Theoretical Foundations of Logic Programming

Mirosław Truszczynski

Department of Computer Science
University of Kentucky

July 24-27, 2008
Introduction
Logic programming

What is it?

- Declarative programming formalism
- Knowledge representation formalism

Two facets

- Prolog
- Answer-set programming
## Logic programming

### What is it?

- Declarative programming formalizm
- Knowledge representation formalizm

### Two facets

- Prolog
- Answer-set programming
My goal

To present foundations of LP

- Focus on negation and its semantics
Overview

Roughly ...

- Basic syntax and semantics
- Horn logic programming — basis for Prolog (briefly)
- The need for negation
- Semantics of negation (supported, stable, Kripke-Kleene, well-founded)
- Properties of semantica (completion, Fages Lemma, loop theorem, equivalence)
- More general settings (logic HT, algebra)
- (Some) proofs
## Some logic terminology

### Language

- **Constant, variable, function** and **predicate** symbols
- **Terms**: strings built recursively from constant, variable and function symbols
  - $c$, $X$, $f(c, X)$, $f(f(c, X), f(X, f(X, c)))$
- **Atoms**: built of predicate symbols and terms
  - $p(X, c, f(a, Y))$
Horn logic programming

Horn clause

- $p \leftarrow q_1, \ldots, q_k$
  - where $p, q_i$ are atoms
- Clauses are *universally* quantified
  - special sentences
- Intuitive reading: if $q_1, \ldots, q_k$ then $p$

Horn program

- A collection of Horn clauses
Horn logic programming

Horn clause

- $p \leftarrow q_1, \ldots, q_k$
  - where $p, q_i$ are atoms
- Clauses are *universally* quantified
  - special sentences
- Intuitive reading: if $q_1, \ldots, q_k$ then $p$

Horn program

- A collection of Horn clauses
More terminology

Herbrand model

- **Ground terms**: no variable symbols
- **Herbrand universe**: collection of all ground terms
- **Ground atoms**: atoms built of predicate symbols and ground terms
  - $p(a, c, f(a, a))$
- **Herbrand base**: collection of all ground atoms
- **Herbrand model**: subset of an Herbrand base
Semantics

- Given by Herbrand models
  - $\text{grnd}(P)$: the set of all ground instances of clauses in $P$
  - Thus, no difference between $P$ and $\text{grnd}(P)$

- Key question:
  which ground facts hold in every Herbrand model of $P$?

- Sufficient to restrict to Herbrand models contained in $\text{HB}(P)$
  - Herbrand universe of $P$, $\text{HU}(P)$
    (if no constant symbols in $P$, a single constant symbol introduced)
  - Herbrand base of $P$, $\text{HB}(P)$
  - Ground atoms not in $\text{HB}(P)$ are not true in all Herbrand models
We can say more

Least Herbrand model

- Every Horn program $P$ has a least Herbrand model $LM(P)$
  - the intersection of a set of Herbrand models of a Horn program is a Herbrand model of the program
  - $HB(P)$ is an Herbrand model of $P$
  - the intersection of all models is a least Herbrand model (and it is contained in $HB(P)$)

- **Single** intended Herbrand model

- For a ground $t$, $P \models p(t)$ if and only if $p(t) \in LM(P)$

- For ground $t$, if $P \not\models p(t)$, **defeasibly** conclude $\neg p(t)$

- Closed World Assumption (CWA)
Computing with Horn programs

What do they specify, what can they express?

- A Horn program $P$ specifies a subset $X$ of the Herbrand universe for $P$, $HU(P)$, if for some predicate symbol $p$ occurring in $P$ we have:

$$X = \{ t \in HU(P) : p(t) \in LM(P) \}$$

- Finite Horn programs specify precisely the r.e. sets and relations

Reachability — an example

Program $P$

$\text{arc}(a, b)$.
$\text{arc}(b, c)$.
$\text{arc}(d, c)$.

$\text{reach}(X, X)$.
$\text{reach}(X, Y) ← \text{arc}(X, Z), \text{reach}(Z, Y)$. 
Reachability — an example

\[
\begin{align*}
HU(P) &= \{a, b, c, d\} \\
HB(P) &= \{arc(a, a), arc(a, b), \ldots, reach(a, a), \ldots\} \\
\text{ground}(P): \\
&\quad arc(a, b). \quad arc(b, c). \quad arc(d, c). \\
&\quad reach(a, a). \quad reach(b, b). \quad reach(c, c). \quad reach(d, d). \\
&\quad reach(a, a). \quad \leftarrow \quad arc(a, a), reach(a, a). \\
&\quad reach(a, b). \quad \leftarrow \quad arc(a, b), reach(b, a). \\
&\quad \ldots \\
&\quad reach(c, b). \quad \leftarrow \quad arc(c, d), reach(d, b). \\
&\quad \ldots
\end{align*}
\]
Reachability — an example

Least model

- \(arc(a, b), arc(a, c), arc(d, c)\)
- \(reach(a, a), reach(b, b), reach(c, c), reach(d, d)\)
- \(reach(a, b), reach(a, c), reach(d, c), reach(a, c)\)

What’s computed?

- Assume \(reach\) is the distinguished “solution” predicate
- \(\{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (d, c), (a, c)\}\)
Reachability — an example

Least model

- $arc(a, b), arc(a, c), arc(d, c)$
- $reach(a, a), reach(b, b), reach(c, c), reach(d, d)$
- $reach(a, b), reach(a, c), reach(d, c), reach(a, c)$

What’s computed?

- Assume $reach$ is the distinguished “solution” predicate
- $\{(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (d, c), (a, c)\}$
Possible issues?

- Function symbols necessary!
- List constructor \([\cdot|\cdot]\) used to define higher-order objects
- Terms - basic data structures
- Queries (goals):
  - \(?p(t)\) - is \(p(t)\) entailed?
  - \(?p(X)\) - for what ground \(t\), is \(p(t)\) entailed?
- Proofs provide answers
- SLD-resolution
- Unification - basic mechanism to manipulate data structures
- Extensive use of recursion
- Leads to Prolog
Example

Manipulating lists: *append* and *reverse*

\[
\text{append}([], X, X).
\text{append}([X|Y], Z, [X|T]) \leftarrow \text{append}(Y, Z, T).
\]

\[
\text{reverse}([], []). \\
\text{reverse}([X|Y], Z) \leftarrow \text{append}(U, [X], Z), \text{reverse}(Y, U).
\]

- both relations defined recursively
- terms represent complex objects: lists, sets, ...
Example, cont’d

Playing with reverse

- Problem: reverse list \([a, b, c]\)
  - Ask query ? – \textit{reverse}([\(a, b, c\], X).
  - A proof of the query yields a substitution: \(X = [c, b, a]\)
  - The substitution constitutes an answer
- Query ? – \textit{reverse}([\(a|X\], [\(b, c, d, a\]) returns \(X = [d, c, b]\)
- Query ? – \textit{reverse}([\(a|X\], [\(b, c, d, b\]) returns no substitutions
  (there is no answer)
Observations

- Techniques to search for proofs — the key
- Understanding of the resolution mechanism is important
- It may make a difference which logically equivalent form is used:
  - \( \text{reverse}([X|Y], Z) \leftarrow \text{append}(U, [X], Z), \text{reverse}(Y, U). \)
  - \( \text{reverse}([X|Y], Z) \leftarrow \text{reverse}(Y, U), \text{append}(U, [X], Z). \)
  - termination vs. non-termination for query:
    - \( ? \leftarrow \text{reverse}([a|X], [b, c, d, b]) \)
- Is it truly knowledge representation?
  - is it truly declarative?
  - implementations are not!
- Nonmonotonicity quite restricted
Negation in the body

Why negation?

- Natural linguistic concept
- Facilitates knowledge representation (declarative descriptions and definitions)
- Needed for modeling convenience
- Clauses of the form:

  \[ p(\vec{X}) \leftarrow q_1(\vec{X}_1), \ldots, q_k(\vec{X}_k), \text{not } r_1(\vec{Y}_1), \ldots, \text{not } r_l(\vec{Y}_l) \]

- Things get more complex!
Observations

- Still Herbrand models
- Still restricted to $HB(P)$
- But — usually no least Herbrand model!
- Program
  
  \[
  a \leftarrow \neg b \\
  b \leftarrow \neg a
  \]

  has two **minimal** Herbrand models: $M_1 = \{a\}$ and $M_2 = \{b\}$.
- Identifying a **single** intended model a major issue
Great Logic Programming Schism

- Single *intended* model approach
  - continue along the lines of Prolog
- Multiple *intended* model approach
  - branch into answer-set programming
Single intended model approach

“Better” Prolog

- Extensions of Horn logic programming
  - Perfect semantics of stratified programs
  - 3-val well-founded semantics for (arbitrary) programs
- Top-down computing based on unification and resolution
- XSB – David Warren at SUNY Stony Brook
- Will come back to it
Multiple intended models

Answer-set programming

- Semantics assigns to a program not one but many intended models!
  - for instance, all stable or supported models (to be introduced soon)
- How to interpret these semantics?
  - skeptical reasoning: a ground atom is cautiously entailed if it belongs to all intended models
  - intended models represent different possible states of the world, belief sets, solutions to a problem
- Nonmonotonicity shows itself in an essential way
  - as in default logic
Normal logic programming

Preliminary observations and comments

- Logic programs with negation
- Still interested only in Herbrand models
- Thus, enough to consider propositional case
- Supported model semantics
- Stable model semantics
- Connection to propositional logic (Clark’s completion, tightness, loop formulas)
- Kripke-Kleene and well-founded semantics
- Strong and uniform equivalence
Normal logic programming — propositional case

Syntax

- Propositional language over a set of atoms $At$ (possibly infinite)
- Clause $r$

$$a \leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_n$$

- $a, b_i, c_j$ are atoms
- $a$ is the head of the clause: $hd(r)$
- literals $b_i, \text{not } c_j$ form the body of the rule: $bd(r)$
- $\{b_1, \ldots, b_m\}$ - positive body $bd^+(r)$
- $\{c_1, \ldots, c_n\}$ - negative body $bd^-(r)$
One-step provability operator

Basic tool in LP

van Emden, Kowalski 1976

- Operator on interpretations (sets of atoms)
  \[ T_P(I) = \{ \text{hd}(r) : I \models \text{bd}(r) \} \]
- If \( P \) is Horn, \( T_P \) is monotone
  - Let \( I \subseteq J \)
  - Let \( \text{bd}(r) = b_1, \ldots, b_m \) (no negation!)
  - If \( I \models \text{bd}(r) \) then \( J \models \text{bd}(r) \)
  - Thus, \( T_P(I) \subseteq T_P(J) \)
- Least fixpoint of \( T_P \) exists and coincides with the least Herbrand model of \( P \)
- In general, not the case (due to negation)
  - \( \emptyset \models \text{not} a \)
  - but \( \{ a \} \not\models \text{not} a \)
Definition and some observations

