPSe version 5.7, standalone eplex have become the standard eplex, loaded with
lib(eplex). The previous lib(eplex), which loads eplex with the range bounds keeper, can
still for the moment be loaded with lib(range_eplex), and the IC variant can still be loaded
with lib(ic_eplex). However, we strongly recommend that users move to using standalone
eplex, as we plan to phase out the older variants.
There are some differences at the source level between standalone and the older non-standalone
eplex. This chapter outlines these differences to help users to port their existing code to
standalone eplex.

6.1 Differences between Standalone Eplex and Older Non-
Standalone Eplex

The main difference between the standalone eplex and the non-standalone eplex is that the
standalone version does not use an ECLiPSe ‘bounds keeper’ like lib(ic) or lib(range) to
provide the ranges for the problem variables. Instead, ranges for variables are treated like
another type of eplex constraint, i.e., they are posted to an eplex instance, and are stored
with the external solver state.
In the non-standalone eplex, the bounds of all problem variables are transferred from the
bounds keeper to the external solver each time the solver is invoked, regardless of if the
bounds for the variables have changed or not since the last invocation. This can become
very expensive if a problem has many variables. With the standalone eplex, this overhead
is avoided as the external solver bounds for variables are only updated if they are explicitly
changed. A possible inconvenience is that for hybrid programming, where eplex is being used
with another ECLiPSe solver, any bound updates due to inferences made by the ECLiPSe

solver are not automatically transferred to the external solver. This can be an advantage in
that it leaves the programmer the freedom of when and how these bound changes should be
transferred to the external solver.
The main user visible differences with the non-standalone eplex are:

• Bounds constraints intended for an eplex instance should be posted to that instance,
e.g.
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[eclipse 3]: eplex_instance(instance).

...

[eclipse 4]: instance: eplex_solver_setup(min(X)),

instance: (X:: 0.0..10.0), instance: eplex_solve(C).

X = X{0.0 .. 10.0 @ 0.0}

C = 0.0

Yes (0.00s cpu)

The ::/2 ($::/2) constraints are treated like other eplex constraints, that is, the bounds
for the variables are specific to their eplex instance. Other eplex instances (and indeed
any other bounds-keeping solver) can have different and even incompatible bounds set
for the same variable. Also, if the variable(s) do not already occur in the eplex instance,
they will be added. Both of these are different from the non-standalone eplex, where
bound constraints were treated separately from the eplex constraints.

Like other eplex constraints, inconsistency within the same eplex instance will lead to
failure, i.e. if the upper bound of a variable becomes smaller than its lower bound, this
will result in failure, either immediately or when the solver is invoked.

One potential problem is that with the non-standalone eplex, the bound keeper’s ::/2
was re-exported through the eplex module (but not through the eplex instances). One
was able to write eplex: (X :: 1.0..2.0) and affect the bounds of the variable for
all instances, even though this was not posting a constraint to any eplex instance. With
the standalone eplex, the same code, eplex: (X :: 1.0..2.0) has different semantics
and is a constraint for the eplex instance eplex only.

A variable never becomes ground as a result of an eplex instance bound constraint, even
when the upper and lower bounds are identical.

Posting eplex arithmetic constraints involving one variable is the same as posting a
bounds constraint. Unlike the non-standalone eplex, the variable will be added to the
eplex instance even if it does not occur in any other constraints.

No propagation of the bounds is performed at the ECLiPSe level: the bounds are simply
passed on to the external solver. In general, the external solver also does not do any
bounds propagation that may be implied by the other constraints in the eplex instance.

Note that the generic get var bounds/3 and set var bounds/3 applies to all the
eplex instances/solver states. If these predicates are called, then failure will occur if the
bounds are inconsistent between the eplex instances.

• integers/1 only indicates that a variable should be treated as an integer by the external
solver in the eplex instance, but does not impose the integer type on the variable.

