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Abstract. We define a structurally unambiguous finite automaton
(SUFA) to be a nondeterministic finite automaton (NFA) with one start-
ing state q0 such that for all input strings w and for any state q, there is at
most one path from q0 to q that consumes w. The definition of SUFA dif-
fers from the usual definition of an unambiguous finite automaton (UFA)
in that the new definition is defined in terms of the transition logic of
the finite automaton, and is independent of the choice of final states.
We show that SUFA can be exponentially more succinct in the num-
ber of states than UFA and MDFA (deterministic finite automata with
multiple initial states). Some interesting examples of SUFA are given.
We argue that SUFA is a meaningful concept, and can have practical
importance as it can implemented efficiently on synchronous models of
parallel computation.

1 Introduction

The descriptional complexity of finite automata have been extensively studied
since 1970’s ([9], [11]). A recent survey on the descriptional complexity of au-
tomata can be found in [3].

While deterministic finite automata (DFA) are more suitable for implemen-
tation, nondeterministic finite automata (NFA) can be exponentially more suc-
cinct in denoting regular languages. NFA are classified according to the amount
of ambiguity used. Given an NFA M , we define the ambiguity of a string w to
be the number of different accepting paths for w in M . An NFA is said to be
k-ambiguous if every string in the language is accepted with at most k different
accepting computations. An unambiguous NFA (UFA) is a 1-ambiguous NFA.
An NFA is said to be finitely ambiguous (FNA) if the NFA is k-ambiguous for
some positive integer k. There is a special class of FNA called deterministic fi-
nite automata with multiple initial states (MDFA) ([5] [4] [2] [13]) which is an
NFA with deterministic transition logic. An MDFA is k-ambiguous where k is
the number of starting states.

An NFA is polynomially ambiguous (PNA) if there exists a polynomial p such
that every string x in the language is accepted with at most p(|x|) accepting
computations. Given an NFA of k states, any input string of length n can have
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at most kn different accepting computations. Thus, it follows that every NFA is
exponentially ambiguous (ENA).

In Section 2, we define a variant of UFA which we call structurally unam-
biguous finite automata (SUFA). We present examples of interesting SUFA. We
prove descriptional complexity tradeoffs results between SUFA, UFA, MDFA
and reversal of MDFA. After we have established the technical results, we argue
in Section 3 that the new model SUFA is a meaningful concept. It can also have
practical importance as SUFA can be implemented efficiently on a synchronous
model of parallel computation.

2 Structurally Unambiguous Finite Automata

A SUFA is an NFA (Q, Σ, δ, q0, F ), where Q is the set of states, Σ is the alphabet
set, δ ⊆ Q × Σ × Q, q0 is the starting state and F is the set of final states, such
that for any string w ∈ Σ∗ and for any q ∈ Q, there is at most one path that
goes from q0 to q for processing w.

Note that SUFA is defined by referring to the transition logic of the finite
automaton, and is independent of the way the set of final states is defined. That
is, SUFA is a property of the structure of the transition logic, independent from
the choice of the set of final states.

If there is only one final state, that is |F | = 1, then a SUFA is also a UFA.
However, SUFA may differ from UFA when there is more than one final state.

Similarly, we define a generalized structurally unambiguous finite automaton
(GSUFA) in the same way as SUFA except that we allow more than one starting
states. Specifically, a GSUFA is an NFA (Q, Σ, δ, S, F ) such that for any q, q′ ∈ Q
and for any string w ∈ Σ∗, there is at most one path that goes from q to q′ for
processing w. It is possible that in processing the same input w, two different
paths beginning from different states may arrive at the same state q′.

One can see that both GSUFA and SUFA are subclasses of FNA as the amount
of ambiguity of GSUFA and SUFA are bounded by n2 and n respectively, where n
is the number of states. It is interesting to compare the descriptional complexity
of the new models with UFA and MDFA, which are also subclasses of FNA.

We can see that the descriptional complexity of SUFA and GSUFA in terms
of the number of states are polynomially related. It is clear that a SUFA is a
GSUFA. Given an n-state GSUFA (Q, Σ, δ, S, F ) where S = {s1, s2, . . . , sk} ⊆ Q
is the set of starting states, we replicate from the GSUFA logic k disjoint copies
of SUFA Mi = (Q, Σ, δ, si, F ), where 1 ≤ i ≤ k. Next, we introduce a new
starting state s where s �∈ Q and create ε transitions from s to the starting state
si of each of the k SUFA. By substituting the ε-moves with direct non-ε-moves,
we obtain a O(n2)-state SUFA equivalent to the given GSUFA. As a MDFA is
a GSUFA, consequently neither MDFA and GSUFA can offer significant (bigger
than polynomial) advantage in descriptional sizes over SUFA.