- $M \subseteq \text{At}$ is a supported model of $P$ if $T_P(M) = M$
- Supported models are indeed models
  - let $M \models bd(r)$
  - then $hd(r) \in T_P(M)$
  - and so, $hd(r) \in M$
- Supported models are subsets of $\text{At}(P)$ (the Herbrand base of $P$)
- Thus, they are Herbrand models
### Supported models - example

**Program**

\[ p \leftarrow \text{not } q \]

- One supported model: \( M_1 = \{p\} \)
- \( M_2 = \{q\} \) - not supported (but model)
- \( p \) “follows”
- If \( q \) included in the program (more exactly: a rule \( q \leftarrow \))
  - Just one supported model: \( M_1 = \{q\} \).
  - \( p \) does not ‘follow’
  - nonmonotonicity
Supported models - example

Program \( p \leftarrow p \)

- Two supported models: \( M_1 = \emptyset \) and \( M_2 = \{p\} \)
- The second one is self-supported (circular justification)
- A problem for KR
Clark’s completion

Rules as implications

- $bd^\wedge(r)$ the conjunction of all literals in the body of $r$
  with all not $c$ replaced with $\neg c$
- $compl^\leftarrow(P) = \{bd^\wedge(r) \rightarrow hd(r) : r \in P\}$
Clark’s completion

Rules as definitions

- **Notation:**  \( \text{def}_P(a) = \bigvee \{ \text{bd}^\wedge(r) : \text{hd}(r) = a \} \)
- **Note:** if \( a \) not the head of any rule in \( P \), \( \text{def}_P(a) = \bot \)
- \( \text{cmpl}\rightarrow(P) = \{ a \rightarrow \text{def}_P(a) : a \in \text{At} \} \)
- \( \text{cmpl}(P) = \text{cmpl}\leftarrow(P) \cup \text{cmpl}\rightarrow(P) \)
- **Note:** if \( a \notin \text{At}(P) \), \( \text{cmpl}(P) \models \neg a \)
Clark’s completion

Example

\[ a \leftarrow b, \text{not } c \]
\[ a \leftarrow d \]
\[ b \leftarrow a \]

- \( \text{def}(a) = (b \land \neg c) \lor d \)
- \( \text{def}(b) = a \)
- \( \text{def}(c) = \bot \)

\( \text{cmpl} \leftarrow = \{ b \land \neg c \rightarrow a; \ d \rightarrow a; \ a \rightarrow b \} = \{(b \land \neg c) \lor d \rightarrow a; \ a \rightarrow b \} \)

\( \text{cmpl} \leftarrow = \{ \text{def}(a) \rightarrow a; \ \text{def}(b) \rightarrow b; \ \text{def}(c) \rightarrow c \} \)

\( \text{cmpl} \rightarrow = \{ a \rightarrow \text{def}(a); \ b \rightarrow \text{def}(b); \ c \rightarrow \text{def}(c) \} \)

\( \text{cmpl} = \{ a \leftrightarrow \text{def}(a); \ b \leftrightarrow \text{def}(b); \ c \leftrightarrow \text{def}(c) \} \)

\( \text{cmpl} \) has two models: \( \emptyset \) and \( \{a, b\} \)
Clark’s completion

Connection to supported models

- A set $M \subseteq At$ is a supported model of a program $P$ if and only if $M$ is a model (in a standard sense) of $cmpl(P)$
- Connection to SAT
- Allows us to use SAT solvers to compute supported models of $P$
Connection to supported models — proof

\(M \rightarrow \text{supported model of } P: \quad M = T_P(M)\)

- Let \(a \in M \Rightarrow \exists r \in P \text{ st: } \text{hd}(r) = a\) and \(M \models \text{bd}(r)\)
- \(\Rightarrow M \models \text{bd}^\uparrow(r), \quad M \models \text{def}(a)\) and \(M \models a \leftrightarrow \text{def}(a)\)
- Let \(a \notin M \Rightarrow \forall r \in P \text{ st: } \text{hd}(r) = a, \quad M \nVDash \text{bd}(r)\)
- \(\Rightarrow M \nVDash \text{def}(a)\) and \(M \models a \leftrightarrow \text{def}(a)\)

Conversely: let \(M \models \text{cmpl}(P)\)

- \(\Rightarrow M \models P \text{ and so, } T_P(M) \subseteq M\)
- Let \(a \in M \Rightarrow M \models \text{def}(a)\)
- \(\Rightarrow \exists r \in P \text{ st: } M \models \text{bd}^\uparrow(r)\)
- \(\Rightarrow M \models \text{bd}(r)\) and \(a \in T_P(M) \Rightarrow M \subseteq T_P(M)\)
- Thus, \(M = T_P(M)\) and \(M\) supported
Connection to supported models — proof

\( M \) — supported model of \( P \): \( M = T_P(M) \)

- Let \( a \in M \Rightarrow \exists r \in P \text{ st: } hd(r) = a \text{ and } M \models bd(r) \)
- \( \Rightarrow M \models bd^{\wedge}(r), \ M \models \text{def}(a) \text{ and } M \models a \leftrightarrow \text{def}(a) \)
- Let \( a \notin M \Rightarrow \forall r \in P \text{ st: } hd(r) = a, \ M \not\models bd(r) \)
- \( \Rightarrow M \not\models \text{def}(a) \text{ and } M \models a \leftrightarrow \text{def}(a) \)

Conversely: let \( M \models cmpl(P) \)

- \( \Rightarrow M \models P \text{ and so, } T_P(M) \subseteq M \)
- Let \( a \in M \Rightarrow M \models \text{def}(a) \)
- \( \Rightarrow \exists r \in P \text{ st: } M \models bd^{\wedge}(r) \)
- \( \Rightarrow M \models bd(r) \text{ and } a \in T_P(M) \Rightarrow M \subseteq T_P(M) \)
- Thus, \( M = T_P(M) \) and \( M \) supported
Supported models of interest, but ...

- Some supported models based on circular arguments
  - $p \leftarrow p$
  - $\{p\}$ is supported model (circular argument)
- Some more stringent bases for selecting intended models needed
Stable model semantics

Gelfond-Lifschitz reduct

- $P$ — logic program
- $M$ — set of atoms
- **Reduct** $P^M$
  - for each $a \in M$ remove rules with $not\ a$ in the body
  - remove literals $not\ a$ from all other rules
## Stable model semantics

### Definition through reduct

- Reduct $P^M$ is a Horn program
- It has the least model $LM(P^M)$
- $M$ is a **stable** model of $P$ if

\[
M = LM(P^M)
\]
Stable model semantics

And now through Gelfond-Lifschitz operator

- \( GL_P(M) = LM(P^M) \)
- \( M \) is a stable model if and only if \( M = GL_P(M) \)
- \( GL_P \) is antimonotone
- For \( M \subseteq N \):
  \[ GL_P(N) \subseteq GL_P(M) \]
Stable models — examples

Multiple stable models

\[ p \leftarrow q, \text{not } s \]
\[ r \leftarrow p, \text{not } q, \text{not } s \]
\[ s \leftarrow \text{not } q \]
\[ q \leftarrow \text{not } s \]

▶ Two stable models: \( M_1 = \{p, q\} \) and \( M_2 = \{s\} \)

No stable models

\[ p \leftarrow \text{not } p \]

▶ No stable models!!
Stable models — examples

Multiple stable models

\[ p \leftarrow q, \text{not } s \]
\[ r \leftarrow p, \text{not } q, \text{not } s \]
\[ s \leftarrow \text{not } q \]
\[ q \leftarrow \text{not } s \]

- Two stable models: \( M_1 = \{p, q\} \) and \( M_2 = \{s\} \)

No stable models

\[ p \leftarrow \text{not } p \]

- No stable models!!
Stable models are models!

- Let $M$ be a stable model
- $M$ is a model of all rules that are removed from the program when forming the reduct
- $M$ is a model of every rule that contributes to the reduct
- Indeed, each such rule is subsumed by a rule in the reduct and $M$ satisfies all rules in the reduct
Stable models — properties

Stable models are minimal models!

- Let $N$ be a stable model and $M$ a model s.t. $M \subseteq N$
- Then
  \[ N = GL_P(N) \subseteq GL_P(M) \subseteq M \]
- Thus, $N \subseteq M$ and so $N = M$
- The minimality of $N$ follows
- Stable models form an antichain!
Lemma: If $M$ model of $P$, $GL_P(M) \subseteq M$

- Since $M$ model of $P$, then $M$ is a model of $P^M$
- $a \leftarrow b_1, \ldots, b_m$ - a rule in reduct
- $a \leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_n$ - the original rule in $P$
- $M$ satisfies the latter, and it satisfies every $\text{not } c_i$ (as $c_i \notin M$)
- Thus, $M$ satisfies the reduct rule
If $M$ is a stable model of $P$ then it is a supported model of $P$

Let $M$ be a stable model of $P$

Then $M$ model of $P$ and so, $T_P(M) \subseteq M$

$r = a \leftarrow b_1, \ldots, b_m, \neg c_1, \ldots, \neg c_n$ - a rule in $P$ such that $M \models bd(r)$

Then $r' = a \leftarrow b_1, \ldots, b_m$ belongs to the reduct $P^M$

And $M \models bd(r')$

Since $M$ is a model of $P^M$, $a \in M$

Hence, $T_P(M) \subseteq M$ and so, $M = T_P(M)$

That is, $M$ is supported!!
But ...

- The converse not true, in general (as it should not be)

Counterexample

- $p \leftarrow p$
- \{p\} is supported but not stable
- Positive dependency of $p$ on itself is a problem
But ...