• If a bounds keeper like lib(ic) is loaded, then any bounds constraints posted to this
solver are not automatically visible to the eplex instances. Instead, the bounds can be
transferred explicitly by the user (e.g. by calling the eplex instance bounds constraints
when the bounds in the solver changes). To allow for more compatibility with the
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other versions of eplex, the sync_bounds(yes) option can be specified during solver
setup (using eplex solver setup/4). This will ‘synchronise’ the bounds of all prob-
lem variables when the external solver is invoked, by calling get_var_bounds/3 for all
problem variables. Note that it is the generic get bounds handler that is called. For
compatibility, sync_bounds(yes) is also a valid option now for lib(range_eplex) and
lib(ic_eplex).

• When a demon solver is invoked, the update to the objective variable is via an up-
date to its bounds. In the standalone eplex, this is done by calling the generic
set_var_bounds/3. However, if there are no bounds on this variable, the update will
be lost. A warning is given during the setup of the demon if the objective variable has
no bounds.

One possible solution is to add the objective variable to the problem (e.g. by giving
it bounds for the eplex instance). However, this can induce extra ‘self-waking’ that
needlessly invokes the solver (e.g. if the bounds trigger option is used). Another solution
is to add bounds to the variable via some other bounds keeper, e.g. lib(ic). Note
that it is always possible to retrieve the objective value via the objective option of
eplex get/2.

• When a constraint is posted to an eplex instance after solver setup, that constraint is
immediately added to the external solver, rather than only ‘collected’ by the external
solver when it is invoked.

• The solver setup predicates have been simplified in that the suspension priority is
no longer specified via an argument, so these predicates have one less argument:
eplex solver setup/4, lp demon setup/5 Instead, the priority can be specified as
an option, if required. The older predicates with the priority argument are still available
for compatibility purposes.

• eplex get/2 and lp get/3 now has an extra option: standalone which returns the
value yes for standalone eplex and no otherwise.

• The order in which variables are passed to the external solver has changed. Also,
with standalone eplex there may be more variables in the problem. This should not be
visible to the user, except when examining a problem written out by the external solver.
This makes it difficult to compare problems generated using standalone eplex and non-
standalone eplex. Using the use_var_names(yes) options in setup should make this
somewhat easier as the variables would have the same names.
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Chapter 7

FDPLEX: A Hybrid Finite Domain
/ Simplex Solver

7.1 Motivation

Finite Domain Constraint Propagation and Integer Programming are two methods to solve
and optimize systems of linear inequations over discrete domains. Experiments show that no
one method has a general advantage over the other. Is seems rather that there are problems
that are particularly well suited to either one or the other approach, owing to their different
characteristics. But even different instances of the same problem can exhibit very different
behaviours, which can make it impossible to chose the “most suitable” solver for a particular
application.
These observations prompted the development of this library: It implements a hybrid solver
based on cooperation between the ECLiPSe finite domain solver lib(fd) and the ECLiPSe

external Simplex/MIP solver interface lib(eplex). The basic idea is to have the programmable
control provided within ECLiPSe, the incremental bound propagation achieved by the finite
domain solver, and the global reasoning that is done by the simplex solver.

7.2 Usage

Many programs written for lib(fd) should run unchanged with lib(fdplex). The library is
loaded using

:- lib(fdplex).

This will automatically load both the fd and the eplex library as well.
Note that this library is provided as source code. It really implements only one example of a
solver cooperation. It is expected that users will modify the library to suit the special needs
of the particular application.

7.3 Functionality

The library redefines the basic finite-domain constraints and the search primitives minimize/2,
min max/2, indomain/1 and labeling/1 with versions that setup and trigger the simplex solver
(on a relaxed continuous problem) in appropriate places. In more detail:
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1. During constraint setup, the constraints are posted literally to the fd-library and their
relaxed form is posted to the eplex-library.

2. At the beginning of the refedined minimize/2 or min max/2, a corresponding LP-solver-
demon is set up and the relaxation is solved once.