Consider an n-state NFA M with Q = {q1, q2, . . . , qn}, the alphabet set Σ
and the transition function δ. Let 1 ≤ i, j ≤ n. We define Mi,j = (Q, Σ, δ, qi, qj).
Then M is a GSUFA iff Mi,j is a UFA for all i, j ∈ {1, . . . , n}. Stearns and
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Hunt [12] showed that there is a polynomial time algorithm for checking if a
given NFA is a UFA. To test if a given n-state NFA is a GSUFA, we can apply
the polynomial time UFA-testing algorithm n2 times. Similarly, we can apply
the UFA-testing algorithm n times to check if a given NFA is a SUFA. Therefore,
whether a NFA is a SUFA (or, GSUFA) can be determined in polynomial time.

In [12], it is shown that equivalence and containment problems for UFA can be
decided in polynomially time. However, this is not the case for SUFA in general.
We can show that the equivalence problem for SUFA is PSPACE-complete. In [1]
(p. 266), it is known that the DFA intersection problem is PSPACE-complete.
Since DFA are efficiently closed under complementation, the following union-
universe problem [4] is also PSPACE-complete: Given a number of DFA G1, G2,
. . ., Gn over an input alphabet Σ, we ask whether the union of the languages ac-
cepted by G1, G2, . . ., Gn is Σ∗. One can consider the disjoint union of the n DFA
as a MDFA G, which is a SUFA. We can thus reduce the union-universe problem
to an instance of the SUFA equivalence problem with the instance consisting of
the SUFA G and a single state DFA (which is a SUFA) accepting Σ∗. Therefore,
the equivalence problem for SUFA is PSPACE-hard. As the equivalence problem
for NFA is in PSPACE, we conclude that the equivalence problem for SUFA is
PSPACE-complete. It is not difficult to see that the containment problem is also
PSPACE-complete since the equivalence problem can be easily reduced to the
containment problem, which is also PSPACE-solvable. On the other hand, if the
number of final states in a SUFA is bounded by a constant k (independent of
the number of states n), the equivalence and containment problems are solvable
in polynomial time as Stearns and Hunt [12] had showed that the corresponding
problems are polynomial time solvable for k-ambiguous finite automata.

In [8], we introduced a language of “some-register-on”. Suppose there are n
registers. Each register holds a value of either 0 or 1 (‘off’ or ‘on’). Initially,
register 1 is on. All other registers are off. Consider an instruction

Copy i to j

Executing the instruction will copy the current value of register i to register j.
In short, the instruction is given as Ci,j .

We define an input string to consist of a sequence of copy instructions. As
copying register i to itself is a dummy instruction, we assume that Ci,i is not
allowed. As there are n(n−1) possible copy instructions, the input alphabet has
O(n2) letters.

An example input is C1,4C4,2C3,1C4,3C1,2. We say that an input is in the
language of some-register-on if some register is on after the sequence of copy
instructions have been performed.

Consider the example input given before. Initially, register 1 is on. The first
copy instruction C1,4 will turn register 4 to on. The next instruction C4,2 will
turn on register 2. The next instruction C3,1 sets register 1 to off as register 3
is off. Next, instruction C4,3 turns on register 3. The last instruction C1,2 turns
register 2 to off. Thus, after all copy instructions are performed, registers 3 and
4 are on whereas registers 1 and 2 are off. Since not all registers are off, we
conclude that the input belongs to the language of some-register-on.
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We define an n-state SUFA for the language of some-register-on. State 1 is an
initial state. The design intuition is that state i is loaded when register i is on.
With respect to the input symbol Ci,j , there are transitions going from state i to
state j, and transitions going from state k to state k where k �= j. All states are
final states. Formally, the NFA is A = (Q, Σ, δA, q0, F ) where Q = {1, 2, ..., n},
Σ = {Ci,j | 1 ≤ i, j ≤ n, i �= j}, q0 = 1, F = Q and δA = {(k, Ci,j , k) | 1 ≤
i, j, k ≤ n, i �= j �= k}

⋃
{(i, Ci,j , j) | 1 ≤ i, j ≤ n, i �= j}. Nondeterminism

occurs when the NFA is at state i given that the current input symbol is Ci,j .
The NFA can remain at state i or go to state j. Other transitions are self loops.