- The converse not true, in general (as it should not be)

Counterexample

- $p \leftarrow p$
- $\{p\}$ is supported but not stable
- Positive dependency of $p$ on itself is a problem
Fages Lemma

Positive dependency graph $G^+(P)$

- Atoms of $P$ are vertices
- $(a, b)$ is an edge in $G^+(P)$ if for some $r \in P$: $hd(r) = a$, $b \in bd^+(r)$

Tight programs

- $P$ is tight if $G^+(P)$ is acyclic
- Alternatively, if there is a labeling of atoms with non-negative integers $(a \mapsto \lambda(a))$ s.t.
  - for every rule $r \in P$
    \[ \lambda(hd(r)) > \max\{\lambda(b) : b \in bd^+(r)\} \]
- Connection to topological ordering of positive dependency graphs
Fages Lemma

Positive dependency graph $G^+(P)$

- Atoms of $P$ are vertices
- $(a, b)$ is an edge in $G^+(P)$ if for some $r \in P$: $\text{hd}(r) = a$, $b \in \text{bd}^+(r)$

Tight programs

- $P$ is tight if $G^+(P)$ is acyclic
- Alternatively, if there is a labeling of atoms with non-negative integers $(a \mapsto \lambda(a))$ s.t.
  - for every rule $r \in P$
    \[
    \lambda(\text{hd}(r)) > \max\{\lambda(b) : b \in \text{bd}^+(r)\}
    \]
- Connection to topological ordering of positive dependency graphs
Fages Lemma

The statement — finally

- If $P$ is tight then every supported model is stable
- Intuitively, circular support not possible
### Fages Lemma — example

**Program** $P$

- $p \leftarrow q, \text{not } s$
- $r \leftarrow p, \text{not } q, \text{not } s$
- $s \leftarrow \text{not } q$
- $q \leftarrow \text{not } s$

**Graph** $G^+(P)$

---

**$P$ is tight**

- $\{p, q\}$ and $\{s\}$ are supported models of $P$
  - $T_P(\{p, q\}) = \{p, q\}$
  - $T_P(\{s\}) = \{s\}$
- Thus, they are stable (which we verified directly earlier)
Program $P$

\[
\begin{align*}
p & \leftarrow q, \neg s \\
r & \leftarrow p, \neg q, \neg s \\
s & \leftarrow \neg q \\
q & \leftarrow \neg s
\end{align*}
\]

$P$ is tight

- $\{p, q\}$ and $\{s\}$ are supported models of $P$
  - $T_P(\{p, q\}) = \{p, q\}$
  - $T_P(\{s\}) = \{s\}$

Thus, they are stable (which we verified directly earlier)
Fages Lemma — example

Program $P$

\begin{align*}
p & \leftarrow q, \text{not } s \\
r & \leftarrow p, \text{not } q, \text{not } s \\
s & \leftarrow \text{not } q \\
q & \leftarrow \text{not } s
\end{align*}

Graph $G^+(P)$

$P$ is tight

- $\{p, q\}$ and $\{s\}$ are supported models of $P$
  - $T_P(\{p, q\}) = \{p, q\}$
  - $T_P(\{s\}) = \{s\}$
- Thus, they are stable (which we verified directly earlier)
Fages Lemma

Proof

- Let $P$ be tight and $M$ be its supported model
- Then $M$ is a model of $P^M$
- Let $N$ be a model of $P^M$
- Claim: for every $k$, if $a \in M$ and $\lambda(a) < k$, then $a \in N$
- Holds for $k = 0$ (trivially)
- Let $a \in M$ and $\lambda(a) = k$
- Since $M$ supported, there is $r \in P$ such that $a = hd(r)$ and $M \models bd(r)$
- In particular, $bd^+(r) \subseteq M$ and so, $bd^+(r) \subseteq N$ (by I.H.)
- Since $M \models bd(r)$, $M$ contributes to the reduct
- Since $N$ is a model of $P^M$, $a \in N$
- It follows that $M = LM(P^M)$
Relativized tightness

Let $X \subseteq \text{At}(P)$

$P$ is tight on $X$ if the program consisting of rules $r$ such that $bd^+(r) \subseteq X$ is tight

Generalization

If $P$ is tight on $X$ and $M$ is a supported model of $P$ such that $M \subseteq X$, then $M$ is stable
Relativized tightness

- Let $X \subseteq \text{At}(P)$
- $P$ is tight on $X$ if the program consisting of rules $r$ such that $\text{bd}^+(r) \subseteq X$ is tight

Generalization

- If $P$ is tight on $X$ and $M$ is a supported model of $P$ such that $M \subseteq X$, then $M$ is stable
### Generalized Fages Lemma — example

#### Program $P$

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \leftarrow q, \neg s$</td>
<td></td>
</tr>
<tr>
<td>$r \leftarrow p, \neg q, \neg s$</td>
<td></td>
</tr>
<tr>
<td>$s \leftarrow \neg q$</td>
<td></td>
</tr>
<tr>
<td>$q \leftarrow \neg s$</td>
<td></td>
</tr>
<tr>
<td>$p \leftarrow r$</td>
<td></td>
</tr>
</tbody>
</table>

#### Graph $G^+(P)$

$P$ is not tight

- \{p, q\} and \{s\} are still supported models of $P$
  - $T_P(\{p, q\}) = \{p, q\}$
  - $T_P(\{s\}) = \{s\}$
- Since $P$ is tight on each of them, they are stable
Generalized Fages Lemma — example

Program $P$

\[
\begin{align*}
p & \leftarrow q, \text{not } s \\
r & \leftarrow p, \text{not } q, \text{not } s \\
s & \leftarrow \text{not } q \\
q & \leftarrow \text{not } s \\
p & \leftarrow r
\end{align*}
\]

Graph $G^+(P)$

$P$ is not tight

- $\{p,q\}$ and $\{s\}$ are still supported models of $P$
  - $T_P(\{p,q\}) = \{p,q\}$
  - $T_P(\{s\}) = \{s\}$
- Since $P$ is tight on each of them, they are stable
### Generalized Fages Lemma — example

#### Program $P$

- $p \leftarrow q, \text{not } s$
- $r \leftarrow p, \text{not } q, \text{not } s$
- $s \leftarrow \text{not } q$
- $q \leftarrow \text{not } s$
- $p \leftarrow r$

#### Graph $G^+(P)$

![Graph $G^+(P)$](image)

#### $P$ is not tight

- $\{p, q\}$ and $\{s\}$ are still supported models of $P$
  - $T_P(\{p, q\}) = \{p, q\}$
  - $T_P(\{s\}) = \{s\}$
- Since $P$ is tight on each of them, they are stable
External support formula for $Y \subseteq At(P)$

- For a rule $r$:
  - $bd^\wedge(r)$ the conjunction of all literals in the body of $r$ with all not $c$ replaced with $\neg c$

- For $Y \neq \emptyset$:
  - $ES_P(Y)$ the disjunction of $bd^\wedge(r)$ for all $r \in P$ st:
    - $hd(r) \in Y$
    - $bd^+(r) \cap Y = \emptyset$

- For finite programs: well-formed formulas
- Hence, will assume finiteness

Observations

- $ES_P(\{a\}) = \text{def}_P(a)$
  
cf. Clark's completion
Loops and loop formulas

Lin and Zhao, 2002

External support formula for $Y \subseteq \text{At}(P)$

- For a rule $r$:
  - $bd^\wedge(r)$: the conjunction of all literals in the body of $r$
    (with all not $c$ replaced with $\neg c$)

- For $Y \neq \emptyset$:
  - $\text{ES}_P(Y)$: the disjunction of $bd^\wedge(r)$ for all $r \in P$ st:
    - $hd(r) \in Y$
    - $bd^+(r) \cap Y = \emptyset$

- For finite programs: well-formed formulas
- Hence, will assume finiteness

Observations

- $\text{ES}_P(\{a\}) = \text{def}_P(a)$
  cf. Clark’s completion
A characterization of stable models

for finite programs, the following conditions are equivalent

- $X$ is a stable model of $P$
- $X$ is a model of $\text{cmpl} \leftarrow (P) \cup \{Y^\wedge \rightarrow ES_P(Y) : Y \subseteq \text{At}(P), \ Y \neq \emptyset\}$
- $X$ is a model of $\text{cmpl} \leftarrow (P) \cup \{Y^\vee \rightarrow ES_P(Y) : Y \subseteq \text{At}(P), \ Y \neq \emptyset\}$
- OK to replace $\text{cmpl} \leftarrow (P)$ with $\text{cmpl}(P)$
  - $\text{cmpl} \rightarrow (P) \subseteq \{Y^\wedge \rightarrow ES_P(Y) : Y \subseteq \text{At}(P)\}$
  - $\text{cmpl} \rightarrow (P) \subseteq \{Y^\vee \rightarrow ES_P(Y) : Y \subseteq \text{At}(P)\}$
A loop is a non-empty set $Y \subseteq \text{At}(P)$ that induces in $G^+(P)$ a strongly connected subgraph.

In particular, all singleton sets are loops.
Loops — example

Program $P$

\[
p \leftarrow q, \text{not } r
\]
\[
q \leftarrow p
\]
\[
r \leftarrow \text{not } p
\]

Graph $G^+(P)$

- $\{p\}$, $\{q\}$, $\{r\}$, $\{p, q\}$ are loops
- $\{p, q, r\}$ is not!
Loops — example

Program $P$

\[
\begin{align*}
p & \leftarrow q, \text{not } r \\
q & \leftarrow p \\
r & \leftarrow \text{not } p
\end{align*}
\]

Graph $G^+(P)$

- $\{p\}$, $\{q\}$, $\{r\}$, $\{p, q\}$ are loops
- $\{p, q, r\}$ is not!
For finite programs, the following conditions are equivalent:

- $X$ is a stable model of $P$
- $X$ is a model of $\text{cmpl}(P) \cup \{ Y^\top \rightarrow \text{ES}_P(Y) : Y - a \text{ loop} \}$
- $X$ is a model of $\text{cmpl}(P) \cup \{ Y^\lor \rightarrow \text{ES}_P(Y) : Y - a \text{ loop} \}$
- OK to replace $\text{cmpl}(P)$ with $\text{cmpl}(P)$
  - Singleton sets are loops!
**Loop Theorem**

Let $X$ be a stable model of $P$

- $\Rightarrow X \models P \Rightarrow X \models P^X$
- $X \models P \Rightarrow X \models \text{cmpl}^{-}(P)$
- Let $Y$ be a loop st: $X \models Y^\wedge \Rightarrow X \cap Y \neq \emptyset$
- Let $a \in Y$ be the “first” element of $Y$ in $X$
  recall that $X = LM(P^X)$
- $\Rightarrow \exists r \in P \text{ st: } a = \text{hd}(r), \text{ bd}^+(r) \cap Y = \emptyset$
- $\Rightarrow \text{bd}^\wedge(r)$ is a disjunct of $ES_P(Y)$
- Also: $\text{bd}^+(r) \subseteq X$ and $\text{bd}^-(r) \cap X = \emptyset \Rightarrow X \models \text{bd}^\wedge(r)$
- $\Rightarrow X \models ES_P(Y) \Rightarrow X \models Y^\wedge \rightarrow ES_P(Y)$
- No difference if $Y^\wedge$ replaced with $Y^\vee$
Let $X \models cmpl^{\leftarrow}(P) \cup \{Y^\uparrow \rightarrow ES_P(Y) : Y \text{ – a loop}\}$

