
8/20/2008

1

FOUNDATIONS OF

CONSTRAINT PROGRAMMING

AND CONSTRAINT LOGIC

PROGRAMMING

K. Brent Venable University of Padova, Italykvenable@math.unipd.it

General Outline

 Foundations of Constraint Programming

 what is constraint programming

 short history

 search

 inference

 combining search and inference

 Foundations of Constraint Logic programming

 CP+LP=CLP

 short history

 operational semantics

 semantics of success

 semantics of finite failure

CP: CONSTRAINT PROGRAMMING

What is a constraint?

 Constraint is an arbitrary relation over a set of variables.

– domain of a variable: set of possible values it can take

– the constraint restricts the possible combinations of values

 Examples:

– X is less than Y

– a sum of angles in the triangle is 180°

– the temperature in the warehouse must be in the range 0-5°C

– John can attend the lecture on Wednesday after 14:00

 Constraint can be described:

– intentionally (as a mathematical/logical formula), e.g., X<Y

– extensionally (as a table describing compatible tuples)

– Example : D(X)=D(Y)={1,2}, constraint “X less than Y”, {(X=1,Y=2)}

8/20/2008

2

Constraint Satisfaction Problem

 CSP (Constraint Satisfaction Problem) consists of:

– a finite set of variables

– domains - a finite set of values for each variable

– a finite set of constraints

 A solution to CSP is a complete assignment of variables satisfying all

the constraints.

 CSP is often represented as a (hyper)graph.

 Example:

 variables x1,…,x6 domain {0,1}

Constraints :

 Constraints: c1: x1+x2+x6=1,

c2: x1-x3+x4=1, c3: x4+x5-x6>0

c4: x2+x5-x6=0

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

c2

x1 x2 x3 x4
x6x5

c1

c3

c4

Example of CSP: cryptoarithmetic problem

SEND + MORE = MONEY

assign different single-digit positive integers to different letters

S and M are not zero

This problem can be modelled by the following CSP

Variables E,N,D,O,R,Y,S,M,P1,P2,P3

Domains

D(E)=D(N)=D(D)=D(O)=D(R)=D(Y)={0,...,9}

D(S)=D(M)= {1,...,9},

D(P1)=D(P2)=D(P3)={0,1}

Constraints all_different(S,E,N,D,M,O,R,Y)

D+E = 10*P1+Y

P1+N+R = 10*P2+E

P2+E+O = 10*P3+N

P3+S+M = 10*M +O

Example of CSP: n Queens Problem

 Place n queens in an nxn chessboard such that they

do not attack each other

 Variables: x1,...,xn (one per column)

 Domains: [1..n] (row position of a queen)

 Constraints:

 xi xj for all i,j (no attack on a row)

 xi-xj i-j (no attack on the SW-NE diagonal)

 xi-xj j-i (no attack on a NW-SE diagonal)

The early days of CP(1)

 The very early days: Theseus used backtrack to find his
way in the labyrinth in Crete

 1848: chess player Bazzel proposed the 8-queens
problems

 1963 Sutherland‟s Ph.D. thesis “SketchPad: a man-
machine graphical communication system”

 Two main streams of research:

 The language stream:
 1970: Fikes proposes the REF-ARF language (1st issue fo AIJ!) REF

language part of a general problem solving system using
constraint satisfaction and propagation

 Kowalski: constraints for theorem proving

 Sussman and Steel: the CONSTRAINTS language

 Borning: extends Smalltalk to ThingLab using constraints

8/20/2008

3

The early days of CP(2)

 The algorithm stream

 1975: Waltz proposes arc consistency in his PH.D. thesis on
scene labeling

 Montanari: “Networks of constraints: fundamental properties
and applications to picture processing”
 path consistency

 general framework for constraints

 Mackworth: “Consistency in networks of relations”
 a new algorithm for arc consistency

 Freuder: generalizes arc and path consistency to k-
consistency

 Rosenfeld, Hummel and Zucker: introduce soft constraint as
different levels of compatibility

Why should you care about constraint

programming?

 Sooner or later you will be asked to solve some horribly
complicated problem…

 CP provides a very general for modeling problems

 CP may help you understand the problem you have to solve

 Many powerful solving techniques have been
developed for problems modeled via CP

 A CP solver may actually solve the problem for you

 This is why CP has proven useful in many application
domains

Constraints in A.I. planning and

scheduling

 Scheduling problem =
a set of activities has to be
processed by a limited number
of resources in a limited amount
of time.

 Combinatorial optimisation

Planning problem =

find a set of activities to achieve a given

goal

MER project

– CP helped Spirit and Opportunity

figure when it was better to do things

Constraints in bioinformatics

 Design of a 3D protein
structure from the
sequence of amino-acids
(3D structure determines
features of proteins)

 Analysing a sequence of
DNA, estimating a
distance between DNAs,
comparing DNAs

8/20/2008

4

Search

 Basic strategy

 assign values to variables: enumerate solutions

 see what happens: use constraints as tests

 Local search

 explore the search space by small steps

 systematic search

 explores the space of all assignments systematically

 non-systematic search

 some assignments may be skipped during search

Systematic search

 Explore systematically the space of all assignments

 systematic = every valuation will be explored sometime

 Features:

 + complete (if there is a solution, the method finds it)

 - it could take a lot of time to find the solution

 Basic classification:

Explore complete assignments
generate and test

same search space is used by local search (non-systematic)

Extending partial assignments

tree search

Generate and test (GT)

 The most general problem solving method

 1) generate a candidate for solution

 2) test if the candidate is really a solution

 How to apply GT to CSP?

 1) assign values to all variables

 2) test whether all the constraints are satisfied

 GT explores complete but inconsistent assignments until a (complete)

consistent assignment is found.

Pros and Cons GT

 The greatest weakness of GT is exploring too many

“visibly” wrong assignments.

 Example:

X,Y,Z::{1,2} X = Y, X Z, Y > Z

How to improve generate and test?

smart generator

smart (perhaps non-systematic) generator that uses result of test

 local search techniques

earlier detection of clash

constraints are tested as soon as the involved variables are

instantiated backtracking-based search

X

Y

Z

1

1

1

1

1

2

1

2

1

1

2

2

2

1

1

2

1

2

2

2

1

8/20/2008

5

Local search techniques

Local search

 One way to overcome GT cons

 Assume an assignment is inconsistent

 The next assignment can be constructed in such a way

that constraint violation is smaller.

– only “small” changes (local steps)of the assignment are

allowed

– next assignment should be “better” than previous

 better = more constraints are satisfied

– assignments are not necessarily generated systematically

 we lose completeness but we (hopefully) get better efficiency

Local search terminology

 Search Space S: set of all complete variable assignments

 Set of solutions Sol:

 subset of the search space

 all assignments satisfying all the constraints

 Neighborhood relation: a subset of SxS indicating what assignments can
be reached by a search step given the current assignment during the search
procedure

 Evaluation function: mapping each assignment to a real number
representing “how far the assignment is from being a solution”

 Initialization function: which returns an initial position given a possibility
distribution over the assignments

 Step function: given an assignment, it neighborhood and the evaluation
function returns the new assignment to be explored by the search

 Set of memory states (optional): holding information about the state of
the search mechanism.

 Termination criterion: stopping the search when satisfied

Local search for CSPs

 Neighborhood of an assignment: all assignments
differing on one the value of one variable (1-exchange-
neighborhood)

 Evaluation function: mapping each assignment to the
number of constraints it violates

 Initialization function: returns an initial assignment
chosen randomly

 termination criterion: if a solution is found or if a given
number of search steps is exceeded.

 The different algorithms are characterized by the step
function and use of memory.

8/20/2008

6

Hill Climbing

 The basic technique of local search.

 starts at a randomly generated assignment

 At each state of the search

 Iterative Best-improvement: move to the assignment in
the neighbourhood violating the minimum number of
constraint

 Iterative-First-improvement: choose the first improving
neighbour in a given order

 if multiple choices choose one randomly

neighbourhood = differs in the value of any variable

neighbourhood size = i=1..n(Di-1) (= n*(d-1))

Min-Conflicts (Minton, Johnston, Laird 1997)

 Conflict set of an assignment: set of variables
involved in some constraint violating that assignment

 Min-conflict LS procedure:

 starts at randomly generated assignment

 at each state of the search

 selects a variable from the current conflict set

 selects a value for that variable that minimizes the
number of violated constraints

 if multiple choices choose one randomly

 neighbourhood = different values for the selected variable

 neighbourhood size = (d-1)

Local minima

 The evaluation function can have:

 local minimum - a state that is not minimal and there is

no state with better evaluation in its neighbourhood

 strict local minimum - a state that is not minimal and

there are only states with worse evaluation in its

neighbourhood

 global minimum - the state with the best evaluation

 plateau - a set of neighbouring states with the same

evaluation

Graphically…

plateau
local

minimum
local minimum

global

minimum

e
v

a
lu

a
tio

n

non-strict local

minimum

solutions

n. o
f vio

la
te

d
 co

nstra
ints

8/20/2008

7

Escaping local minima

 A local search procedure may get stuck in a local

minima

 Techniques for preventing stagnation

 restart

 allowing non improving steps random walk

 changing the neighborhood tabu search

 changing the evaluation function penalty-based

search strategies

Restart

 Re-initialize the search when the after MaxSteps

(non-strictly improving) steps

 New assignment chosen randomly

 Can be combined both with hill-climbing and Min-

conflicts

 It is effective if MaxSteps is chose correctly and

often it depends on the instance

Random walk

 Add some “noise” to the algorithm!