3. Then the normal FD branch-and-bound procedure is started, using the user-supplied
labeling routine.

4. The modified version of indomain/1 employs a value-selection strategy based on the
solution of the LP-relaxation: The variable is first labeled with the integer which is
closest to the floating-point solution. On backtracking, the rest of the domain is tried.

5. Variable instantiation (or, optionally, interval narrowing) can trigger the LP-solver:
When a variable takes a value that is not close enough to the solution of the relaxation
(or, optionally, when the narrowed interval excludes the solution of the relaxation), the
solver is re-invoked. It computes a new solution, taking into account the current variable
values and bounds.

The benefits from solver cooperation are:

• Infeasibility of the relaxed problem can prune the search.

• The cost of the relaxed solution is a lower bound to the cost of every integer solu-
tion. This cost bound is imposed as an additional constraint, and can thus cause
FD-propagation and prune the search.

• The solution to the relaxed problem can be used as a labeling heuristics, hopefully
leading to solution earlier.

7.3.1 FDPLEX Constraints

Several integer arithmetic constraints common to both eplex and fd can be passed to these
two solvers via fdplex. The relaxed constraint is passed to the eplex solver.

7.3.1.1 fdplex: (?Vars :: ++Lo..++Hi)

Set Vars to the integer range Lo..Hi for both the range and fd attributes.

7.3.1.2 fdplex: (?Vars #:: ++Lo..++Hi)

Set Vars to the integer range Lo..Hi for both the range and fd attributes.

7.3.1.3 fdplex: (?T1 #= ?T2)

Constrains the linear term T1 to be equal to the linear term T2. The constraint is given to
both the fd solver (in its complete form) and to th eplex solver (in relaxed form).

7.3.1.4 fdplex: (?T1 #>= ?T2)

Constrains the linear term T1 to be greater than or equal to the linear term T2. The constraint
is given to both the fd solver (in its complete form) and to th eplex solver (in relaxed form).
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7.3.1.5 fdplex: (?T1 #=< ?T2)

Constrains the linear term T1 to be less than or equal to the linear term T2. The constraint
is given to both the fd solver (in its complete form) and to th eplex solver (in relaxed form).

7.3.1.6 fdplex: (?T1 #> ?T2)

Constrains the linear term T1 to be greater than the linear term T2. The constraint is given
to both the fd solver (in its complete form) and to th eplex solver (in relaxed form).

7.3.1.7 fdplex: (?T1 #< ?T2)

Constrains the linear term T1 to be less than than the linear term T2. The constraint is given
to both the fd solver (in its complete form) and to th eplex solver (in relaxed form).

7.4 Search Predicates

7.4.0.8 minimize(+Goal, +Expr) and min max(+Goal, +Expr)

These are variants of the minimize/2 and min max/2 predicates from the fd-library. They
differ in that they set up a cooperating simplex solver prior to entering the branch-and-bound
search.

7.4.0.9 indomain(+Var)

A variant of indomain/1 with modified value order: The integer that is closest to the relaxed-
problem solution is chosen first.

7.4.0.10 labeling(+VarList)

A labeling routine using the modified indomain/1.

7.4.0.11 split domain(+Var)

An alternative labeling primitive. It splits the variable’s domain at the value suggested by
the relaxed solution.

7.4.0.12 split labeling(+VarList)

A labeling routine using split domain/1 instead of indomain/1.

7.4.0.13 fdplex statistics([Backtracks, SolverCalls, SolverFails, SolverBound])

Returns a list of counters giving information about the most recent invocation of mini-
mize/min max. Backtracks is the number of times indomain/1. has generated an alter-
native value. SolverCalls is the number of times the simplex solver was invoked. SolverFails
counts how often the simplex detected infeasibility and SolverBound is the number of sim-
plex solutions that were able to increase the lower cost bound. The difference SolverCalls-
(SolverFails+SolverBound) represents the number of ’useless’ simplex invocations, in the sense
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that these invocations didn’t affect the search space. However, they might still have improved
the labeling heuristics.
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