- $\Rightarrow \quad X \models P \quad \Rightarrow \quad X \models P^X$
- Let $X' = LM(P^X) \quad \Rightarrow \quad X' \subseteq X$
- Let $X \setminus X' \neq \emptyset$
- Consider subgraph $H$ of $G(P)$ induced by $X \setminus X'$
- Let $Y$ be a “terminal” strongly connected component of $H$
  no edge in $H$ starts in $Y$ and ends outside of $Y$
Let $X \models \text{cmpl}^\leftarrow(P) \cup \{ Y^\downarrow \rightarrow ES_P(Y) : Y \text{ a loop} \}$

- $\Rightarrow X \models P \Rightarrow X \models P^X$
- Let $X' = LM(P^X) \Rightarrow X' \subseteq X$
- Let $X \setminus X' \neq \emptyset$
- Consider subgraph $H$ of $G(P)$ induced by $X \setminus X'$
- Let $Y$ be a “terminal” strongly connected component of $H$
  - no edge in $H$ starts in $Y$ and ends outside of $Y$
X ⊨ Y^ \rightarrow ESP(Y) \quad (\text{also: } X \models Y^\lor \rightarrow ESP(Y))

Since \( Y \subseteq X \): \( \Rightarrow \) \( X \models ESP(Y) \)

\( \Rightarrow \) \( \exists r \in P \text{ st: } \text{hd}(r) \in Y, \quad bd^+(r) \cap Y = \emptyset, \quad X \models bd^+(r) \)

\( \Rightarrow \) \( bd^+(r) \subseteq X \) and \( r^X \in P^X \)

Since \( Y \) terminal and \( bd^+(r) \cap Y = \emptyset \): \( \Rightarrow \) \( bd^+(r) \subseteq X' \)

if \( a \in bd^+(r) \): \( a \in X \)

\( (\text{hd}(r), a) \) edge in \( G^+(P) \)

if \( a \in X \setminus X' \): \( (\text{hd}(r), a) \) edge in \( H \)

\( \Rightarrow \) \( a \in Y, \) contradiction

\( \Rightarrow \) \( a \in X' \)

Since \( X' \models P^X \): \( \Rightarrow \) \( X' \models r^X \)

\( \Rightarrow \) \( \text{hd}(r) \in X' \)

Since \( X' \cap Y = \emptyset \): \( \Rightarrow \) contradiction
Some programs have no stable nor supported models

- Sufficient conditions for the existence of stable models
- 4-val supported and stable models
### Sufficient conditions

**General dependency graph** $G(P)$

- Atoms of $P$ are vertices
- $(a, b)$ is an edge in $P$ if for some $r \in P$: $hd(r) = a$, $b \in bd(r)$
- If $b \in bd^+(r)$ — edge is positive
- If $b \in bd^-(r)$ — edge is negative

A propositional program $P$ is

- **Call-consistent:** if $G(P)$ has no odd cycles (cycles with an odd number of negative edges)
- **Stratified:** if $G(P)$ has no paths with infinitely many negative edges
  - in particular, no cycles with a negative edge (for finite programs both conditions are equivalent)
Sufficient conditions

General dependency graph \( G(P) \)

- Atoms of \( P \) are vertices
- \((a, b)\) is an edge in \( P \) if for some \( r \in P: \) \( \text{hd}(r) = a, b \in \text{bd}(r) \)
- If \( b \in \text{bd}^+(r) \) — edge is positive
- If \( b \in \text{bd}^-(r) \) — edge is negative

A propositional program \( P \) is

- **Call-consistent**: if \( G(P) \) has no odd cycles (cycles with an odd number of negative edges)
- **Stratified**: if \( G(P) \) has no paths with infinitely many negative edges
  - in particular, no cycles with a negative edge (for finite programs both conditions are equivalent)
# Sufficient conditions

## Results

- If a finite logic program is call-consistent, it has a stable model
- If a program is stratified it has a unique stable model
Let \( P \) and \( Q \) be programs such that \( P \) does not contain any of the head atoms of \( Q \)

“\( Q \) above \( P \)”

A set \( M \) is a stable model of \( P \cup Q \) iff there is a stable model \( N \) of \( P \) such that \( M \) is a stable model of \( Q \cup N \)
Splitting Theorem

Proof: \((\Rightarrow)\) Let \(M \in StM(P \cup Q)\)

- \(N := M \cap At(P)\)
- \(P^N = P^M\) (as \((M \setminus N) \cap At(P) = \emptyset\))
- \(M \models P \Rightarrow M \models P^M \Rightarrow M \models P^N\)
- \(\Rightarrow N \models P^N\) (as \((M \setminus N) \cap At(P) = \emptyset\))
- Let \(N' \subseteq N\) be st: \(N' \models P^N\)
- \(\Rightarrow N' \models P^M \Rightarrow N' \cup (M \setminus N) \models P^M\)
- Let \(r \in Q^M\) be st: \(N' \cup (M \setminus N) \models bd(r)\)
- \(\Rightarrow M \models bd(r) \Rightarrow M \models hd(r)\) (as \(M \models Q\) and so, \(M \models Q^M\))
- \(\Rightarrow hd(r) \in M \Rightarrow hd(r) \in M \setminus N \Rightarrow hd(r) \in N' \cup (M \setminus N)\)
- \(\Rightarrow N' \cup (M \setminus N) \models Q^M \Rightarrow N' \cup (M \setminus N) \models (P \cup Q)^M\)
- \(\Rightarrow N' \cup (M \setminus N) = M \Rightarrow N' = N \Rightarrow N = LM(P^N)\)
- \(\Rightarrow N \in StM(P)\)
Next, we show that $M \in StM(Q \cup N)$

- Recall: $N = M \cap At(P) \Rightarrow N \subseteq M$
- Also: $M \models Q \Rightarrow M \models Q^M \cup N = (Q \cup N)^M$
- Let $M' \subseteq M$ be st: $M' \models (Q \cup N)^M$
- $\Rightarrow N \subseteq M' \quad M' \models Q^M$
- Recall: $N \models P^N$ and so $N \models P^M$ (as $P^M = P^N$)
- $\Rightarrow M' \models P^M \Rightarrow M' \models (P \cup Q)^M$
- Recall: $M = LM((P \cup Q)^M) \Rightarrow M = M'$
- $\Rightarrow M = LM((P \cup Q)^M) \Rightarrow M \in StM(Q \cup N)$
Conversely: $M \in \text{St}_M(Q \cup N)$ and $N \in \text{St}_M(P)$

\[
\begin{align*}
\Rightarrow & \quad M \models Q, \quad N \subseteq M, \quad M \subseteq \text{hd}(Q) \cup N \\
\Rightarrow & \quad M \cap \text{At}(P) = N \quad \Rightarrow \quad M \models P \\
\Rightarrow & \quad M \models P \cup Q \quad \Rightarrow \quad M \models (P \cup Q)^M \\
\text{Let } M' \subseteq M \text{ be st: } & \quad M' \models (P \cup Q)^M \\
\Rightarrow & \quad N' := M' \cap \text{At}(P) \\
\Rightarrow & \quad M' \models P^M \quad \Rightarrow \quad N' \models P^M \quad \Rightarrow \quad N' \models P^N \\
\Rightarrow & \quad N' = N \quad \Rightarrow \quad N \subseteq M' \quad \Rightarrow \quad M' \models Q^M \cup N = (Q \cup N)^M \\
\Rightarrow & \quad M' = M \quad \Rightarrow \quad M = \text{LM}((Q \cup N)^M \quad \Rightarrow \quad M \in \text{St}_M(P \cup Q)
\end{align*}
\]
Stratification

Equivalent definition in the finite case

- $P$ stratified if
  - $\text{hd}(P) \cap \text{bd}^-(P) = \emptyset$, or
  - $P = P_1 \cup P_2$, where $P_2$ stratified, $\text{hd}(P_1) \cap (\text{bd}^-(P_1) \cup \text{At}(P_2)) = \emptyset$

Finite stratified programs have a unique stable model

- Induction
- Basis: exident
- Inductive step: $P_2$ has a unique stable model, say $N$
- Clearly, $P_1 \cup N$ has a unique stable model, too
- Apply splitting theorem
What do I mean?

- Logic allows us to manipulate theories
- Tautologies can be added or removed without changing the meaning
- Consequences of formulas in theories can be added or removed without changing the meaning
  - \( \{p, p \rightarrow q\} \) the same as \( \{p, p \rightarrow q, q\} \)
  - one can always be replaced with another (within any larger context)
- Equivalence for replacement — logical equivalence necessary and sufficient
- Is there a logic which captures such manipulation with theories in nonmonotonic systems?
Query optimization

- Compute answers to a query $Q$ (program) from a knowledge base $KB$ (another program) 
  \[ \text{reason from } Q \cup KB \]
- Rewrite $Q$ into an equivalent query $Q'$, which can be processed more efficiently 
  \[ \text{reasoning from } Q' \cup KB \text{ easier} \]
- When are two queries equivalent?
  - If $Q \cup KB$ and $Q' \cup KB$ have the same meaning 
    \[ \text{not quite what we want} \text{ — knowledge-base dependent} \]
  - If $Q \cup KB$ and $Q' \cup KB$ have the same meaning for every knowledge base $KB$ 
    \[ \text{better} \text{ — knowledge-base independent} \]
Towards modular logic programming

Equivalence of programs

- $P$ and $Q$ are equivalent if they have the same models

Nonmonotonic equivalence of programs

- $P$ and $Q$ are stable-equivalent if they have the same stable models
Towards modular logic programming

Equivalence of programs

- $P$ and $Q$ are equivalent if they have the same models

Nonmonotonic equivalence of programs

- $P$ and $Q$ are stable-equivalent if they have the same stable models
Towards modular logic programming

Equivalence for replacement

- Equivalence for replacement — for every program $R$, programs $P \cup R$ and $Q \cup R$ have the same stable models.