 Random walk

 a new assignment from the neighbourhood is selected
randomly (e.g., the value is chosen randomly)

 such technique can hardly find a solution

 so it needs some guide

 Random walk can be combined with the heuristic
guiding the search via probability distribution:

 p: probability of using the random walk (noise setting)

 (1-p) : probability of using the heuristic guide

 Steepest descent random walk: RW+Hill climbing

 Min-conflicts random walk

Tabu search

 Being trapped in local minimum can be seen as cycling.

 How to avoid cycles in general?

 Remember already visited states and do not visit them again.

• memory consuming (too many states)

 It is possible to remember just a few last states.

• prevents „short“ cycles

 Tabu list = a list of forbidden states

 variable, value - describes the change of the state (a previous value)

 tabu list has a fix length k (tabu tenure)

 „old“ states are removed from the list when a new state is added

 state included in the tabu list is forbidden (it is tabu)

 Aspiration criterion = enabling states that are tabu

 i.e., it is possible to visit the state even if the state is tabu

 example: the state is better than any state visited so far

(the incumbent candidate solution)

Algorithm TS-GH

Galinier anf Hao 1997

8/20/2008

8

Penalty-based algorithms

 Modify the evaluation function when the search is

about to stagnate

 Evaluation of an assignment depends on the

constraints

 Associate weights to constraints and change them

during the search

 Result: the search “learns” to distinguish important

constraints

GENET

 Neural Network

 node variable assignment

 CSP variable cluster of NN nodes corresponding to its assignments

 links between assignments violating some constraint

 penalty weights associated to links

 1 at the beginning

 Assignment only the nodes corresponding to the assignments are
switched on

 Each node receives a signal from the neighboring nodes that are switched
on with strength equal to the weight of the link

 For each cluster the nodes with the smallest incoming signal are switched on

 When the search stabilizes in a state, the weights of the links among the
active nodes is increased by one

 Solution when the minimum signal is 0 for all clusters

Breakout Method

 Similar to GENET

 Weights are associated to constraints

 Evaluation of an assignment = weighted sum of the

violated constraints

 When a local minimum is reached the weights of the

violated constraints is increased by one

Localizer (Michel, Van Hentenryck 1997)

 The local search algorithms have a similar structure that can be encoded in

the common skeleton. This skeleton is filled by procedures implementing a

particular technique.

procedure local-search(Max_Tries,Max_Moves)

s random assignment of variables

for i:=1 to Max_Tries while Gcondition do

for j:=1 to Max_Moves while Lcondition do

if eval(s)=0 then

return s

end if

select n in neighbourhood(s)

if acceptable(n) then

s n

end if

end for

s restartState(s)

end for

return best s

end local-search

8/20/2008

9

Systematic search techniques

Backtracking

 Key idea: extend a partial consistent assignment until a complete consistent

assignment is found

 The most widely used systematic search algorithm

 Basically : depth-first search

 Backtracking for CSP

 1) assign values to variables incrementally

 2) after each assignment test the constraints over the assigned variables (and

backtrack upon failure)

 Parameters:

 In which order to assign variables

 what is the order of values?

• problem dependent

Algorithm chronological backtracking

Backtracking is always better than generate and test!

procedure BT(X:variables, V:assignment, C:constraints)

if X={} then return V

x select a not-yet assigned variable from X

for each value h from the domain of x do

if constraints C are consistent with V+{x/h} then

R BT(X-x, V+{x/h}, C)

if Rfail then return R

end for

return fail

call BT(X, {}, C)

Cons of backtracking(1)

 thrashing

 throws away the reason of the conflict

 Example: A,B,C,D,E:: 1..10, A>E

 BT tries all the assignments for B,C,D before finding that A1

 Solution: backjumping (jump to the source of the failure)

 redundant work

 unnecessary constraint checks are repeated

 Example: A,B,C,D,E:: 1..10, B+8<D, C=5*E

when labelling C,E the values 1,..,9 are repeatedly checked for

D

 Solution: remember (no-)good assignments

8/20/2008

10

Cons of backtracking(2)

 late detection of the conflict

 constraint violation is discovered only when the values

are known

 Example: A,B,C,D,E::1..10, A=3*E

the fact that A>2 is discovered when labelling E

 Solution: forward checking (forward check of

constraints)

No-good

 Informally, a No-good is a set of assignments that is
not consistent with any solution

 Let p={X1=a1, X2=a2,…,Xk=ak} be a deadend of
the search tree

 A jumpback no-good for p is defined recursively

 If p is a leaf node and C is a constraint violated by p

 J(p)={Xh=ah| Xh is in vars(C)}

 otherwise, le {Xk+1=v1, …Xk+1=vj} be all the possible
extensions to Xk+1 tempted by the search

 J(p)= ∪i=1..j (J(p∪ {Xk+1=vi})- {Xk+1=vi})

Example of No-good

p={X1=2,X2=5,X3=3,X4=1,X5=4}

J(p)= ∪i=1..j (J(p∪ {Xk+1=vi})-

{Xk+1=vi})

J(p)=(J(p ∪{X6=1})-{X6=1}) ∪
… ∪ (J(p∪ {X6=6})-{X6=6})=…

Choosing constraints in lex order

…={X2=5} ∪… ∪{X3=3}=

{X1=2,X2=5,X3=3,X5=4}

J(p)={Xh=ah| Xh is in vars(C)}

Backjumping (Gaschnig 1979)

 Backjumping is used to remove thrashing.

1. identify the source of the conflict (impossible to assign a value)

2. jump to the past variable in conflict

 irrelevant assignments are skipped and undone!

 Where to jump to when at dead-end p:

 Without No-goods

 select the constraints containing just the currently assigned variable and the past

variables

 select the closest variable participating in the selected constraints

 With No-goods

 select the Xi where i is the largest index in J(p) x
1 2 3 4 5

8/20/2008

11

Example of Backjump with no good

p={X1=2,X2=5,X3=3,X4=1,X5=4}

J(p)={X1=2,X2=5,X3=3,X5=4}

Undo X5=4

Weakness of backjumping

 When jumping back the in-between assignment is lost!

 Example:
 colour the graph in such a way that the connected vertices have

different colours

1

2

1 2

1 2 3

1 2 3

A

C

B

D

E

node vertex

A

B

C

D

E

1

21

1 2

1 2

1 2 3

During the second attempt to label C superfluous work is done

- it is enough to leave there the original value 2, the change of B

does not influence C.

Dynamic backtracking

 The same graph (A,B,C,D,E), the same colours (1,2,3) but

a different approach.

AC B

D

E
node 1 2 3

A

B A

C A

D A B

E A B D

node 1 2 3

A

B A

C A

D A B AB

E A B

node 1 2 3

A

C A

B A

D A

E A B
jump back

+ carry the conflict source

jump back

+ carry the conflict source

+ change the order of B, C

Backjumping

+ remember the source of the conflict

+ carry the source of the conflict

+ change the order of variables

= DYNAMIC BACKTRACKING

The vertex C (and the possible sub-graph connected to C) is

not re-coloured.

 selected color

AB a source of the conflict

Inference

8/20/2008

12

Constraint propagation

 Transform a CSP into an equivalent simpler CSP

 Main idea: remove elements from domains or tuples
from constraints if they cannot participate in any
solution

 Aim: to obtain a local consistency property

 Example:

 A in 3..7, B in 1..5 the variables‟ domains

 A<B the constraint

 many inconsistent values can be removed

 we get A in 3..4, B in 4..5
 Note: it does not mean that all the remaining combinations of the values are

consistent (for example A=4, B=4 is not consistent)

Node consistency (NC)

 Node consistency:

– The vertex representing the variable X is node consistent iff

every value in the variable‟s domain Dx satisfies all the

unary constraints imposed on the variable X.

– CSP is node consistent iff all the vertices are node consistent.

X

D(X)={1,2,3,4}

2

4

Arc consistency (AC)

– A value v∈D(X) is said to have support in constraint c consistent if

there is an assignment satisfying c in which X=v

– A constraint c is arc consistent iff every value in the domain of each

of its variables has support in c

– CSP is arc consistent iff every constraint is arc consistent.

 Usually we say Arc Consistency (AC) for binary constraints and Generalized

Arc Consistency if there are non binary constraints

3..7 1..5

A<B

no arc is consistent

A B
3..4 1..5

A<B

no arc is consistent

A B
3..4 4..5

A<B

arc is consistent

A B

Arc Revision

 How to make the domain of a variables arc consistent w.r.t.
a constraint?

 Delete all the values x from the domain D that are
inconsistent with all the assignment to the other variables.

 Binary case:

 delete v from D(X) if there is no value w in D(Y) such that the
valuation X = v, Y = w satisfies the binary constrains on X and Y

 Arc (X,c)

 Revise(X,c): removes from D(X) all the values without support
in c

 Returns

 true if the domain has been reduced

 false otherwise

8/20/2008

13

AC-1

 Loop over all arc revisions (pairs (variable,

constraint)) until no change occurs.