To see that A is an SUFA, we reverse the transition directions and the roles
of starting and final states from A. We denote the reversal of A as AR. The logic
after reversing the transitions is deterministic. But it differs from a DFA in that
all the n states are starting states. Thus, AR is a MDFA. Since a MDFA is a
GSUFA, the reversal automaton of a MDFA is also a GSUFA. That is, A is a
GSUFA with one starting state; hence, A is a SUFA.

We can show that the smallest DFA for the language of some-register-on has 2n

states. This is because all subsets of states considered by the subset construction
are reachable, and any two subsets of states are distinguishable in the sense of
Myhill-Nerode theorem.

In the next theorem, we show that a UFA for the language of some-register-on
has at least 2n − 1 states.

Theorem 1. Let n ≥ 3. The smallest UFA for the language L of some-register-
on with n registers has at least 2n − 1 states.

Proof. (Sketch) The technique for proving lower bound on the size of a UFA is
introduced by Schmidt [11].

For ∅ �= Q′ ⊆ Q = {1, 2, . . . , n}, we want to define xQ′ such that A reaches
the subset Q′ of states when processing xQ′ from the starting state 1. Let Q′ =
{q1, q2, . . . , qk}.

Case 1. Suppose 1 ∈ Q′. Define xQ′ = C1,q1C1,q2 . . . C1,qk
.

Case 2. Suppose 1 �∈ Q′. Let q ∈ Q − {1, q1}. Define xQ′ = C1,q1Cq,1Cq1,q2

Cq1,q3 . . . Cq1,qk
.

Similarly, for ∅ �= Q′′ ⊆ Q = {1, 2, . . . , n}, we want to define yQ′′ such that
AR reaches the subset Q′′ of states when processing the symbols of the string
yQ′′ from right to left. Let Q′′ = {q1, q2, . . . , qk}.

Case 1. Suppose Q′′ = Q. Define yQ′′ = ε.
Case 2. Suppose Q′′ �= Q. Let Q − Q′′ = {q′1, q

′
2, . . . , q

′
h} where h + k = n.

Define yQ′′ = Cq′
2,q′

1
Cq′

3,q′
2
. . . Cq′

h,q′
h−1

Cq1,q′
h
.

We can see that xQ′yQ′′ ∈ L iff Q′∩Q′′ �= ∅. We define a matrix M indexed by
nonempty subsets of states such that entry [Q′, Q′′] has the value 1 if Q′∩Q′′ �= ∅,
otherwise the entry has the value 0. It has been shown in [7] that M has rank
2n − 1. Then, by Schmidt’s technique ([11] [8]), the smallest UFA equivalent to
A has 2n − 1 states. 	


Theorem 1 shows that we can achieve the biggest tradeoff between SUFA and
UFA. However, the language of some-register-on is over an alphabet of size
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O(n2) whereas the number of states in A is only n. Using a binary encoding
for the O(n2) letters, the number of states in A becomes n+O(n2) ·O(log n2) =
O(n2 log n).

On the other hand, in [8], we have shown that there exists a family of n-
state MDFA, where all states are starting states, over a binary alphabet such
that the smallest UFA has 2n − 1 states. As explained before, a MDFA can
be transformed into a O(n2)-state SUFA. Therefore, we have another family of
SUFA demonstrating exponential succinctness in the number of states over UFA.

As a consequence, we have

Corollary 2. SUFA can be exponentially more succinct in the number of states
than UFA.

Not only that SUFA can be exponentially more succinct in descriptional sizes
than UFA, it can also be exponentially more succinct than MDFA.

Lemma 3. The smallest MDFA for the language L of some-register-on with n
registers has at least 2n − 2 states.

Proof. Suppose the contrary that there exists a k-entry MDFA with less than
2n −2 states for L. The MDFA can be considered as a nondeterministic union of
k DFA (named D1, D2, . . . , Dk) each having less than 2n −2 states. We consider
each DFA Di as an incompletely specified DFA such that every state in Di are
reachable from the start state and can reach some final state. Moreover, we can
assume that every state in Di is indeed an accepting state. This is because a state
that can reach some final state is reached by the processing of some prefix of a
string in L, where L has the property that all prefixes of strings in L are also in L.