- Commonly known as strong equivalence

Lifschitz, Pearce, Valverde 2001; Lin 2002; Turner 2003; Eiter, Fink 2003; Eiter, Fink, Tompits, Woltran, 2005; T 2006; Woltran 2008

- Different than equivalence

  - $\{p \leftarrow \text{not } q\}$ and $\{q \leftarrow \text{not } p\}$
  - The same models but different meaning

- Different than stable-equivalence

  - $P = \{p\}$ and $Q = \{p \leftarrow \text{not } q\}$
  - The same stable models; $\{p\}$ is the only stable model in each case
  - But, $P \cup \{q\}$ and $Q \cup \{q\}$ have different stable models! ($\{p, q\}$ and $\{q\}$, respectively)
When are two programs strongly equivalent?

Se-model characterization

- A pair \((X, Y)\) of sets of atoms is an *se-model* of a program \(P\) if
  - \(X \subseteq Y\)
  - \(Y \models P\)
  - \(X \models P^Y\)
- \(SE(P)\) set of se-models of \(P\)
- Logic programs \(P\) and \(Q\) are strongly equivalent iff they have the same se-models \((SE(P) = SE(Q))\)
  - A similar concept characterizes strong equivalence of default theories

*Turner 2003*
Lemma 1: $SE(P) = SE(Q) \Rightarrow StM(P) = StM(Q)$

- $Y \in StM(P) \Rightarrow Y \models P$ and $Y \models P^Y$
- $\Rightarrow (Y, Y) \in SE(P) \Rightarrow (Y, Y) \in SE(Q)$
- $\Rightarrow Y \models Q^Y$
- If $Z \subseteq Y$ and $Z \models Q^Y \Rightarrow (Z, Y) \in SE(Q)$
- $\Rightarrow (Z, Y) \in SE(P)$
- $\Rightarrow Z \models P^Y \Rightarrow Z = Y$ (as $Y = LM(P^Y)$)
- $\Rightarrow Y = LM(Q^Y) \Rightarrow Y \in StM(Q)$
When are two programs strongly equivalent?

**Lemma 2:** \( SE(P \cup R) = SE(P) \cap SE(R) \)

- \( (X, Y) \in SE(P \cup R) \) iff
- \( X \subseteq Y \) and \( Y \models P \cup R \) and \( X \models (P \cup R)^Y = P^Y \cup R^Y \) iff
- \( X \subseteq Y \) and \( (Y \models P \text{ and } Y \models R) \) and \( (X \models P^Y \text{ and } X \models R^Y) \) iff
- \( (X \subseteq Y, Y \models P, X \models P^Y), \text{ and} \)
  - \( (X \subseteq Y, Y \models R, X \models R^Y) \) iff
- \( (X, Y) \in SE(P) \) and \( (X, Y) \in SE(R) \) iff
- \( (X, Y) \in SE(P) \cap SE(R) \)
When are two programs strongly equivalent?

\[ SE(P) = SE(Q) \implies P \text{ and } Q \text{ are strongly equivalent} \]

- By Lemma 2, for every \( R \):
  \[ SE(P \cup R) = SE(P) \cap SE(R) = SE(Q) \cap SE(R) = SE(Q \cup R) \]
- By Lemma 1,
  \[ StM(P \cup R) = StM(Q \cup R) \]

\[ P \text{ and } Q \text{ are strongly equivalent} \implies SE(P) = SE(Q) \]

- Let \((X, Y) \in SE(P) \setminus SE(Q)\): \((X, Y) \in SE(P)\) and \((X, Y) \notin SE(Q)\)
- \[ Y \models P^Y \implies Y = LM(P^Y \cup Y) \]
- Since \( P^Y \cup Y = (P \cup Y)^Y \), \( Y = LM((P \cup Y)^Y) \implies Y \in StM(P \cup Y) \)
- \[ Y \in StM(Q \cup Y) \implies Y \models Q \]
- \[ X \nmodels Q^Y \]
When are two programs strongly equivalent?

\[ SE(P) = SE(Q) \Rightarrow P \text{ and } Q \text{ are strongly equivalent} \]

- By Lemma 2, for every \( R \):
  \[ SE(P \cup R) = SE(P) \cap SE(R) = SE(Q) \cap SE(R) = SE(Q \cup R) \]
- By Lemma 1, \( StM(P \cup R) = StM(Q \cup R) \)

\[ P \text{ and } Q \text{ are strongly equivalent} \Rightarrow SE(P) = SE(Q) \]

- Let \( (X, Y) \in SE(P) \setminus SE(Q) \): \( (X, Y) \in SE(P) \) and \( (X, Y) \notin SE(Q) \)
  \[ \Rightarrow Y \models P^Y \Rightarrow Y = LM(P^Y \cup Y) \]
- Since \( P^Y \cup Y = (P \cup Y)^Y \), \( Y = LM((P \cup Y)^Y) \Rightarrow Y \in StM(P \cup Y) \)
  \[ \Rightarrow Y \in StM(Q \cup Y) \Rightarrow Y \models Q \]
  \[ \Rightarrow X \not\models Q^Y \]
When are two programs strongly equivalent?

(\(X, Y\)) \(\in\) \(SE(P)\), (\(X, Y\)) \(\notin\) \(SE(Q)\), \(Y \models Q\), \(X \nmid Q^Y\)

- Define \(R = X \cup \{y \leftarrow y' \mid y, y' \in Y \setminus X\}\)
- \(\Rightarrow \ Y \models Q \cup R\) and \(Y \models (Q \cup R)^Y\)
- Let \(Z \subseteq Y\) st: \(Z \models (Q \cup R)^Y \Rightarrow Z \models Q^Y \cup R\)
- \(\Rightarrow \ Z \models Q^Y \Rightarrow X \nmid Z\)
- Since \(Z \models R\), \(X \subseteq Z\) \(\Rightarrow \ \exists y \in Y \setminus X\) st: \(y \in Z\)
- Since \(Z \models R\), \(Y \setminus X \subseteq Z\)
- \(\Rightarrow \ Y \subseteq Z \Rightarrow Z = Y\)
- \(\Rightarrow \ Y \in StM(Q \cup R) \Rightarrow Y \in StM(P \cup R)\)
- \(\Rightarrow \ Y = LM((P \cup R)^Y)\)
- Since \(X \models P^Y \cup R = (P \cup R)^Y\), \(X = Y\)
- \(\Rightarrow \ Y \nmid Q^Y \Rightarrow Y \nmid Q\), a contradiction
**Uniform equivalence**

- Programs $P$ and $Q$ are **uniformly equivalent** if for every set $D$ of facts (rules with empty body) $P \cup D$ and $Q \cup D$ have the same stable models.
- Relevant for DB query optimization.
- Different than other types of equivalence discussed here.
When are two programs uniformly equivalent?

Se-model characterization

- Programs $P$ and $Q$ are uniformly equivalent iff
  - for every $Y \subseteq At$, $Y$ is a model of $P$ if and only if $Y$ is a model of $Q$
  - for every $(X, Y) \in SE(P)$ such that $X \subset Y$, there is $U \subseteq At$ such that $X \subseteq U \subset Y$ and $(U, Y) \in SE(Q)$
  - for every $(X, Y) \in SE(Q)$ such that $X \subset Y$, there is $U \subseteq At$ such that $X \subseteq U \subset Y$ and $(U, Y) \in SE(P)$
When are two programs uniformly equivalent?

Ue-model characterization

- A pair \((X, Y)\) of sets of atoms is a \textit{ue-model} of a program \(P\) if it is an se-model of \(P\) and
- For every se-model \((X', Y)\) such that \(X \subseteq X', X' = X\) or \(X' = Y\)
- \textbf{Finite} logic programs \(P\) and \(Q\) are uniformly equivalent iff they have the same ue-models

\textit{Eiter and Fink, 2003}
Formulas

- Base: atoms and the symbol $\bot$ ("false")
- Connectives $\land$, $\lor$ and $\rightarrow$
- Shortcuts
  - $\neg F ::= F \rightarrow \bot$
  - $\top ::= \bot \rightarrow \bot$
  - $F \leftrightarrow G ::= (F \rightarrow G) \land (G \rightarrow F)$
General logic programs

Positive and negative occurrences of atoms in formulas

- An occurrence of $a$ in $F$ is **positive**, if the # of implications with this occurrence of $a$ in antecedent is even
- Otherwise, it is **negative**
- An occurrence of $a$ in $F$ is **strictly positive** if no implication contains this occurrence of $a$ in the antecedent
  - $\neg F$ (that is, $F \rightarrow \bot$) has no strictly positive occurrences of any atom.
- A **head** atom (of a formula) is an atom with at least one strictly positive occurrence
- In $(\neg p \rightarrow q) \rightarrow (p \lor \neg q)$:
  - the first occurrence of $p$ is negative
  - the second occurrence of $p$ is strictly positive
  - both occurrences of $q$ are negative
Stable-model semantics

Reduct of a formula $F$ with respect to a set $X$ of atoms

- The formula $F^X$ obtained by replacing in $F$ each maximal subformula of $F$ that is not satisfied by $X$ with $\bot$

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$ and $X = \{p\}$

- $\neg p = p \rightarrow \bot$, and $X \models \neg p \rightarrow q$
- Thus: $\neg p$ is a maximal subformula not satisfied by $X$
- $\neg q = q \rightarrow \bot$, $X \not\models q$, $X \models \neg q$
- Thus, $q$ is a maximal subformula not satisfied by $X$
- Thus: $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$
- Classically equivalent to $p$
Stable-model semantics

Reduct of a formula $F$ with respect to a set $X$ of atoms

- The formula $F^X$ obtained by replacing in $F$ each maximal subformula of $F$ that is not satisfied by $X$ with ⊥

Example: $F = (¬p \rightarrow q) \land (¬q \rightarrow p)$ and $X = \{p\}$

- $¬p = p \rightarrow ⊥$, and $X \models ¬p \rightarrow q$
- Thus: $¬p$ is a maximal subformula not satisfied by $X$
- $¬q = q \rightarrow ⊥$, $X \not\models q$, $X \models ¬q$
- Thus, $q$ is a maximal subformula not satisfied by $X$
- Thus: $F^X = (⊥ \rightarrow q) \land ((⊥ \rightarrow ⊥) \rightarrow p)$
- Classically equivalent to $p$
Stable-model semantics

To facilitate computation of the reduct

- $\bot^X = \bot$
- For $a$ an atom, if $a \in X$, $a^X = a$; otherwise, $a^X = \bot$
- If $X \models F \circ G$, $(F \circ G)^X = F^X \circ G^X$; otherwise, $(F \circ G)^X = \bot$ (stands for any of $\land$, $\lor$, $\rightarrow$)
- If $X \models F$, $(\neg F)^X = \bot$; otherwise,
  $$(\neg F)^X = (F \rightarrow \bot)^X = F^X \rightarrow \bot^X = \bot \rightarrow \bot = \top$$
Stable-model semantics

Definition

- A set $X$ of atoms is a *stable model* of a formula $F$ if $X$ is a minimal model of $F$.