What is wrong with AC-1?

 If a single domain is pruned then revisions of all the arcs

are repeated even if the pruned domain does not

influence most of these arcs.

 What arcs should be reconsidered for revisions?

 The arcs involving variables whose consistency is affected

by the domain pruning

 i.e., the arcs with variables involved in some

constraints with the reduced variable.

AC-2 and AC-3

 AC-2(Mackworth „77)

 In every step, the arcs involving a given variable are
processed (i.e. a sub-graph of visited nodes is AC)

 AC-3 (Mackworth „77)

1. Put all arcs in a queue Q

2. While Q not empty

3. (X,c)=Pop(Q)

4. If Revise((X,c)) wipes out the domain of X: stop

5. else

6. if revise(X,c) returns true add to Q all arcs (Y,c‟) such that
c‟ involves X and Y

Complexity of AC-3

 For binary constraint networks

 Time: O(ed3)

 e: number of constraints

 d: domain size

 Proof:

 (X,c) is revised only when it is in the Q

 (X,c) is inserted in the Q only when the domain of some Y involved with X
in c has been revised

 This can happen at most d times

 there are 2e arcs (X,c)

 Thus 2ed revisions each costing at most d2

 Space: O(e) : the queue contains at most e elements

8/20/2008

14

Looking for (and remembering of) the

support

With AC-3 many pairs of values are tested for consistency in

every arc revision and these tests are repeated every time

the arc is revised.

a

b

c

d

a

b

c

d

a

b

c

d

V1 V2 V3

1. When the arc (V2,c12) is revised, the

value a is removed from domain of V2.

2. Now the domain of V3, should be

explored to find out if any value

a,b,c,d loses the support in V2.

Observation:

The values a,b,c need not be checked again because they still have a

support in V2 different from a.

The support set for aDi is the set {<xj,b> | bDj , (a,b)Ci,j}

Compute the support sets once and then use them during re-revisions.

1

2

Support sets

 For each constraint c on variables X and Y, for each

value of v in D(X) (and D(Y))

 Compute:

 Counter(X,v,Y): how many supports does v have in c

 Support set (or list) S(X,v,Y): set of values of Y

supported by v in c

 if the v disappears then these values lose one

support

AC-4 (Mohr and Anderson ‟86)

counter(i,j),_

2

2

1

Sj,_

<i,a1>,<i,a2>

<i,a1>

<i,a2>,<i,a3>

i

a1

a2

a3

j

b1

b2

b3

Using the support sets:

1. Assume b3 is deleted from the domain of j (for some reason).

2. Look at Sj,b3 to find out the values that were supported by b3

(i.e. <i,a2>,<i,a3>).

3. Decrease the counter for these values (they lost one support).

4. If any counter is zero (a3) then delete the value and repeat the

procedure for the values it supported (i.e., go to 1).

counter(i,j),_

2

2

1

Sj,_

<i,a1>,<i,a2>

<i,a1>

<i,a2>,<i,a3>

i

a1

a2

a3

j

b1

b2

b312

1

00

Complexity of AC-4

 On binary constraint networks

 Time: O(ed2)

 e: number of constraints

 d: domain size

 for each value for each constraint I must look for support
only once: at most e2d times

 Looking for support takes d

 Thus O(ed2)
 optimal!

 Space: O(ed2)

 Maximal total size of the support lists

8/20/2008

15

Other arc consistency algorithms

 AC-4: optimal worst case but bad average case and bad space complexity

 AC-6 (Bessiere 1994)

– improves memory complexity and average time complexity of AC-4

– keeps one support only, the next support is looked for when the current

support is lost

– Complexity

– time O(ed2)

– Space O(ed)

 AC-2001

– Similar to AC-3

– Pointer Last[X,v,Y]: is the “smallest” value of Y supporting v in c

– Complexity as AC-6

Directional arc consistency (DAC)

 Observation 1: arc revisions have a directional character

but CSP is not directional.

 Observation 2: AC has to repeat arc revisions; the total

number of revisions depends on the number of arcs but

also on the size of domains.

 Weakening AC assuming an order over the variables

 Definition: A binary CSP is directional arc consistent using a

given order of variables iff for every constraint c(Xi,Xj)

such that Xi<Xj the (Xi,c) is arc consistent in c.

How to use DAC

 AC is stronger than DAC (if CSP is AC then it is DAC as well)

 So, is DAC useful?

– DAC-1 is surely much faster than any AC-x

– there exist problems where DAC is enough

 Example: If the constraint graph forms a tree then DAC is enough to solve the

problem without backtracks.

 How to order the vertices for DAC?

 How to order the vertices for search? 1. Apply DAC in the order from

the leaf nodes to the root.

2. Label vertices starting from

the root.

DAC guarantees that there is a

value for the child node

compatible with all the parents.

Is arc consistency enough?

 By using AC we can remove many incompatible values

– Do we get a solution?

– Do we know if there exists a solution?

 Unfortunately, the answer to both above questions is NO!

 Example:
X

Y
Z

XZ
XY

YZ

{1,2}

{1,2} {1,2}

CSP is arc consistent

but there is no solution

So what is the benefit of AC?

Sometimes we have a solution after AC

• a domain is empty no solution exists

• all the domains are singleton we have a solution

In general, AC prunes the search space equivalent easier problem

8/20/2008

16

Singleton Arc Consistency

 Another possible relaxation of AC

 A CSP P is SAC iff for every variable X and for

every value v in D(X) then P|X=v is not arc

inconsistent

Consistency techniques in practice

 N-ary constraints are processed directly!

 The constraint CY is arc consistent iff for every variable i constrained by CY and

for every value vDi there is an assignment of the remaining variables in CY

such that the constraint is satisfied.

 Example: A+B=C, A in 1..3, B in 2..4, C in 3..7 is AC

 Constraint semantics is used!

 Interval consistency

 working with intervals rather than with individual values

 interval arithmetic

 Example: after change of A we compute A+B C, C-A B

 bounded consistency

 only lower and upper bound of the domain are propagated

 Such techniques do not provide full arc consistency!

 It is possible to use different levels of consistency for different constraints!

Path consistency (PC)

 How to strengthen the consistency level?

 Require consistency over more than one constraint

 Path (V0,V1,…, Vm) is path consistent iff for every pair of values

xD0 a yDm satisfying all the binary constraints on V0,Vm there

exists an assignment of variables V1,…,Vm-1 such that all the binary

constraints between the neighbouring variables Vi,Vi+1 are satisfied.

 CSP is path consistent iff every path is consistent.

 Path consistency does not guarantee that all the constraints among

the variables on the path are satisfied; only the constraints between

the neighbouring variables must be satisfied.

 For PC it is sufficient to look only at paths of length 2

Montanari
V0 V1

V 2

V3

V4

???

Operations over the constraints

Composition Rik * Rkj Rij

binary matrix multiplication

A<B * B<C A<C-1

011 011 001

001 * 001 = 000

000 000 000

The induced constraint is joined with the original constraint

Rij & (Rik * Rkj) Rij

R25 & (R21 * R15) R25

01101 00111 01110 01101

10110 00011 10111 10110

11011 & 10001 * 11011 = 01010

01101 11000 11101 01101

10110 11100 01110 10110

1

2

3

4

5

A B C D E

Rij = RT
ji, Rii is a diagonal matrix representing the domain

REVISE((i,j)) from AC is equivalent to Rii Rii & (Rij * Rjj * Rji)

Intersection Rij & R‘ij

bitwise AND

A<B & AB-1 B-1A<B

011 110 010

001 & 111 = 001

000 111 000

8/20/2008

17

PC-1 and PC-2

 PC-1 (Mackworth 77)

 How to make the path (i,k,j) consistent?
 Rij Rij & (Rik * Rkk * Rkj)

 How to make a CSP path consistent?

 Repeated revisions of all paths (of length 2) while any

domain changes.

 PC-2 (Mackworth 77)

 Paths in one direction only (attention, this is not DPC!)

 After every revision, the affected paths are re-revised

Other path consistency algorithms

 PC-3 (Mohr, Henderson 1986) and PC-4 (Han, Lee 1988)

– based on computing supports for a value (like AC-4)

 PC-5 (Singh 1995)

– uses the ideas behind AC-6

– only one support is kept and a new support is looked for

when the current support is lost

Drawbacks of path consistency

 Memory consumption

– because PC eliminates pairs of values, we need to keep all the compatible

pairs extensionally, e.g. using {0,1}-matrix

 Bad ratio strength/efficiency

– PC removes more (or same) inconsistencies than AC, but the

strength/efficiency ratio is much worse than for AC

 Modifies the constraint network

– PC adds redundant arcs (constraints) and thus it changes connectivity of the

constraint network

– this complicates using heuristics derived from the structure of the constraint

network (like tightness, graph width etc.)

 PC is still not a complete technique

– A,B,C,D in {1,2,3}

AB, AC, AD, BC, BD, CD

is PC but has not solution

1,2,3 1,2,3

1,2,3 1,2,3

Restricted path consistency(Berlandier „95)

 A binary CSP is Restricted Path Consistent iff

 it is arc consistent

 for every constraints c(XY)

 for each v in D(X) which has a unique support w in D(Y)

 for each variable Z connected to X and Y

 there is a value z of D(z) such that (v,z) satisfies c(X,Z) and

(z,w) satisfies C(Z,Y)

 Stronger than AC weaker than PC

8/20/2008

18

k-consistency

 Is there a common formalism for AC and PC?