From the subset construction of A, the state that corresponds to the subset
Q is a state that once entered, the subset construction automaton will never
leave the state. A string w that causes the subset construction automaton to go
into this accepting “sink” state satisfies the property that w−1L = Σ∗. In the
following discussion, we deliberately avoid constructing strings that belong to
{w | w−1L = Σ∗}.

On the other hand, for all nonempty subsets of states Q′ �⊆ Q, there exists a
string that will cause the subset construction automaton to return to the state
that corresponds to a set consisting only of the starting state 1. Thus, for any
string u ∈ L such that A reaches a nonempty subset Q′ �⊆ Q of states, there
exists a string v such that (uv)−1L = L.

Recall that the smallest DFA for L has 2n states where one of the state is a
non-accepting dead state and another state is an accepting sink state. Moreover,
the rest of the 2n − 2 states in the DFA obtained by the subset construction are
strongly connected as there is a resetting mechanism which we have discussed.

Suppose Di arrives at state q on processing the string u from the start state.
Recall that u is designed such that u ∈ L − {w | w−1L = Σ∗}. Let v be a
string such that (uv)−1L = L. We resume the processing of Di from state q to
process v. It is possible that Di aborts, or it may arrive at a state q′. As Di does
not have 2n − 2 states and the language accepted by Di is a proper subset of
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L, together with the fact that all states in Di are accepting states, we deduce
that there must exist a string y ∈ L such that Di aborts in processing y from
state q′. We conclude that from any state q that Di reaches on processing a
string u ∈ L − {w | w−1L = Σ∗}, there is a string z such that Di aborts when
processing z from state q, whereas uz ∈ L − {w | w−1L = Σ∗}.

We consider DFA D1. There exists some string w1 ∈ L − {w | w−1L = Σ∗}
such that D1 aborts in processing w1 from the starting state. On processing w1,
DFA D2 may abort or may arrive at a state q2. There exists w2 such that w1w2 ∈
L − {w | w−1L = Σ∗} but D2 aborts when processing w2 from q2. Similarly, on
processing w1w2, DFA D3 may abort or may arrive at a state q3. There exists
w3 such that w1w2w3 ∈ L but D3 aborts when processing w3 from q3. We can
repeat this process to obtain a string w = w1w2 . . . wk ∈ L − {w | w−1L = Σ∗}
such that every Di aborts in processing w. Thus, the MDFA cannot recognize L,
a contradiction to the assumption that the MDFA has less than 2n−2 states. 	


In fact, the above lemma can be strengthened to show that the smallest MDFA
for the language of some-register-on has at least 2n − 1 states.

Theorem 4. The smallest MDFA for the language L of some-register-on with
n registers has at least 2n − 1 states.

Proof. (Sketch) We continue with the analysis given in the previous lemma. Sup-
pose the contrary that there is a MDFA of 2n − 2 states for L. Each DFA Di (as
defined in the previous proof), where 1 ≤ i ≤ k, can be assumed to have at least
2n − 2 states. Otherwise, we can show that any DFA Di with less than 2n − 2
states is not needed as we can use the same technique as in the previous proof
to ‘attack’ Di by a string w ∈ L that posseses the resetting property w−1L = L.
Next, as the previous proof considers strings w ∈ L − {w | w−1L = Σ∗}, we can
argue that the 2n −2 states of each Di can be identified with the 2n −2 non-sink
(accepting) states of the DFA obtained by applying the subset construction to A.
Moreover, all the different Di’s are functionally equivalent. Therefore, we can re-
duce them to only one DFA which is of 2n−2 states. But this is a contradiction as
we know that the smallest incompletely specified DFA for L has 2n−1 states. 	


As a consequence, we have

Corollary 5. SUFA can be exponentially more succinct in the number of states
than MDFA.

Note that the SUFA A is the reversal of a MDFA. Theorem 4 also shows that
the reversal of a MDFA can be exponentially more succinct than a MDFA. This
should not be a surprise as the reversal of a DFA can also be exponentially more
succinct than a DFA [8]. Let LR denote the reversal of L. It is clear that LR

can be recognized by the n-state MDFA AR. On the other hand, the statement
that a MDFA requires at least 2n − 1 states to recognize L can be restated as
LR requires 2n − 1 states for the reversal of a MDFA to accept. Therefore, we
have the next corollary:
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Corollary 6. The reversal of a MDFA can be exponentially more succinct than
a MDFA. A MDFA can be exponentially more succinct than the reversal of a
MDFA.