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p\}$

- $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$ (which is equivalent to $p$)
- $X$ is a minimal model of $F^X$, so a stable model

Example: $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p, q\}$

- $F^X = (\bot \rightarrow q) \land (\bot \rightarrow p)$ (which is equivalent to $\top$)
- $X$ is not a minimal model of $F^X$, so not a stable model
## Stable-model semantics

### Definition

- A set $X$ of atoms is a **stable model** of a formula $F$ if $X$ is a minimal model of $F$

### Example:

$F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{ p \}$

- $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$ (which is equivalent to $p$)
- $X$ is a minimal model of $F^X$, so a stable model

### Example:

$F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{ p, q \}$

- $F^X = (\bot \rightarrow q) \land (\bot \rightarrow p)$ (which is equivalent to $\top$)
- $X$ is not a minimal model of $F^X$, so not a stable model
Stable-model semantics

**Definition**

- A set $X$ of atoms is a *stable model* of a formula $F$ if $X$ is a minimal model of $F$.

**Example:** $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p\}$

- $F^X = (\bot \rightarrow q) \land ((\bot \rightarrow \bot) \rightarrow p)$ (which is equivalent to $p$)
- $X$ is a minimal model of $F^X$, so a stable model.

**Example:** $F = (\neg p \rightarrow q) \land (\neg q \rightarrow p)$, $X = \{p, q\}$

- $F^X = (\bot \rightarrow q) \land (\bot \rightarrow p)$ (which is equivalent to $\top$)
- $X$ is not a minimal model of $F^X$, so not a stable model.
Stable-model semantics

Properties

- If $X$ is a stable model of a formula $F$ then $X$ consists of head atoms of $F$.
- A least model of a Horn formula (conjunction of definite Horn clauses given as implications) is a unique stable model of the theory.
- A set $X$ is a stable model of a formula $F \land \neg G$ if and only if $X$ is a stable model of $F$ and $X \models \neg G$. 
Stable-model semantics

Strong equivalence

- Formulas $F$ and $F'$ are strongly equivalent if for every formula $G$, $F \land G$ and $F' \land G$ have the same stable models.
- $(X, Y)$ is an se-model of $F$ if $Y \subseteq At$, $X \subseteq Y$, $Y \models F$ and $X \models F^Y$.
- The following conditions are equivalent:
  - Formulas $F$ and $G$ are strongly equivalent
  - For every set $X$ of atoms, $F^X$ and $G^X$ are equivalent in classical logic
  - $F$ and $G$ have the same se-models
  - $F$ and $G$ are equivalent in the logic here-and-there (details later)
Stable-model semantics

Splitting

- Let $F$ and $G$ be formulas such that $F$ does not contain any of the head atoms of $G$
- A set $X$ is a stable model of $F \land G$ iff there is a stable model $Y$ of $F$ such that $X$ is a stable model of $G \land Y$
Multivalued semantics

2-input one-step operator $\Phi_P$

- Given two interpretations $I$ and $J$

  $$\Phi_P(I, J) = \{ \text{hd}(r) : r \in P, \ bd^+(r) \subseteq I, \ bd^-(r) \cap J = \emptyset \}$$

- $\Phi_P(\cdot, J)$ monotone
  - $I \subseteq I' \Rightarrow \Phi_P(I, J) \subseteq \Phi_P(I', J)$

- $\Phi_P(I, \cdot)$ antimonotone
  - $J \subseteq J' \Rightarrow \Phi_P(I, J') \subseteq \Phi_P(I, J)$

- $\Phi_P(I, I) = T_P(I)$
Multivalued semantics: 4-val interpretations

Pairs \((I, J)\) of 2-val interpretations

- Atoms in \(I\) are known and atoms in \(J\) are possible
- Give rise to 4 truth values
  - If \(a \in I \cap J\), \(a\) is true
  - If \(a \notin I \cup J\), \(a\) is false
  - If \(a \in J \setminus I\), \(a\) is unknown
  - If \(a \in I \setminus J\), \(a\) is overdefined (inconsistent)
- \((I, J)\) consistent if \(I \subseteq J\)

Alternatively

- Functions \(val\) from \(At\) to \(\{t, f, u, i\}\)
- \(I := \{a | val(a) = t \text{ or } val(a) = i\}\)
- \(J := \{a | val(a) = t \text{ or } val(a) = u\}\)
## Multivalued semantics: 4-val interpretations

### Pairs \((I, J)\) of 2-val interpretations

- Atoms in \(I\) are **known** and atoms in \(J\) are **possible**
- Give rise to 4 truth values
  - If \(a \in I \cap J\), \(a\) is true
  - If \(a \notin I \cup J\), \(a\) is false
  - If \(a \in J \setminus I\), \(a\) is unknown
  - If \(a \in I \setminus J\), \(a\) is overdefined (inconsistent)
- \((I, J)\) **consistent** if \(I \subseteq J\)

### Alternatively

- Functions \(val\) from \(At\) to \(\{t, f, u, i\}\)
- \(I := \{a \mid val(a) = t \text{ or } val(a) = i\}\)
- \(J := \{a \mid val(a) = t \text{ or } val(a) = u\}\)
Multivalued semantics

4-val one-step provability operator

- \( \mathcal{I}_P(I, J) = (\Phi_P(I, J), \Phi_P(J, I)) \)
- Precision (information) ordering:
  \((I, J) \leq_i (I', J')\) if \(I \subseteq I'\) and \(J' \subseteq J\)
- \( \mathcal{I}_P \) monotone wrt \( \leq_i \)
- \((I, J) \leq_i (I', J') \implies \mathcal{I}_P(I, J) \leq_i \mathcal{I}_P(I', J') \)
  - We have: \(I \subseteq I'\) and \(J' \subseteq J\)
  - \( \Phi_P(I, J) \subseteq \Phi_P(I', J) \) (monotonicity of \( \Phi_P(\cdot, J) \))
  - \( \Phi_P(I, J') \subseteq \Phi_P(I, J) \) (antimonotonicity of \( \Phi_P(I, \cdot) \))

\((I, J)\) consistent \(\implies\) \( \mathcal{I}_P(I, J)\) consistent

- Let \(I \subseteq J\)
- \(\implies \Phi_P(I, J) \subseteq \Phi_P(I, I) \subseteq \Phi_P(J, I)\)
Multivalued semantics

4-val one-step provability operator

\[ \mathcal{T}_P(I, J) = (\Phi_P(I, J), \Phi_P(J, I)) \]

- Precision (information) ordering:
  \[ (I, J) \leq_i (I', J') \quad \text{if } I \subseteq I' \text{ and } J' \subseteq J \]
- \( \mathcal{T}_P \) monotone wrt \( \leq_i \)
- \( (I, J) \leq_i (I', J') \Rightarrow \mathcal{T}_P(I, J) \leq_i \mathcal{T}_P(I', J') \)
  - We have: \( I \subseteq I' \) and \( J' \subseteq J \)
  - \( \Phi_P(I, J) \subseteq \Phi_P(I', J) \) (monotonicity of \( \Phi_P(\cdot, J) \))
  - \( \Phi_P(I, J') \subseteq \Phi_P(I, J) \) (antimonotonicity of \( \Phi_P(I, \cdot) \))

\( (I, J) \) consistent \( \Rightarrow \) \( \mathcal{T}_P(I, J) \) consistent

- Let \( I \subseteq J \)
- \( \Rightarrow \) \( \Phi_P(I, J) \subseteq \Phi_P(I, I) \subseteq \Phi_P(J, I) \)
Recall: $\mathcal{T}_P(I, J) = (\Phi_P(I, J), \Phi_P(J, I))$ and $T_P(I) = \Phi_P(I, I)$

- $(I, J)$ is a 4-val supported model of $P$ if $(I, J) = \mathcal{T}_P(I, J)$
- $(I, I)$ is a 4-val supported model iff $I$ is a supported model
  - $(I, I) = \mathcal{T}_P(I, I)$ iff $(I, I) = (\Phi_P(I, I), \Phi_P(I, I)) = (T_P(I), T_P(I))$
- The least 4-val supported model exists!
  - $\mathcal{T}_P$ is monotone and so has the least (wrt $\leq_i$) fixpoint
  - Moreover, it is consistent!
- Kripke-Kleene (Fitting) fixpoint or semantics: $(KK^t(P), KK^p(P))$
4-val Gelfond-Lifschitz operator

\[ \mathcal{GL}_P(I, J) = (GL_P(J), GL(I)) \]

Also monotone wrt \( \leq_i \)

\((I, J)\) is a 4-val stable model if \( \mathcal{GL}_P(I, J) = (I, J) \)

\(M\) is a stable model of \(P\) if and only if \((M, M)\) is a 4-val stable model of \(P\)

The least fixpoint of \(\mathcal{GL}\) exists!! (by monotonicity)

And is consistent

if \(I \subseteq J\) then: \(GL_P(J) \subseteq GL(I)\) (antimonotonicity)

Well-founded fixpoint (semantics): \((WF^t(P), WF^p(P))\)

For every stable model \(M\) of \(P\)

\[ WF^t(P) \subseteq M \subseteq WF^p(P) \]
Syntax

- Connectives: \( \bot, \lor, \land, \rightarrow \)
- Formulas - standard extension of atoms by means of connectives
  - \( \neg \phi \) - shorthand for \( \phi \rightarrow \bot \)
  - \( \phi \leftrightarrow \psi \) - shorthand for \( (\phi \rightarrow \psi) \land (\psi \rightarrow \phi) \)
- Language \( L_{ht} \)
Logic here-and-there

Why important?