 AC: a value is extended to another variable

 PC: a pair of values is extended to another variable

 … we can continue

 Definition: CSP is k-consistent iff any (locally) consistent

assignment of (k-1) different variables can be extended to a

consistent assignment of one additional variable.

1,2,3 1,2,3 1,2,3 4

4-consistent graph

Strong k-consistency

 Definition: CSP is strongly k-
consistent iff it is
j-consistent for every jk.

 Visibly: strong k-consistency
k-consistency

 Moreover: strong k-consistency
 j-consistency jk

 In general: k-consistency
 strong k-consistency

 NC = strong 1-consistency = 1-
consistency

 AC = (strong) 2-consistency

 PC = (strong) 3-consistency

1,2 1,2 1,2,3
= =

=

3-consistent graph

but not 2-consistent graph!

What k-consistency is enough?

 Assume that the number of

vertices is n. What level of

consistency do we need in

order to find a solution?

 Strong n-consistency for

graphs with n vertices!

 n-consistency is not enough

 strong k-consistency where

k<n is not enough as well

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

…

…

graph with n vertices

domains 1..(n-1)

It is strongly k-consistent for k<n

but it has no solution

1,2 1,2,3=

<

<

1,2,31,2,3

And what about this graph?

(D)AC is enough!

Because this a tree..

(i,j)-consistency

 k-consistency extends instantiation of (k-1) variables to a new

variable,

 we remove (k-1)- tuples that cannot be extended to another

variable.

Definition: CSP is (i,j)-consistent iff every consistent instantiation

of i variables can be extended to a consistent instantiation

of any j additional variables.

CSP is strongly (i,j)-consistent, iff it is (k,j)-consistent for every ki.

k-consistency = (k-1,1) consistency

AC = (1,1) consistency

PC = (2,1) consistency

We can do even more! …

… …

8/20/2008

19

Inverse consistencies

 Worst case time and space complexity of (i,j)-consistency is

exponential in i, moreover we need to record forbidden i-

tuples extensionally (see PC).

 What about keeping i=1 and increasing j?

 We already have such an example:

RPC is (1,1)-consistency and sometimes (1,2)-consistency

 Definition: (1,k-1)-consistency is called k-inverse consistency.

 We remove values from the domain that cannot be consistently

extended to additional (k-1) variables.

 Inverse path consistency (PIC) = (1,2)-consistency

 Neighbourhood inverse consistency (NIC) (Freuder , Elfe 1996)

 We remove values of v that cannot be consistently extended to

the set of variables directly linked to v.

Singleton consistencies

 Key Idea: assign a value and make the rest of the problem consistent according to

some consistency notion.

 Definition: CSP P is singleton A-consistent for some notion of

A-consistency iff for every value h of any variable X the problem P|X=h| is A-

consistent.

 Features:

 + we remove only values from variable‟s domain - like NIC and RPC

 + easy implementation

 - not so good time complexity

 1) singleton A-consistency A-consistency

 2) A-consistency B-consistency

singleton A-consistency singleton B-consistency

 3) singleton (i,j)-consistency > (i,j+1)-consistency (SAC>PIC)

 4) strong (i+1,j)-consistency > singleton (i,j)-consistency (PC>SAC)

Consistency techniques at glance

#

 NC = 1- consistency

 AC = 2- consistency = (1,1)- consistency

 PC = 3- consistency = (2,1)- consistency

 PIC = (1,2)- consistency

a stronger technique

incomparable techniques

NIC

##

SPC

#

strong PC

SAC PIC RPC AC

Search+inference

8/20/2008

20

How to solve the constraint problems?

 In addition to local search we have two other methods:

 depth-first search

• complete (finds a solution or proves its non-existence)

• too slow (exponential)

 explores “visibly” wrong valuations

 consistency techniques

• usually incomplete (inconsistent values stay in domains)

• pretty fast (polynomial)

 Share advantages of both approaches - combine them!

– label the variables step by step (backtracking)

– maintain consistency after assigning a value

Solving techniques (1)

 Core procedure DFS:

 assign variables one by one

 ensure consistency after each assignment

 Look back:

 maintain consistency among already assigned variables

 look back= look to already assigned variables

 if the consistency test return a conflict (+ explanation)

 backtrack (basic) or

 backjump

Solving techniques (2)

 Forward checking:

 prevention technique

 remove values from future variables which are incompatible with current assignments

 check only future variables connected to some assigned variables by some constraint

 Partial look ahead

 propagate the value assigned to the current variable to all future variables

 DAC maintained in reverse order w.r.t. the labeling order (aka known as DAC look ahead)

 it is not necessary to consider constraints involving past variables other than the current one

 Look Ahead

 Like Partial Look Ahead but with AC instead of DAC

 MAC

 AC performed initially

 maintained after each assignment

 MCk:

 Maintain strong-k-consistency

 chronological backtracking

Comparison of solving methods (4 queens)
 Backtracking is not very

good: 19 attempts

Forward checking is better

3 attempts

And the winner is... Look Ahead

2 attempts

8/20/2008

21

Constraint propagation at glance

 Propagating through more constraints remove more inconsistencies

(BT < FC < PLA < LA), of course it increases complexity of the step.

 Forward Checking does no increase complexity of backtracking, the

constraint is just checked earlier in FC (BT tests it later).

 When using AC-4 in LA, the initialisation is done just once.

 Consistency can be ensured before starting search

1 2 3 4 5 6 7 8

Past (already labelled) variables
Future (free) variables

cv

backtracking forward checking look ahead

Variable ordering(1)

 Variable ordering in labelling influence significantly efficiency of

solvers (e.g. in tree-structured CSP).

 FIRST-FAIL principle

 „select the variable whose instantiation will lead to failure“

 it is better to tackle failures earlier, they can be become even

harder

– prefer the variables with smaller domain (dynamic order)

 a smaller number of choices ~ lower probability of success

 the dynamic order is appropriate only when new information

appears during solving (e.g., in look ahead algorithms)

Variable ordering(2)

 „solve the hard cases first, they may become even harder

later“

– prefer the most constrained variables

 it is more complicated to label such variables (it is

possible to assume complexity of satisfaction of the

constraints)

this heuristic is used when there are domains of equal

size

– prefer the variables with more constraints to past

variables

a static heuristic that is useful for look-back techniques

 Order of values in labelling influence significantly

efficiency (if we choose the right value each time, no

backtrack is necessary).

 What value ordering for the variable should be chosen in

general?

 SUCCEED FIRST principle

 „prefer the values which have a better chance of

belonging to the solution“

 if they all look the same then we have to check all

values

Value ordering (1)

8/20/2008

22

 SUCCEED FIRST does not go against FIRST-FAIL !

– prefer the values with more supporters

this information can be found in AC-4

– prefer the value leading to less domain reduction

this information can be computed using singleton

consistency

– prefer the value simplifying the problem

solve approximation of the problem (e.g. a tree)

 Generic heuristics are usually too complex for computation.

 It is better to use problem-driven heuristics that proposes

the value!

Value ordering (2) Other interesting issues

 Soft constraints

 the world is not black and white

 satisfaction relaxed to degrees of satisfaction

 a tuple satisfies a constraint to certain degree

 this degree may represent a preference or a cost

 satisfaction problem optimization problem

 find not just a solution but the best solution

 Global constraints

 Specific constraints that occur often in practice, and specific

efficient propagation algorithms for them

 Symmetry breaking

LP formulation of CSPs

 Constraint

 CSP: set of constraints

 Satisfying the CSP

 Finding a solution

 Set of facts defining a
predicate

 LP program : set of
predicate definitions

 Clause with

 body: all the predicates

 head: contains all the
variables of the CSP

 Executing a goal matching
the head of the clause

CSP LP

Example: CSP LP program

 Variables: x,y,z

 Domain {a,b,c} for all
the variables

 Constraints:

 c1(x,y)={(a,a),(a,b),(b,b)}

 c2(y,z)={(b,a)}

 Solutions:

 (X=a, Y=b, Z=a),

 (X=b, Y=b, Z=a),

csp(X,Y,Z) :- c1(X,Y),c2(Y,Z).

c1(a,a).

c1(a,b).

c1(b,b).

c2(b,a).

Goal: csp(X,Y,Z)

CSP LP

csp(X,Y,Z)

c1(X,Y),c2(Y,Z)

c2(a,Z) c2(b,Z) c2(b,Z)

success

failure

X=a
X=a

X=b

Z=a Z=a

8/20/2008

23

LP formulation of CPS (2)

 Summarizing:

 a finite domain CSP= LP program with one clause and

several facts

 LP can represent much more complex things

 recursion

 function symbols

 Functions can be used for a more compact

representation of constraints

Examples: CSP LP program

 Expressing binary constraint eq(X,Y): X=Y

 Enumerating all facts…not the way to go

 just one fact: eq(X,X).