In [8], it is shown that MDFA can be exponentially more succinct than UFA. On
the other hand, we are going to show that UFA can also be exponentially more
succinct than MDFA.

We modify the language of some-register-on. Instead of accepting a string
when some register is on, we accept a string only if the register that we query at
the end of the input is on. That is, the end of an input is augmented by a query
instruction.

Assert: Register i is on

An input is accepted if the register i queried is on. In short, the query instruction
is denoted as Qi. We denote the new language L1.

We extend the previous example input by a query Q3. The example input
becomes C1,4C4,2C3,1C4,3C1,2Q3. Since register 3 is on after the copy instructions
are performed, the input is accepted as the query is about register 3. If we query
about register 1 at the end of the input as in C1,4C4,2C3,1C4,3C1,2Q1, then the
input is not accepted since register 1 is off.

To handle the newly added query feature, we modify the SUFA for the lan-
guage of some-register-on. We introduce a new state called f , which is the only
final state. New transitions are added: from each state i, on processing Qi, it
will go to state f . The resulting (n + 1)-state NFA is a UFA. We can see this as
the reversal of the NFA is a DFA. In fact, it has been shown [8] that the UFA is
the smallest UFA for the language.

We can argue that the smallest MDFA for L1 has at least 2n − 1 states.

Corollary 7. The smallest MDFA for L1 has at least 2n−1 states. Hence, UFA
can be exponentially more succinct in the number of states than MDFA.

Proof. Suppose the contrary that there is a MDFA A1 for L1 with less than
2n − 1 states. We can assume without loss of generality that all states in A1
are useful in the sense that each state in A1 can reach some final state. We can
modify A1 to give a MDFA for L. The modifications are as follows: Remove all
transitions labelled with queries and define every state to be an accepting state.
It is easy to see that the resulting modified automaton is a MDFA for L with
less than 2n − 1 states. But this contradicts with the result of Theorem 4, which
states that the smallest MDFA for L has at least 2n − 1 states. 	


In the literature, we have seen UFA designed as the reversals of DFA and FNA
designed as the reversals of MDFA. Our example of SUFA, the language of
some-register-on, is also the reversal of a MDFA.

As we have shown that the reversal of a MDFA is a SUFA, and a n-state
MDFA can be converted to an equivalent SUFA with O(n2) states. One may
wonder if SUFA is just the study of finite automata that are MDFA, or the
reversals of MDFA. We answer the question by constructing a SUFA such that
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any equivalent MDFA, or reversal of MDFA, requires an exponential blow up in
the number of states.

Recall that L denotes the language of some-register-on over the alphabet
Σ = {Ci,j | 1 ≤ i, j ≤ n, i �= j}. We define a language L′ = LR ·b·L ⊆ (Σ∪{b})∗,
where b is a new symbol not in Σ. Note that the reversal of L′ is L′ itself.

An initial design of a finite automaton B for L′ does not give us a SUFA.
We connect AR with a transition labelled by b, followed with A. Specifically,
the copy of AR is a MDFA with n starting states and a final state 1 (which is
considered as a final state of AR, but it is not exactly a final state of B). From
the state 1 of AR, we have a transition labelled by b that goes to the state 1 of
A which is a SUFA with all n states accepting. Together, B has 2n states.

We replicate n copies B1, B2, . . . , Bn of B, each with a different starting state.
That is, Bi is a SUFA with state i of AR as the starting state. We introduce a new
starting state for the nondeterministic union of B1, B2, . . . , Bn. We call the re-
sulting SUFA B′, which has O(n2) states over the alphabet Σ∪{b} of size O(n2).

Theorem 8. The smallest MDFA for L′ has at least 2n −1 states. The smallest
NFA for L′ that is the reversal of a MDFA has at least 2n − 1 states.

Proof. Suppose there is a MDFA N for L′ with less than 2n−1 states. We derive
from N a finite automaton for the language of some-register-on by removing all
transitions that are encountered before N processes the symbol b. We define the
starting states to be {q | (q′, b, q) is a transition in N }. The resulting finite
automaton is a MDFA for the language of some-register-on. As N has less than
2n − 1 states by assumption, the resulting finite automaton is a MDFA for the
language of some-register-on with less than 2n − 1 states, which contradicts the
statement of Theorem 4.