- Disjunctive logic programs — special theories in $\mathcal{L}_{ht}$
  - $a_1 \mid \ldots \mid a_k \leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_n$
  - $b_1 \land \ldots \land b_m \land \lnot c_1 \land \ldots \land \lnot c_n \rightarrow c_1 \lor \ldots \lor c_n$

- General logic programs (Ferraris, Lifschitz) = theories in $\mathcal{L}_{ht}$
  - answer-set semantics extends to general logic programs
  - equilibrium models in logic $ht$
  - the two coincide!
Entailment in logic here-and-there

**Ht-interpretations**

- Pairs \( \langle H, T \rangle \), where \( H \subseteq T \) are sets of atoms
- Kripke interpretations with two worlds “here” and “there”
  - \( H \) determines the valuation for “here”
  - \( T \) determines the valuation for “there”

**Kripke-model satisfiability in the world “here” \( \models_{ht} \)**

- \( \langle H, T \rangle \not\models_{ht} \bot \)
- \( \langle H, T \rangle \models_{ht} p \) if \( p \in H \) (for atoms only)
- \( \langle H, T \rangle \models_{ht} \varphi \land \psi \) and \( \langle H, T \rangle \models_{ht} \varphi \lor \psi \) — standard recursion
- \( \langle H, T \rangle \models_{ht} \varphi \rightarrow \psi \) if
  - \( \langle H, T \rangle \not\models_{ht} \varphi \) or \( \langle H, T \rangle \models_{ht} \psi \)
  - \( T \models \varphi \rightarrow \psi \) (in standard propositional logic).
Entailment in logic here-and-there

Ht-interpretations

- Pairs $\langle H, T \rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds “here” and “there”
  - $H$ determines the valuation for “here”
  - $T$ determines the valuation for “there”

Kripke-model satisfiability in the world “here” $\models ht$

- $\langle H, T \rangle \not\models_{ht} \bot$
- $\langle H, T \rangle \models_{ht} p$ if $p \in H$ (for atoms only)
- $\langle H, T \rangle \models_{ht} \varphi \land \psi$ and $\langle H, T \rangle \models_{ht} \varphi \lor \psi$ — standard recursion
- $\langle H, T \rangle \models_{ht} \varphi \rightarrow \psi$ if
  - $\langle H, T \rangle \not\models_{ht} \varphi$ or $\langle H, T \rangle \models_{ht} \psi$
  - $T \models \varphi \rightarrow \psi$ (in standard propositional logic).
Entailment in logic here-and-there

\(ht\)-model, \(ht\)-validity, \(ht\)-equivalence

- If \(\langle H, T \rangle \models_{ht} \varphi\) - \(\langle H, T \rangle\) is an \(ht\)-model of \(\varphi\)
- \(\varphi\) is \(ht\)-valid if for every \(ht\)-model \(\langle H, T \rangle\), \(\langle H, T \rangle \models \varphi\)
- \(\varphi\) and \(\psi\) are \(ht\)-equivalent if they have the same \(ht\)-models

- \(\varphi\) and \(\psi\) are \(ht\)-equivalent iff \(\varphi \leftrightarrow \psi\) is \(ht\)-valid
Natural deduction — sequents and rules

- Sequents $\Gamma \Rightarrow \varphi$ — “$\varphi$ under the assumptions $\Gamma$”
- Introduction rules for $\land$, $\lor$, $\rightarrow$

$$
\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \psi}{\Gamma, \Delta \Rightarrow \varphi \land \psi}
$$

- Elimination rules for $\land$, $\lor$, $\rightarrow$

$$
\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \varphi \rightarrow \psi}{\Gamma, \Delta \Rightarrow \psi}
$$

- Contradiction

$$
\frac{\Gamma \Rightarrow \bot}{\Gamma \Rightarrow \varphi}
$$

- Weakening

$$
\frac{\Gamma \Rightarrow \varphi}{\Gamma' \Rightarrow \varphi} \quad \text{for all } \Gamma', \Gamma \text{ s.t. } \Gamma' \subseteq \Gamma
$$
Proof theory

Axiom schemas

\[
\begin{align*}
(AS1) & \quad \varphi \Rightarrow \varphi \\
(AS2) & \quad \Rightarrow \varphi \lor \neg\varphi & \text{(Excluded Middle)} \\
(AS2') & \quad \Rightarrow \neg\varphi \lor \neg\neg\varphi & \text{(Weak EM)} \\
(AS2'') & \quad \Rightarrow \varphi \lor (\varphi \rightarrow \psi) \lor \neg\psi & \text{(in between (AS2) and (AS2')}
\end{align*}
\]

Logics through natural deduction

- Propositional logic \quad (AS1), (AS2)
- Intuitionistic logic \quad (AS1)
- Logic here-and-there \quad (AS1),(AS2'')
Proof theory

Axiom schemas

(AS1) $\phi \Rightarrow \phi$
(AS2) $\Rightarrow \phi \lor \neg \phi$ (Excluded Middle)
(AS2') $\Rightarrow \neg \phi \lor \neg \neg \phi$ (Weak EM)
(AS2'') $\Rightarrow \phi \lor (\phi \rightarrow \psi) \lor \neg \psi$ (in between (AS2) and (AS2')

Logics through natural deduction

Propositional logic (AS1), (AS2)
Intuitionistic logic (AS1)
Logic here-and-there (AS1), (AS2'')
Bringing the two together

Soundness and completeness

- A formula is a theorem of $ht$ if and only if it is $ht$-valid

In particular

- $\phi$ and $\psi$ are $ht$-equivalent iff $\Rightarrow \phi \leftrightarrow \psi$ is a theorem of $ht$
Bringing the two together

Soundness and completeness

- A formula is a theorem of $ht$ if and only if it is $ht$-valid

In particular

- $\varphi$ and $\psi$ are $ht$-equivalent iff $\Rightarrow \varphi \leftrightarrow \psi$ is a theorem of $ht$
<table>
<thead>
<tr>
<th>Equilibrium models, Pearce 1997</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ $\langle T, T \rangle$ is an <em>equilibrium model</em> of a set $A$ of formulas if</td>
</tr>
<tr>
<td>▶ $\langle T, T \rangle \models_{ht} A$, and</td>
</tr>
<tr>
<td>▶ for every $H \subseteq T$ such that $\langle H, T \rangle \models_{ht} A$, $H = T$</td>
</tr>
</tbody>
</table>

**Key connection**

▶ A set $M$ of atoms is an answer set of a disjunctive logic program $P$ (general logic program $P$) if and only if $\langle M, M \rangle$ is an equilibrium model for $P$
Equilibrium models, Pearce 1997

- \( \langle T, T \rangle \) is an equilibrium model of a set \( A \) of formulas if
  - \( \langle T, T \rangle \models_{ht} A \), and
  - for every \( H \subseteq T \) such that \( \langle H, T \rangle \models_{ht} A \), \( H = T \)

Key connection

- A set \( M \) of atoms is an answer set of a disjunctive logic program \( P \) (general logic program \( P \)) if and only if \( \langle M, M \rangle \) is an equilibrium model for \( P \)
Let $P$ and $Q$ be two (general) programs. The following conditions are equivalent:

- $P$ and $Q$ are strongly equivalent
- $P$ and $Q$ are $ht$-equivalent
- $P$ and $Q$ have the same $ht$-models
- $P \leftrightarrow Q$ is $ht$-valid
- $\Rightarrow P \leftrightarrow Q$ is a theorem of $ht$
The problem

Complex landscape of nonmonotonicity

- Multitude of formalisms
- Different intuitions
- Different languages
- Different semantics
- Complexity

Needed!

- Unifying abstract foundation
The problem

Complex landscape of nonmonotonicity

- Multitude of formalisms
- Different intuitions
- Different languages
- Different semantics
- Complexity

Needed!

- Unifying abstract foundation
Major nonmonotonic systems
  • logic programming
  • default logic
  • autoepistemic logics
can be given a unified algebraic treatment

Each system can be assigned the same family of semantics

Key concepts: lattices and bilattices, operators and fixpoints

Key ideas: approximating operators and stable operators

Key tool: Knaster-Tarski Theorem
Overview of approach

Generalize Fitting’s work on logic programming

- Central role of 4-valued van Emden-Kowalski operator $\mathcal{I}_P$
- Derived stable operator, $\Psi'_P$
- 2-valued and 3-valued supported models and Kripke-Kleene semantics described by fixpoints of $\mathcal{I}_P$
- 2-valued and 3-valued stable models and well-founded semantics described by fixpoints of $\Psi'_P$
Lattices

Key definitions, some notation

- $\langle L, \leq \rangle$
  - $L$ is a nonempty set
  - $\leq$ is a partial order such that every two lattice elements have $lub$ (join) and $glb$ (meet)
- Elements of $L$ express
  - degree of truth
  - measure of knowledge
- $\leq$ - order of increased truth or knowledge
- Complete lattices (both bounds defined for all sets)
- $\bot, \top$
### Lattices - examples

#### Lattice $\mathcal{TWO}$
- $\{f, t\}$
- $f \leq t$

#### Lattice $\mathcal{A}_2$
- set of all 2-valued interpretations
- componentwise extension of the ordering from $\mathcal{TWO}$

#### Lattice $\mathcal{W}$
- family of sets of 2-valued interpretations
- $W_1 \subseteq W_2$ if $W_2 \subseteq W_1$
## Lattices - examples

### Lattice $\text{TWO}$

- $\{f, t\}$
- $f \leq t$

### Lattice $\mathcal{A}_2$

- set of all 2-valued interpretations
- componentwise extension of the ordering from $\text{TWO}$

### Lattice $\mathcal{W}$

- family of sets of 2-valued interpretations
- $W_1 \subseteq W_2$ if $W_2 \subseteq W_1$
### Lattices - examples

**Lattice \( \mathcal{TWO} \)**
- \( \{f, t\} \)
- \( f \leq t \)

**Lattice \( \mathcal{A}_2 \)**
- set of all 2-valued interpretations
- componentwise extension of the ordering from \( \mathcal{TWO} \)

**Lattice \( \mathcal{W} \)**
- family of sets of 2-valued interpretations
- \( \mathcal{W}_1 \subseteq \mathcal{W}_2 \) if \( \mathcal{W}_2 \subseteq \mathcal{W}_1 \)
That’s what it’s all about!

- Truth or knowledge can be revised
- Revisions are described by operators on lattices
- Fixpoints — states of truth or knowledge that cannot be revised
Monotone operators

- An operator $O$ is monotone if $x \leq y$ implies $O(x) \leq O(y)$
- Knaster-Tarski Theorem: a monotone operator on a complete lattice has a least fixpoint
### Antimonotone operators

- An operator $O$ is antimonotone if $x \leq y$ implies $O(y) \leq O(x)$
- If $O$ is antimonotone then $O^2$ is monotone:

$$x \leq y \implies O(y) \leq O(x) \implies O^2(x) \leq O^2(y)$$

- Oscillating pair: $(x, y)$ is an **oscillating pair** for an operator $O$ if $O(x) = y$ and $O^2(x) = x$
- Antimonotone operator $O$ has an **extreme** oscillating pair

$$(\text{lfp}(O^2), \text{gfp}(O^2))$$
A pair \((x, y)\) approximates an element \(z\) if \(x \leq z \leq y\)

Orderings of approximations:

- **Information (or precision) ordering**: \((x_1, y_1) \leq_i (x_2, y_2)\) iff \(x_1 \leq x_2\) and \(y_2 \leq y_1\)
- **Truth ordering**: \((x_1, y_1) \leq_t (x_2, y_2)\) iff \(x_1 \leq x_2\) and \(y_1 \leq y_2\)

Bilattice \(\langle L^2, \leq_i, \leq_t \rangle\)

A pair \((x, y)\) is **consistent** if \(x \leq y\), and **inconsistent**, otherwise.