 Expressing binary constraint neq(X,Y): X≠Y

 just one clause and one fact:

 neq(X,X):- !, fail.

 neq(X,Y).

 fail built in predicate that always fails

 ! cut: makes sure second clause in not tried if first fails

LP formulation of CSPs(4)

 LP solution engine corresponds to depth-first search
with chronological backtracking

 not the most efficient way to solve CSPs

 Constraint Logic Programming

 extends LP allowing for the use of CP techniques for
improving solving

 extend CP by allowing more general and compact
definition of constraints (formulas over a specific
language)

Constraint Logic Programming

8/20/2008

24

CLP = CP + LP

 CLP : the merger of two declarative paradigms

 Constraint solving

 Logic Programming

 Common base: mathematical relations

Key feature

 Combing logic and solving in an algorithmic context

 Conceptual model of a problem: its precise formulation
in logic

 Design model of a problem: its algorithmic formulation,
sequence of steps for solving it

 CLP can express both models

 Provides mapping: conceptual models design models

Example (..seen in CP)

 Cryptoarithmetic problem:

 SEND+MORE=MONEY

 Conceptual model:

smm(S,E,N,D,M,O,R,Y) :-

[S,E,N,D,M,O,R,Y] :: 0 . . 9,

1000 * S + 100 * E + 10 * N + D

+1000 * M + 100* O + 10 * R + E

#= 10000 * M +1000 * O + 100 * N + 10 * E + Y,

M #> 1, S#>1,

alldifferent([S,E,N,D,M,O,R,Y])

New predicate/constraint definition:

name: smm

arguments: S,E,N,D,M,O,R,Y

the variables of the problem

Body of rule:

defines the

new predicate/

constraint in terms

of other (known)

predicates/

constraints

ECLiPSe notation

Example(2)

 LABELING (basic CLP search procedure)

 Design model of SEND+MORE=MONEY

 smm(S,E,N,D,M,O,R,Y), labeling([S,E,N,D,M,O,R,Y])

 underlying finite domain constraint solver

 Returned solution:

 S=9, E= 5, N= 6, D= 7, M= 1, O= 0, R= 8, Y= 2.

labeling([]).

labeling([V|Rest]) :-

indomain(V),

labeling(Rest).

Built-in predicate

allows to nondetermistically

set the value of V to each

of its possible values in turn

8/20/2008

25

Important features of CLP

 The CLP paradigm is generic in

 the choice of primitive constraints

 the choice of the underlying constraint solver

 CLP Scheme

 In our cryptoarithmetic example

 Primitive constraints (needed):

 bounded integer constraints

 Possible underlying solvers:

 propagation based

 mixed integer programming (MIP)

 local search-based

A little bit of history

 CLP was developed by three independent research

teams:

 Colmerauer et al. in Marseilles (France)

 Jaffar and Lassez et al. in Melbourne (Australia)

 Dincbas et al. Munich (Germany)

 CLP as a generalization of LP

 Primitive constraints: only syntactic equality

 Solver: unification

A little bit of history (2)

 Research development lines:

 generalizing unification to other types of equality

 allowing more flexible dynamic evaluation

 relaxing Prolog‟s left-to-right literal selection strategy

allowing goals to be delayed until sufficiently instantiated

A little bit of history (3)

 The Melbourne group

 coined CLP term 1986

 schema and semantics for CLP languages

 CLP(R) = Prolog + arithmetic constraints

 Solver: incremental Simplex

 Applications: financial and engineering

 The Marseilles group

 Prolog II (early 80‟s):

 first logic programming language with constraints

 equations and disequations over rational trees

 Prolog III (late 80‟s)

 constraints over Booleans

 linear arithmetic over rational numbers

 constraints over lists

 Applications: chemical reasoning

8/20/2008

26

A little bit of history (4)

 The Munich group:

 CHIP language

 Prolog‟s backtracking search + AI consistency techniques

 Finite domain constraints

 Applications: circuit diagnosis

A little bit of history (5)

 From black box to glass box

 languages that allow programmers to extend and/or

define new underlying solvers

 Hybrid constraint-solving techniques combining

 propagator-based solving + linear programming

MIP + local search

 ECLiPSe

CLP Scheme (Jaffar and Lassez „87)

Some type

of constraints

Solver for

the constraints

Rule-based

Language

Different ingredients, different soup!

CLP scheme: key idea

 Key idea

 Parameterize:

 operational semantics

 declarative semantics

 relation between the two

 by a choice of

 constraints

 solver for the constraints

 algebraic and logical semantics for the constraints

8/20/2008

27

The Constraint Domain(1)

 CLP schema defines the class of languages CLP(C), parametric in C

 C : constraint domain, definition and interpretation of built-in
primitive constraints and functions

 Constraint domain signature SC

 set of function and predicate symbols

 map symbol arity

 Thus defines the terms of the language

 variables

 function terms f(t1,…,tn) f function symbol and ti term

 Class of constraints LC

 predefined subset of first order SC-formulas

 Domain of computation DC

 set D

 mapping:

 function symbols in signature SC functions over D

 predicate symbols in signature SC relations over D

 respecting the arities

 algebraic semantics of the constraints

The Constraint Domain(2)

 Constraint Theory TC

 (possibly infinite) set of closed SC-formulae

 logical semantics of the constraints

 Solver solvC

 mapping

 constraints {true,false,unknown}

 solveC(c)=true means “c is satisfiable”

 solveC(c)=false means “c is not satisfiable”

 solceC(c)= unknown means “don‟t know if it satisfiable or not”

 operational semantics of constraints

 Note
 Primitive constraint: atom p(t1,…,tn) in LC

 Constraint: first order formula built from primitive constraints in LC

Assumptions

 Equality

 binary predicate symbol “=“ is in SC

 = interpreted as the identity relation in DC

 standard equality axioms in TC

 Lc always contains

 all atoms with predicate symbol =

 true (the “always true” constraint)

 false (the “always false” constraint)

 DC, solvC and TC agree

 DC is a model of TC

 for any primitive constraint c

 if solvC(c)=false then TC⊨¬∃c

 if solvC(c) =true then TC ⊨∃c

~

~

Example: the constraint domain Real

 Signature SC:

 predicate symbols: <,>,=,≤,≥
 all binary

 function symbols:

 Binary: +,*,-,/

 Constants: sequences of digits possibly with a decimal point (1, 2.3…)

 Constraints LC

 primitive constraints: <,>,=,≤,≥

 Domain of computation DC

 domain: set of real numbers R

 <,>,=,≤,≥ usual arithmetic relations

 +,*,-,/ usual arithmetic functions over R

 1,2,4.5…decimal representation of elements of R

 Theory TC

 Theory of real closed fields

 Solver solvC

 Simplex + Gauss-Jordan elimination

 Corresponding CLP language : CLP(R)

8/20/2008

28

Example: the constraint domain Term

 Signature SC:

 predicate symbols: = binary

 function (and constant) symbols:

 strings of alphanumeric characters

 Constraints LC

 primitive constraints: =

 Domain of computation DC

 domain: set of finite trees Tree

 = identity relation over Tree

 Interpretation of n-ary function f:

 I(f) : Tn →T, n trees ↦ tree with root f and the n-trees as children

 Theory TC

 Clark‟s theory for Term (= syntactic equality)

 Solver solvC

 unification algorithm

 Corresponding CLP language : CLP(Term), aka Prolog

Syntax of Constraint Logic Programs

 Constraint logic programs are sets of logical statements
(aka rule or clauses) which extend a constraint domain
by defining new constraints in terms of primitive
constraints

 Constraint logic program = set of rules

 Rule H :- B

 H, head of the rule, is an atom

 B, body of the rule, finite sequence of literals

⊠ the empty sequence

 H:-⊠, written H. for short

 Literal: atom or primitive constraint

 Atom: p(t1,…,tn) p predicate symbol, ti term

Example

 Expressing Relation: max(x,y,z)↔ z=max(x,y)

max(X,Y,Z) :- X #>=Y, Z#=X. %%M1

max(X,Y,Z) :- Y #>= X, Z #= Y. %%M2

atom primitive constraint

literal

Head Body

names of rules

as comments

Operational Semantics (1)

 Operational semantics provides a way of repeatedly
unfolding a goal with user-defined constraints until a
conjunction of primitive constraints is reached

 Renaming: bijective mapping between variables

 Syntactic object: formula, rule or constraint

 Variants : synt. objs. s and s‟ are variants iff there exists
a renaming r such that r(s)=s‟

 Definition of User-defined predicate p in program P
defnP(p):

 set of of rules in P with head of the form p(s1,…,sn)

 renaming assumption: every time defnP(p) is called it returns
a variants with distinct new variables

8/20/2008

29

Operational semantics (2)

 State <G|c>

 G current goal (current literal sequence L1,…,Lm)

 c current constraint store (conjunction of primitive constraints)

 Reduction step from state S to state S‟ (SS‟)

 if left-most literal L1 is a primitive constraint

 if solv(c ∧ L1)≠false

 then S‟=<L2, …, Lm | L1∧ c>

 else S‟ =< ⊠| false>

 if left-most literal L1 is an atom of form p(s1,…,sn)

 if defnP(p) ≠ ∅

 then S‟ =<s1=t1,…, sn = tn ,B,L2,…,Lm|c> , for some (A :- B)
∈defnP(p) with A of form p(t1,…,tn)

 else S‟ = <⊠ |false>

Operational semantics(3)