Suppse there is a finite automaton N ′, which is the reversal of a MDFA, that
recognizes L′ with less than 2n − 1 states. The reversal of N ′ is a MDFA that
recognizes the reverse of L′, which is again L′. But this contradicts the previous
result. 	


As a consequence, we have

Corollary 9. SUFA can be exponentially more succinct in the number of states
than MDFA and the reversal of MDFA simultaneously with respect to the same
language family.

Using a binary encoding for the alphabet symbols, we obtain from B′ a SUFA
for L′ with O(n3 log n) states.

3 Why SUFA?

In Section 2, we have shown that SUFA can be exponentially more succinct than
UFA and MDFA (also, reversals of MDFA) for denoting some family of regular
languages. On the other hand, SUFA will not do worse than equivalent MDFA
(or, reversals of MDFA) by more than a quadratic blow up in sizes.
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From the descriptional complexity results, we see that SUFA is a stronger
model than UFA and MDFA (also, reversals of MDFA). But, one may wonder
whether SUFA has practical significance for the practitioners implementing finite
automata for online processing of input strings.

SUFA can be implemented efficiently on a synchronous model of parallel com-
putation. One process thread can be assigned to each state. When the state is
off, the process thread is waiting to be woken up by another thread. As there
is only one path arriving at a state at any moment, there will not be two mes-
sages sending to a process thread at the same time. Thus, the process thread
will not require any buffer to hold the incoming messages in the synchronous
computation.

NFA have been classified into UFA, FNA, PNA and ENA according to the
ambiguity levels exhibited. As the amount of ambiguity is defined in terms of
the number of accepting computations, the classification depends on the choice
of the set of final states, which determines the language denoted.

Structural properties are obtained that offer equivalent characterizations of
FNA, PNA and ENA. Suppose all states in an NFA are useful; that is, every
state can reach some final state, and can be reached from some starting state.
It is shown ([6] [10] [14]) that an NFA is strictly exponentially ambiguous if and
only if there exists a state q and a string w such that there are more than one
path from q to q processing w; an NFA is strictly polynomially ambiguous if and
only if the NFA is not strictly exponentially ambiguous and there exists different
states p, q and a non-empty string w such that there are paths for processing w
that goes from p to itself, from q to itself and from p to q; an NFA is finitely
ambiguous if and only if the NFA is not strictly polynomially ambiguous.

Observe that the structural properties are defined in terms of the transition
logic of an automaton, but not on the set of final states. The characterizations
for ENA, PNA and FNA show that one can replace the semantic definition of
ambiguity levels exhibited by a NFA by the structural definition.

In this paper, we have shown that the structural definition of unambiguous
finite automata differs from the semantic definition. That is, SUFA and UFA
are not the same class. Unlike the undesirable effect that ambiguity has on the
parsing of programs, ambiguity in NFA are used to reduce the descriptional
size. It is therefore not necessary to demand an unambiguous finite automaton
to allow only one accepting path for each string accepted. Moreover, from a
practitioner’s point of view, there is no drawback in adopting SUFA as the defi-
nition of unambiguous finite automata as it allows efficient synchronous parallel
processing.

The classes of SUFA, FNA, PNA and ENA are forming a nice proper hierachy
in that the next model in the hierachy is more general and could be exponentially
more succinct than the previous model. Note that it is still a conjecture that
PNA can be exponentially more succinct than FNA.

On the other hand, the models UFA, MDFA and reversal of MDFA are incom-
parable to each other as it has been shown that UFA can be exponentially more
succinct than MDFA (Corollary 7), MDFA can be exponentially more succinct
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than UFA [8], MDFA can be exponentially more succinct than reversal of MDFA
(Corollary 6) and reversal of MDFA can be exponentially more succinct than
MDFA (Corollary 6). As the reversal of a UFA is a UFA, we can also conclude
from Corollary 7 and [8] that UFA can be exponentially more succinct than re-
versal of MDFA, and reversal of MDFA can be exponentially more succinct than
UFA.

Finally, the models UFA, MDFA and reversal of MDFA are proper subclasses
of SUFA. It is shown that SUFA can be exponentially more succinct than UFA
(Corollary 2), and SUFA can be exponentially more succinct than MDFA and
the reversal of MDFA simultaneously (Corollary 9).
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