An element \((x, y)\) is **complete** if \(x = y\)
Bilattices - examples

Bilattice \textit{FOUR}

$\leq_t \quad \leq_i$

- set of all pairs of 2-valued interpretations (identified with 4-valued interpretations)
- componentwise extension of the orderings from \textit{FOUR}

Bilattice $\mathcal{A}_4$
Bilattices - examples

Bilattice \textit{FOUR}

\begin{center}
\begin{tikzpicture}
  \node (a) at (0,0) {$(f,f)$};
  \node (b) at (1,1) {$(t,f)$};
  \node (c) at (1,0) {$(t,t)$};
  \node (d) at (0,1) {$(f,t)$};

  \draw (a) -- (b);
  \draw (b) -- (c);
  \draw (c) -- (d);
  \draw (d) -- (a);

  \draw[->] (-1,0) -- (2,0) node[below] {$\leq t$};
  \draw[->] (0,-1) -- (0,2) node[left] {$\leq i$};
\end{tikzpicture}
\end{center}

Bilattice $\mathcal{A}_4$

- set of all pairs of 2-valued interpretations (identified with 4-valued interpretations)
- componentwise extension of the orderings from \textit{FOUR}
Bilattices - examples, cont’d

Bilattice $\mathcal{B}$

- Family of pairs of sets of 2-valued interpretations
- **Belief pairs**
  - $(P_1, S_1) \sqsubseteq_i (P_2, S_2)$ if $P_2 \subseteq P_1$ and $S_1 \subseteq S_2$
  - $(P_1, S_1) \sqsubseteq_t (P_2, S_2)$ if $P_2 \subseteq P_1$ and $S_2 \subseteq S_1$
Approximating operators

Key definitions, some notation

- $A : L^2 \rightarrow L^2$ approximates $O : L \rightarrow L$ if
  - $A(x, x) = (O(x), O(x))$
  - $A$ is $\leq_i$-monotone
  - $A$ is symmetric: $A^1(x, y) = A^2(y, x)$, where $A(x, y) = (A^1(x, y), A^2(x, y))$

Properties

- Approximating operators are consistent
- Complete fixpoints of $A$ correspond to fixpoints of $O$
- Every fixpoint of $A$ is approximated by the least fixpoint of $A$: Kripke-Kleene fixpoint of $A$
- Kripke-Kleene fixpoint of an approximating operator is consistent
Approximating operators

Key definitions, some notation

- $A : L^2 \rightarrow L^2$ approximates $O : L \rightarrow L$ if
  - $A(x, x) = (O(x), O(x))$
  - $A$ is $\leq_i$-monotone
  - $A$ is symmetric: $A^1(x, y) = A^2(y, x)$, where $A(x, y) = (A^1(x, y), A^2(x, y))$

Properties

- Approximating operators are consistent
- Complete fixpoints of $A$ correspond to fixpoints of $O$
- Every fixpoint of $A$ is approximated by the least fixpoint of $A$: Kripke-Kleene fixpoint of $A$
- Kripke-Kleene fixpoint of an approximating operator is consistent
Getting down to business!

Stable operators

- If \( A : L^2 \rightarrow L^2 \) is \( \leq_i \)-monotone then \( A^1(\cdot, y) \) and \( A^2(x, \cdot) \) are monotone
- For \( \leq_i \)-monotone operator \( A : L^2 \rightarrow L^2 \) define:
  \[
  C^l_A(y) = \text{lfp}(A^1(\cdot, y)) \quad \text{and} \quad C^u_A(x) = \text{lfp}(A^2(x, \cdot))
  \]
- Since \( A \) is symmetric, \( C^l_A = C^u_A = C_A \)
- Stable operator for \( A \):
  \[
  C_A(x, y) = (C_A(y), C_A(x))
  \]
- Stable fixpoints (relative to \( C_A \))
- \( \leq_i \)-least fixpoint of \( C_A \) — well-founded (WF) fixpoint of \( A \)
Properties of stable operators

All quite easy to prove, in fact

- $C_A$ is antimonotone
- $C_A$ is $\leq_i$-monotone and $\leq_t$-antimonotone
- Fixpoints of $C_A$ are $\leq_t$-minimal fixpoints of $A$
- Complete fixpoints of $C_A$ correspond to fixpoints of $C_A$
- Complete fixpoints of $C_A$ are fixpoints of $O$
- K-K fixpoint of $A \leq_i$ WF fixpoint of $A$
Fitting

- Lattice $\mathcal{A}_2$, bilattice $\mathcal{A}_4$
- Operators associated with program $P$
  - 2-valued van Emden-Kowalski operator $T_P$
  - Its approximation: 4-valued van Emden-Kowalski operator $\mathcal{T}_P$
  - 2-valued stable operator (Gelfond-Lifschitz operator $GL_P$)
  - Stable operator $C_P$ of $T_P$ (operator $\Psi'_P$ of Przymusinski)
- Semantics
  - Supported models: fixpoints of the operator $T_P$ ($T_P$)
  - Kripke-Kleene semantics: least fixpoint of $T_P$
  - Stable models: fixpoints of the operator $C_P$ ($C_P$)
  - Well-founded semantics: least fixpoint of $C_P$
Central role of $T_P$
Truth assignment function $H_{V,I}$

- For atom $p$: $H_{V,I}(p) = I(p)$
- The boolean connectives — standard way
  - $H_{V,I}(KF) = t$, if for every $J \in V$, $H_{V,I}(F) = t$
  - $H_{V,I}(KF) = f$, otherwise

AE models, expansions

- Moore’s operator $D_T : \mathcal{W} \to \mathcal{W}$

$$D_T(V) = \{ I : H_{V,I}(T) = t \}$$

- Fixpoints of $D_T$ — autoepistemic models of $T$
- Autoepistemic models generate expansions
Autoepistemic Logic — case study 2

Truth assignment function $\mathcal{H}_{V,I}$

- For atom $p$: $\mathcal{H}_{V,I}(p) = I(p)$
- The boolean connectives — standard way
  - $\mathcal{H}_{V,I}(KF) = t$, if for every $J \in V$, $\mathcal{H}_{V,J}(F) = t$
  - $\mathcal{H}_{V,I}(KF) = f$, otherwise

AE models, expansions

- Moore’s operator $D_T: \mathcal{W} \rightarrow \mathcal{W}$
  \[ D_T(V) = \{ I: \mathcal{H}_{V,I}(T) = t \} \]
- Fixpoints of $D_T$ — autoepistemic models of $T$
- Autoepistemic models generate expansions
AEL — approximating operators

The setting

- Lattice $\mathcal{W}$, bilattice $\mathcal{B}$
- $\mathcal{H}^4_{(V,V'),I}$
- Approximating operator for $D_T$ — $D_T$ (DMT 98)

$$D_T(V, V') = (\{ I: H^4_{(V,V'),I}(T) \geq_t (f, t) \}, \{ I: H^4_{(V,V'),I}(T) \geq_t (t, f) \})$$

- Complete fixpoints of $D_T$ — autoepistemic models of $T$
- The least fixpoint of $D_T$ — Kripke-Kleene fixpoint
  - approximates all autoepistemic models of $T$
- The stable operator for $D_T$: $C_T(V, V') = (C_T(V'), C_T(V))$
- What are the fixpoints of $C_T$?
Central role of $D_T$
Default Logic — case study 3

Same setting as for AEL

- Lattice $\mathcal{W}$, bilattice $\mathcal{B}$
- $\mathcal{H}_V, I(\varphi) = I(\varphi)$, for every formula $\varphi$
- $d = \frac{\alpha: \beta_1, \ldots, \beta_k}{\gamma}$
- $\mathcal{H}_V, I(d) = t$ iff
  - there is $J \in V$ such that $J(\alpha) = f$, or
  - there is $i$, $1 \leq i \leq k$ such that for every $J \in V$, $J(\beta_i) = f$, or
  - $I(\gamma) = t$
- Weak-extension operator $E_\Delta$ ($\Delta$ — default theory):
  \[
  E_\Delta(V) = \{ I \in A_2 : \mathcal{H}_V, I(\Delta) = t \}
  \]
- Fixpoints of $E_\Delta(V)$ — default models of weak extensions of $\Delta$
4-valued truth assignment, approximating operator

- $\mathcal{H}_4(V, V', I)$
- Approximating operator for $E_\Delta \rightarrow E_\Delta$

$$E_\Delta(V, V') = (\{ I : \mathcal{H}_4(V, V', I(\Delta) \geq_t (f, t) \}, \{ I : \mathcal{H}_4(V, V', I(\Delta) \geq_t (t, f) \})$$

- Complete fixpoints of $E_\Delta$ — models of weak extensions of $\Delta$
- The least fixpoint of $E_\Delta$ — Kripke-Kleene fixpoint
  - approximates all default models of weak extensions of $\Delta$
Stable operator

- The stable operator for $E_\Delta$:
  \[ C_\Delta(V, V') = (C_\Delta(V'), C_\Delta(V)) \]

- $C_\Delta$ — Guerreiro-Casanova operator $\Sigma_\Delta$

- Fixpoints of $C_\Delta$ — default models of Reiter's extensions

- Consistent fixpoints of $C_\Delta$ — stationary extensions by Przymusinski

- Well-founded fixpoint of $E_\Delta$ (least fixpoint of $C_\Delta$ — well-founded semantics of default logic by Baral and Subrahmanian)
DL explained

Central role of $E_\Delta$

Diagram:

```
E_\Delta \rightarrow E_\Delta \rightarrow C_\Delta
\quad \Quad
Strong parallels!

c ← a, not b  ⇒  \[ \frac{a \leftarrow \neg b}{c} \]
Connections

Strong parallels!

$c \leftarrow a, \text{not } b \Rightarrow \frac{a \rightarrow \neg b}{c}$

$\frac{\alpha \lor \beta}{\gamma} \Rightarrow K\alpha \land \neg K\neg \beta \supset \gamma$
Thank you!