 Derivation from a goal G in a program P: sequence of
states S0 S1… Sn, where

 S0=<G|true>

 Si-1 Si reduction using rules is P

 Length of derivation S0S1…Sn : n

 A derivation is finished when the last goal cannot be
reduced

 Last state of a finished derivation: < ⊠|c>

 if c = false, failing derivation

 otherwise successful derivation

 Answers of a goal G for a program P

 constraints ∃vars(G)c where there is a successful derivation
from G with final state with constraint store c

Example(1)

<max(A,B,C), B #=2 | true>

⇓ max(X,Y,Z) :- X #>= Y, Z #= X

<A = X, B = Y, C = Z, X #>= Y, Z #=X, B#=2 |true>

⇓

<B = Y, C = Z, X #>= Y, Z #=X, B#=2 | A = X >

⇓

<C = Z, X #>= Y, Z #=X, B#=2 | A = X ∧ B = Y >

⇓

<X #>= Y, Z #=X, B#=2 | A = X ∧ B = Y ∧ C = Z>

⇓

< Z #=X, B#=2 | A = X ∧ B = Y ∧ C = Z ∧ X ≥Y>

⇓

< B#=2 | A = X ∧ B = Y ∧ C = Z ∧ X ≥Y ∧Z =X>

⇓

< ⊠| A = X ∧ B = Y ∧ C = Z ∧ X ≥Y ∧Z =X ∧B=2 >

projecting onto the variables of the original goal gives A≥2∧B=2∧C=A

Example(2)

<A#=1,max(1,2,1)| true>

⇓

<max(A,2,1)|A=1>

max(X,Y,Z) :- X #>= Y, Z #= X⇓

<A= X, 2 = Y, 1=Z, X #>= Y, Z #=X| A = 1 >

⇓

< 2 = Y, 1=Z, X #>= Y, Z #=X| A = 1 ∧ A=X >

⇓

<1=Z, X #>= Y, Z #=X| A = 1 ∧ A=X ∧2=Y >

⇓

< X #>= Y, Z #=X| A = 1 ∧ A=X ∧2=Y ∧1=Z >

⇓

< ⊠| false>

First Derivation Second Derivation

<A#=1,max(1,2,1)| true>

⇓

<max(A,2,1)|A=1>

⇓ max(X,Y,Z) :- Y #>= X, Z #= Y

<A= X, 2 = Y, 1=Z, Y#>= X, Z #=Y| A = 1 >

⇓

< 2 = Y, 1=Z, Y #>= X, Z #=Y| A = 1 ∧ A=X >

⇓

<1=Z, Y #>= X, Z #=Y| A = 1 ∧ A=X ∧2=Y >

⇓

< Y #>= X, Z #=Y| A = 1 ∧ A=X ∧2=Y ∧1=Z >

⇓

< ⊠| false>

Fails!

8/20/2008

30

Example(3)

<factr(1,X) | true>

⇓ R2

<1 = N, X = N*F, N #>= 1, factr(N-1,F) |true>

⇓

< X = N*F, N #>= 1, factr(N-1,F) | 1 = N >

⇓

< N #>= 1, factr(N-1,F) | 1 = N ∧ X = N*F >

⇓

< factr(N-1,F) | 1 = N ∧ X = N*F∧ N ≥ 1>

⇓ R1

< N-1=0, F=1| 1 = N ∧ X = N*F∧ N ≥ 1 >

⇓

< F=1| 1 = N ∧ X = N*F∧ N ≥ 1∧ N-1=0 >

⇓

< ⊠| 1 = N ∧ X = N*F∧ N ≥ 1∧ N-1=0∧F=1 >

projecting onto the variables of the original
goal gives X=1

CLP(R) program

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

<factr(2,1) | true>

⇓ R1

<2= 0, 1= X|true>

⇓

< ⊠| false>

Successful derivation

Failed derivation

Role of the solver(1)

 Check if L∧c is satisfiable, knowing that c was satisfiable

 incremental constraint solving!

 The solver may be incomplete

 something may be unsatisfiable and the solver may not detect this

 gives pseudo-answers

 Identify a class of goals for which the solver is known to be complete

<Y= X * X, Y#<0 | true>

⇓

<Y#<0|Y=X*X>

⇓

< ⊠| Y=X*X ∧ Y<0>

successful derivation for the CLP(R) solver

Operational semantics confluence(1)

 Sources of non-determinism in derivations

1. choice of rule

2. choice of renaming

3. choice of literal

1. Different rules (possibly) different answers

 For completeness, all rule must be considered

2. Renaming is harmless

 the solver does not take into account names of
variables

Operational semantics confluence(2)

3. Independence from the choice of literal selection

 Literal selection strategy: given a derivation,

returns a literal in the last goal

 may select different literals in same goal if occurring

more than once in the derivation

 Derivation is via a literal selections strategy S iff

all choices are performed through S

8/20/2008

31

When literal selection may cause trouble

 Literal selection influences the order of the constraints in the
constraint store

 such order may be crucial for the solver

 Example 1:

 CLP(R) program : p(Y):- Y#=1, Y#=2.

 Solver: ignoring the last primitive constraint in its argument

 solv(X=Y) unknown

 solv(X=Y ∧Y=1) unknown

 solv(X=Y ∧Y=1 ∧ Y=2) unknown

 solve(Y=2) unknown

 solve(Y=2 ∧Y=1) unknown

 solve(Y=2 ∧Y=1 ∧ X=Y) false

 left-to-right for goal p(X) : ∃Y(X=Y ∧Y=1 ∧Y=2) (unknown)

 right-to-left for goal p(X): ∃Y(Y=2 ∧Y=1 ∧X=Y) false

When literal selection may cause trouble

 Example 2:

 CLP(R) program : p(Y):- Y#=1, Y#=2.

 Solver: complete for all constraints with only 2 primitives,
unknown to all others

 solv(X=Y) true

 solv(X=Y ∧Y=1) true

 solv(X=Y ∧Y=1 ∧ Y=2) unknown

 solve(Y=2) true

 solve(Y=2 ∧Y=1) false

 solve(Y=2 ∧Y=1 ∧ X=Y) unknown

 left-to-right for goal p(X): ∃Y(X=Y ∧Y=1 ∧Y=2) unknown

 right-to-left for goal p(X):∃Y(Y=2 ∧Y=1) fails

 Not monotonic

Well-behaved solvers

 Solver solv is well-behaved for constraint domain C if for
any constraints c and c‟ in LC it is:

 Logical: solv(c) = solve(c‟) whenever ⊨c ↔c‟

 if the two constraints are logically equivalent independently of
the constraint domain, then the solver answers the same for both

 Monotonic: if solv(c)= false then solve(c‟)=false whenever
⊨c ←∃vars(c) c‟

 if the solver fails c then whenever c‟ contains more constraints it
fails also c‟

 Misbehavior Example 1: not logical

 Misbehavior Example 2: not monotonic

 Any complete solver is well-behaved

Independence of literal selection strategy

 Switching Lemma:

 Let

 S state

 L and L‟ literals in the goal of S

 solv well-behaved solver

 SS1 S‟ non-failed derivation obtained by solv with L selected first followed by L‟

 Then

 there is a derivation S S2 S‟‟ obtained by solv with L‟ selected first followed by L

 S‟ and S” are identical up to reordering of their constraint components

 TH: Let

 solv well behaved solver

 P program

 G goal

 there is a derivation from G with answer c

 Then

 for any literal selection strategy S

 there is a derivation of the same length form G via S with answer a reordering of c

8/20/2008

32

Derivation tree

 Independence of literal selection the solver can use a
single selection strategy

 Single strategy collect all derivations in a single tree

 Derivation tree for goal G, program P and and selection
strategy S

 node: states

 root: <G|true>

 children of a node with state s1: states reachable from s1 given
strategy s

 different branches : different rules

 unique up to variable renaming

 derivation: path from root to leaf

 successful: <⊠|c> c not false leaf

 failed: <⊠|false> leaf

Example of derivation tree

CLP(R) program

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

<0=0, 2=1 | true>

<2= 1|0=0>

< ⊠| false>

<0=N, 2=N*F, N#>=1, factr(N-1,F)| true>

< 2=N*F, N#>=1, factr(N-1,F)| 0=N >

< N#>=1, factr(N-1,F)| 0=N ∧2=N*F >

< ⊠| false>

<factr(0,2)|true>

R1 R2

Left-most strategy

Possible outcomes of an execution

 The execution of a CL program can return:

 yes and an answer (obtained from the constraint store of the leaf in the
derivation tree)

 no

 A goal G finitely fails if

 it has a finite set of derivations

 they all fail

 Example: factr(0,2) finitely fails

 Finite failure is NOT independent of the literal choice, even if the solver is
well-behaved

 Fair selection strategy S: in every infinite derivation via S each literal in
the derivation is selected

 Example

 left-to right: unfair

 oldest first: fair

 TH: If the solver is well-behaved then finite failure is independent of fair
selection strategies

The semantics of success

 Each rule corresponds to a formula:

 Logical semantics of a CLP(C) program P

 theory obtained adding (the formulas corresponding to) the

rules of P to the constraint theory TC of the constraint domain

)(
~

,...,:
11 nn

LLALLA
rule of a CLP program corresponding implication

max(X,Y,Z) :- X #>=Z, Z#=X.

max(X,Y,Z) :- Y #>= X, Z #= Y.))(),,max(.

))(),,max(.

YZXYZYXZYX

XZYXZYXZYX

CLP program conjunction of implications

8/20/2008

33

Logical Soundness and completeness(1)

 It is desirable for the operational semantics to be

sound w.r.t. the logical semantics

 Soundness: the answers returned by the operational

semantics logically imply the initial goal

 Thus, “goal G has answer c” means “if c holds, so

does G “

Logical Soundness of the semantics of success

 Logical soundness

 Let:

 TC: constraint theory for constraint domain C

 P: CLP(C) program

G goal with answer c

 then P,TC ⊨ c→G

Algebraic semantics for success

 Find a model for the program that is the intended interpretation of the
program

 Agree with the interpretation of the primitive constraint and function
symbols in constraint domain

 Extend the interpretation to all user-defined predicate symbols in P

 A C-interpretation of a CLP(C) program P, is an interpretation that agrees
with the domain of computation DC on the symbols in SC

 C-baseP ={p(d1,…,dn)|p n-ary user-defined predicate in P and di domain
element of DC }

 C-interpretation identified by the subset of the C-baseP which it makes true

 A C-model of a CLP(C) program P is a C-interpretation which is a model
of P

 lm(P,c): least (under subset ordering) C-model of a program P

 always exists

 usually chosen as “inteded” representation since it is the most conservative

 same as least Herbrand model as algebraic semantics for logic programs

Example of least model

CLP(R) program

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

Has an infinite number of real models, e.g.,

model 1: {factr(n,n!) | n∈{0,1,2,…} }∪{factr(n,0)| n∈{0,1,2,…} }

model 2: {factr(n,n!) | n∈{0,1,2,…}}

model 3: {factr(r,r‟)| r ∈R}

The least model is model 2

8/20/2008

34

Role of the least model

 If a goal is satisfiable in the least C-model it is so in all
models

 TH: let

 P CLP(C) program

 G goal

 σ valuation

 then

 P,DC ⊨σ G iff lm(P,C) ⊨σ G

 TH: let

 P CLP(C) program

 G goal

 then

 P,DC ⊨ ∃G iff lm(P,C) ⊨ ∃G
~ ~

Algebraic Soundness of the semantics of

success(1)

 Soundness w.r.t. the algebraic semantics: the

operational semantics only answers which are

solutions of the goal

 Let

P , CLP(C) program

G goal with answer c

 then lm(P,C) ⊨ c→G

Completeness of success semantics

 Algebraic and logical soundness ensure that the

operational semantics only returns answers which

are solutions of the goal

 Completeness: the operational semantics returns all

the solutions of a goal

Logical Completeness of success

 Logical completeness: the answers returned by the

operational semantics cover all of the constraints

which imply the goal

 Let:

 TC: constraint theory for constraint domain C

 P: CLP(C) program

G goal, c constraint such that P,TC ⊨ c→G

 then G has answers c1,…,cn such that

TC⊨c→(c1∨…∨ cn)

8/20/2008

35

Logical completeness of success

 Notice that more than one answer may be needed to
cover c (i.e. n>1 in some cases)

 Example:

 CLP(R) program:

 p(X):- X#>=2.

 p(X):- X#<=2.

 Consider Goal p(X)

 Then P,TReal ⊨ true→p(X)

 p(X) has answers c1=(X≥2) and c2=(X≤2)

 Both are needed to cover true

 TReal ⊨ true→(c1 v c2)

Algebraic completeness

 In order to show that the operational semantics is

complete w.r.t. the algebraic semantics we need to

introduce an additional semantics for CLP programs

that bridges the gap between the algebraic and

the operational semantics

Fixed Point Semantics(1)

 Based on the immediate consequence operator

 set of facts in a C-interpretation set of facts
implied by the rules in the program

 captures Modus Ponens

 Generalizes the TP semantics for logic programs

 Immediate consequence function TP
C for CLP(C)

program P:

 I: C-interpretation of P

 σ: range over valuations for C

 then TP
C(I)={σ(A)| A:-L1,…,Ln rule in P s.t. I⊨σ

L1∧…∧Ln}

Fixed Point Semantics(2)

 Notice that:

 I⊨σ L1∧…∧Ln iff

 for each literal Li

 either Li primitive constraint s.t. C ⊨σ Li

 or Li user-defined predicate p(t1,…,tm) such that
p(σ(t1),…,σ(tm))∈I

 TP
C is continuous and monotonic on the complete

lattice P(C-baseP)

 it has a greatest and a least fixed point, gfp(TP
C)

and lfp(TP
C).

8/20/2008

36

Fixed Point semantics

 Kleene‟s fixpoint theorem

 the least fixpoint of F is the supremum of the ascending

Kleene chain of F

 ⊥ ≤F(⊥)≤F(F(⊥))≤…≤Fn(⊥)≤…

 lfp(F)=sup {Fn(⊥)| n ∈N}

 the greatest fixed point of F is the infimum of the

descending Kleene chain

⊤ ≥F(⊤)≥F(F(⊤))≥…≥Fn(⊤)≥…

 gfp(F)=inf ({Fn(⊥)| n ∈N}

C-models of a program P and TP
C

 Lemma: M C-model of program P iff M is a pre-

fixpoint of TP
C, that is, TP

C(M)⊆M

 Main result:

 let

 P, CLP(C) program

 then lm(P,C)=lfp(TP
C)

Algebraic completeness of the semantics

of success

 Algebraic completeness: the answers provided by the operational
semantics cover all solutions to the goal

 TH: Let

 P , CLP(C) program

 G goal

 θ evaluation such that lm(P,C)⊨θ G

 then G has answer c such that DC⊨θ c

 The proof uses lm(P,C)=lfp(TP
C)

 Soundess+Completeness: The solutions of the goal in the minimal
model are exactly the solutions to the constraints the operational
semantics returns as answers

 TH: Let

 P , CLP(C) program

 G goal with answers c1, c2,…

 Then lm(P,C)⊨ G ↔⋁i=1,…,∞ci

Semantics for finite failure

 A goal G can finitely fail

 the semantics for success does not work well with
finite failure

 In fact, there is always a C-model, the entire C-
base, in which every constraint is satisfiable

 new semantics based on the Clark completion

 captures the if-and-only-if nature of rules for defining
predicates

 rules should cover all the cases which make the
predicate true

8/20/2008

37

Clark completion

 The definition of n-ary predicate symbol p in the
program P is the formula:

 ∀X1 … ∀Xn p(X1,…,Xn)↔B1∨…∨Bm

 where each Bi

 corresponds to a rule p(t1,…,tn):-L1,…,Lk

 is of the form

 ∃Y1 … ∃Yj (X1=t1∧…∧Xn=tn ∧L1∧…∧Lk)

 Y1 … Yj variables in the original rule

 X1 ,…,Xn variables that do not appear in any rule

 If there is no rule with head p, we have

 ∀X1 … ∀Xn p(X1,…,Xn)↔false (∨∅)

 Clark-completion P*of a CLP program P: conjunction of
all the definitions of the user defined predicates in P

Example of Clark Completion(1)

 CLP program P:

 Clarke-completion P* of P:

 max(1,2,1) is a goal which finitely fails

 its negation is implied by the Clark completion

max(X,Y,Z) :- X #>=Y, Z#=X.

max(X,Y,Z) :- Y #>= X, Z #= Y.

∀P∀Q∀R max(P,Q,R) ↔ ∃X∃Y∃Z(P=X ∧Q=Y∧ R=Z ∧X

≥Y∧Z=X) ∨ ∃X∃Y∃Z(P=X ∧Q=Y∧ R=Z ∧Y ≥ X ∧Z= Y)

Example of Clark Completion(2)

 CLP program P:

 Clark-completion P* of P:

 factr(0,2) is a goal which finitely fails

 its negation is implied by the Clark completion

∀X∀Y factr(X,Y) ↔ (X=0 ∧Y=1) ∨
∃N∃F(X=N ∧ Y=N*F ∧ N ≥ 1 ∧ factr(N-1,F))

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

Models of a Clark completion

 Clark completion P* of program P captures the true
meaning of a program

 Thus, intended interpretation of a P is a C-
interpretation which is a model for P*.

 There may be more than one C-model for the Clark
completion

8/20/2008

38

Example of models of the Clark completion

program CLP(R) P

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

Clark completion P* of P

Has an infinite number of real-interpretations, e.g.,

I1: {factr(n,n!) | n∈{0,1,2,…} }∪{factr(n,0)| n∈{0,1,2,…} }

I2: {factr(n,n!) | n∈{0,1,2,…}}

I3: {factr(r,r‟)| r ∈R}

Only I2 is a R-model of the Clark completion

I1,I2 and I3 are all R-models given the semantics of success

∀X∀Y factr(X,Y) ↔ (X=0 ∧Y=1) ∨
∃N∃F(X=N ∧ Y=N*F ∧ N ≥ 1 ∧ factr(N-1,F))

Clark-completion and fixed points

 TH: Let

 P CLP(C) program

 P* Clark-completion

 TP
C immediate consequence operator

 then

 I is a model of P* iff it is a fixpoint of TP
C

 Relation between the algebraic semantics of the completion and the
fixpoint semantics

 TH: Let

 P, P*, TP
C as above

 gm(P*,C) the greatest C-model of P*

 lm(P*,C) the least C-model of P*

 Then

 lm(P*,C)=lfp(TP
C)=lm(P,C)

 gm(P*,C)=gfp(TP
C)

Modeling success and failure

 The semantics based on the Clark-completion allows to
model success

 TH: Let

 TC: constraint theory of constraint domain C

 P: CLP(C) program

 G goal

 Then

 P*,TC⊨∃G iff lm(P*,C) ⊨∃G iff lm(P,C) ⊨∃G iff P,TC⊨∃G

 The semantics based on the Clark-completion allows to
model failure

 TH: Let

 TC: constraint theory of constraint domain C

 P: CLP(C) program

 G goal

 Then

 P*,TC⊨¬∃G iff gm(P*,C) ⊨¬∃G

~ ~

~

~

~

~

Results for the semantics of success

continue to hold

1. TH: Let P be a CLP(C) program. Then TC ⊨P*→ P

2. TH: Let P be a CLP(C) program. Then P,TC ⊨c→ G
then P*,TC ⊨c→ G

3. TH: Let P be a CLP(C) program, G goal with
answer c. P*,TC ⊨c→ G

4. TH: Let P be a CLP(C) program. Then P*,TC ⊨c→
G then P,TC ⊨c→ G

5. TH: Let P be a CLP(C) program, G a goal and c a
constraint. If P*,TC ⊨c→ G then G has answers
c1,…, cn such that TC ⊨c→ (c1 ∨…∨ cn)

8/20/2008

39

Logical soundness for finite failure

 Finitely evaluable goal: it has no infinite derivations

 TH.: Let

 TC theory

 P CLP(C) program

 G finitely evaluable goal with answers c1,…,cn.

 Then
 P*,TC⊨ G↔ (c1∨ …∨ cn)

 TH. (special case of the one above when there are no
answers) Let

 TC theory

 P CLP(C) program

 G finitely failing goal

 Then

 P*,TC⊨ ¬∃G
~

Algebraic soundness of finite failure

 Follows immediately from logical soundness for finite
failure since any intended interpretation of the
constraint domain is a model of the constraint theory

 TH: Algebraic soundness

 Let

 P CLP(C) program

 G finitely failing goal

 Then

 P*,DC ⊨ ¬∃G and

 gm(P*,C) ⊨ ¬∃G

~

~

Logical completeness of finite failure

 Additional assumptions

 theory-complete solver

 fair literal selections strategy

 THM (logical completeness) Let
 TC: constraint theory of constraint domain C

 P: CLP(C) program

G goal

 Then,

 if P*,TC⊨¬∃G

 then G finitely fails

~

Algebraic completeness for finite failure:

assumptions

 Solver should agree with the domain of computation
on the satisfiability of constraints should be
complete

 Complete solvertheory satisfaction-complete

 satisfaction complete: able to determine for each
constraint if it is satisfiable or not

 Completeness of the solver and fair literal selections
not sufficient for algebraic completeness

 Finitely evaluable goal G for a program P: a goal
with no infinite derivations

8/20/2008

40

Example

 CLP(Term) program P

 q(a):- p(X).

 p(f(X)) :-p(X)

 Clark completion P*

 ∀Y(p(Y)) ↔∃X (Y=f(X)∧p(X))) ∧∀Y(q(Y)↔∃X(Y=a ∧p(X)))

 The only Term-model of P* is ∅ but q(a) does finitely fail

with a complete solver for any selection rule

Algebraic completeness of finite failure

 Finitely evaluable goal G for a program P: a goal
with no infinite derivations

 THM(Algebraic completeness of Finite Failure)Let

 P, CLP(C) program

 G finitely evaluable goal

 solv complete solver

 TC satisfaction complete

 fair selection strategy

 Then
 If lm(P*,C) ⊨¬∃G
 then G finitely fails

~

~

Extended semantics

 Many extensions have been proposed

 Negation

Optimization

…many others

CLP formulation of CSPs

 Formulation of standard CSPs (where constraints
are represented by sets of allowed tuples) inherited
from LP

 CLP provides

 equality, disequality

 standard mathematical functions and relations

 global constraints

 alldifferent

 cumulative

8/20/2008

41

Example

1. Constraint max(X,Y,Z): (X≥Y ∧Z=X)∨ (Y≥X∧ Z=Y)

Corresponding CLP program

2. Constraint: “X is an even number”, ∃Y.(X=2 x Y)

Corresponding CLP program: even(X) :- X#=2*Y.

Not representable extensionally

Use of local variables which do not need an initial
domain

max(X,Y,Z) :- X #>=Z, Z#=X.

max(X,Y,Z) :- Y #>= X, Z #= Y.

CLP formulation of CSPs

 Allows for the use of local variables

 Allows encapsulation of a CSP as a constraint and

making any of its variables local

 Building complex CSPs from simple ones

 Recursive definition of constraints

Important features of CLP

 CLP allows for local variables and recursive

definition

 can express problem with unbounded number of

variables

 Representing solutions without fixing all the

variables

 interactive problem solving

 partial solution observation during search

Important features of CLP(2)

 Allows the programmer to define search strategies

 expressing the design model

 backtracking (inherited from LP) combined with reflection
predicates

 Allows the programmer to (partially) control how the
underlying constraint solver works

 disjunction

 reification

 indexicals

 constraint handling rules

 generalized propagation

8/20/2008

42

CLP for design modeling

 In CLP languages

 constraints generated dynamically

 satisfaction tests are performed at intermediate stages

 such tests influence future execution and constraint
generation

 incremental solvers

 solver current state: constraints encountered so far during
the derivation

 new constraint added revise current state and test its
satisfiability

 if unsatifiability is detected return to the last state with
unexplored child states (state recovery)

 nothing new: it‟s backtracking!

Incremental solvers

 Prolog II incremental solver for equations and

disequations

 CLP(R) incremental simplex

 CHIP Backtracking + AI techniques

(propagation)

Bibliography for CP

 Handbook of Constraint programming, Rossi, van Beek
and Walsh editors, Elsevier 2006.

 K. R. Apt, Principles of Constraint Programming,
Cambridge University Press, 2003.

 R. Dechter, Constraint processing, Morgan Kaufmann,
2003

 A. Mackworth, Consistency in networks of relations,
Artificial Intelligence, 8, 1, 1977.

 A. Mackworth, E. Freuder, The complexity of some
polynomial network consistency algorithms for
constraint satisfaction problems, Artificial
Intelligence, 25, 1985.

 U. Montanari, Networks of constraints: fundamental
properties and applications to picture processing,
Information Science, 7, 66, 1974

Bibliography for CLP

main

references for

this tutorial

 Constraint Logic Programming: Chapter 12 of handbook of
Constraint programming, Rossi, van Beek and Walsh editors,
Elsevier 2006.

 J. Jaffar, M. J. Maher, K. Marriott and P. J. Stuckey, The
Semantics of Constraint Logic Programs, Journal of Logic
Programming, volume 37, number 1-3, pages 1-46, 1998.

 K.R. Apt, M. H. van Emden: Contributions to the Theory of Logic
Programming. J. ACM 29(3): 841-862 (1982)

 A. M. Cheadle W. Harvey, A. J. Sadler, J. Schimpf K. Shen M. G.
Wallace, ECLiPSe: An Introduction, Tech. Report IC-PARC 03 1

 Alain Colmerauer: An Introduction to Prolog III. Commun. ACM
33(7): 69-90 (1990)

 M. Dincbas, P. Van Hentenryck, Helmut Simonis, A. Aggoun, T.
Graf, F. BerthierThe Constraint Logic Programming Language
CHIP. FGCS 1988: 693-702

 T. W. Frühwirth, A. Herold, V. Küchenhoff, T. Le Provost, P. Lim, E.
Monfroy, M.Wallace: Contraint Logic Programming - An Informal
Introduction. Logic Programming Summer School 1992: 3-35

Other

important

references

8/20/2008

43

Bibliography for CLP

Other

important

references

ctd.

 M. Gabbrielli, G. Levi: Modeling Answer Constraints in Constraint
Logic Programs. ICLP 1991: 238-252

 J. Jaffar, J-L. Lassez: Constraint Logic Programming. POPL 1987:
111-119.

 J.Jaffar, M. J. Maher: Constraint Logic Programming: A Survey. J.
Log. Program. 19/20: 503-581 (1994)

 J. Jaffar, S.Michaylov, P. J. Stuckey, R. H. C. Yap: The CLP(R)
Language and System. ACM Trans. Program. Lang. Syst. 14(3):
339-395 (1992)

 K. Marriott, P. J. Stuckey: Semantics of Constraint Logic Programs
with Optimization. LOPLAS 2(1-4): 197-212, 1993.

 F. Rossi: Constraint (Logic) Programming: A Survey on Research
and Applications. New Trends in Constraints 1999: 40-74

 H. Simonis Tutorial on constraint logic programming. On the web.

 P.Van Hentenryck, H. Simonis, M. Dincbas: Constraint Satisfaction
Using Constraint Logic Programming. Artif. Intell. 58(1-3): 113-
159 (1992)

