
Storage and File Structure

Chapter 9 in Ramakrishnan&Gehrke book

2

Questions

■  What are the different types of memory in a
computer system?

■  What are the physical characteristics of disks and
tapes, and how do they affect the design of
database systems?

■  How does a DBMS keep track of space on disks?
How does a DBMS access and modify data on
disks? What is the significance of pages as a unit of
storage and transfer?

■  How does a DBMS create and maintain files of
records? How are records arranged on pages, and
how are pages organized within a file?

3

Index Files
 System Catalog
 Data Files

Disk Space Manager

Buffer Manager

Files and Access Methods
Recovery

Manager

Transaction
 Manager

Lock
 Manager

Concurrency
Control

DBMS

Application Front Ends SQL InterfaceWeb Forms

SQL COMMANDS

Operator Evaluator

Plan Executor Parser

Optimizer

Query
Evaluation
Engine

Architecture of a DBMS

4

Storage and File Structure

■  Physical Storage Media
● Magnetic Disks

■  Disk Space Manager
■  Buffer Manager
■  File Organization
■  Data-Dictionary Storage

5

Storage Hierarchy
cache

main memory

flash memory

magnetic disk

optical disk

magnetic tapes

6

Storage Hierarchy (Cont.)

■  primary storage: Fastest media but volatile
(cache, main memory).

■  secondary storage: next level in hierarchy,
non-volatile, moderately fast access time
●  also called online storage
● E.g., flash memory, magnetic disks

■  tertiary storage: lowest level in hierarchy, non-
volatile, slow access time
●  also called offline storage
● E.g., magnetic tape, optical storage

7

Classification of Physical Storage Media

■  Cost per unit of data storage
■  Speed with which data can be accessed
■  Reliability

●  data loss on power failure or system crash
! volatile storage: loses contents when power

is switched off
! nonvolatile storage: contents persist even

when power is switched off
●  physical failure of the storage device

8

Magnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual
disk drives

track t

sector s

spindle

cylinder c

platter
arm

read–write
head

arm assembly

rotation

9

Magnetic Disks
■  Magnetic disks support direct access to a desired location.
■  Data is stored on disk in units called disk blocks, which is the

unit of reading or writing.
■  Surface of platter divided into circular tracks

●  Over 50K-100K tracks per platter on typical hard disks
■  Each track is divided into sectors

●  A sector is the smallest unit of data that can be read or
written.

●  Sector size typically 512 bytes
●  Typical sectors per track: 500 (on inner tracks) to 1000 (on

outer tracks)
■  Platter may have one or two surfaces
■  Cylinder: set of all tracks with the same diameter. Cylinder i

consists of ith track of all the platters

10

Magnetic Disks
■  An array of read-write disk heads

●  One head per platter, mounted on a common arm.
●  Current systems typically allow at most one disk head to read

or write at any one time
■  A disk controller: implements commands to read or write a

sector by (a) moving the arm assembly and transferring data to
ad from the disk surfaces
●  Calculate a checksum: for error checking

■  Disk-arm-scheduling algorithms order pending accesses to
tracks so that disk arm movement is minimized
●  elevator algorithm: move disk arm in one direction (from

outer to inner tracks or vice versa), processing next request in
that direction, till no more requests in that direction, then
reverse direction and repeat

11

Magnetic disks (cont.)

■  Mechanical characteristics
● Rotation speed (5400-7200RPM) (as of 2013/12)
● Number of platters (1-30)
● Number of tracks (<=10000)
● Number of bytes/track (105)

■  Disk block: the size of a disk block can be set when
the disk is initialized as a multiple of the sector size.
typically: 4K, or 8K, or 16K

12

Performance Measures of Disks

■  Access time = seek time + rotational latency +
transfer time
●  Time between when a command is issued and

when data is in memory
■  Seek time – time for move the disk heads to

reach the desired track
■  Rotational latency – time it takes for the sector to

be accessed to appear under the head.
■  Data-transfer time: time to actually read or write

the data in the block once the head is positions
● Data-transfer rate – the rate at which data can

be retrieved from or stored to the disk.

13

Implications of Disk Structure to DBMS

■  Data must be in memory for the DBMS to operate
on it

■  The unit for data transfer between disk and main
memory is a block; reading or writing a disk block is
called an I/O operation

■  If two records are frequently used together, we
should place them close together

14

Arranging Pages on Disk

■  A disk is organized into blocks (a.k.a. pages)
●  blocks on same track, followed by
●  blocks on same cylinder followed by
●  blocks on adjacent cylinder

■  A file should (ideally) consist of sequential blocks
on disk, to minimize seek and rotational delay.

■  For a sequential scan, pre-fetching several pages at
a time is a big win!

15

Optimization of Disk Block Access

■  Nonvolatile write buffers speed up disk writes by writing
blocks to a non-volatile RAM buffer immediately
●  Non-volatile RAM: battery backed up RAM or flash memory

■  Log disk – a disk devoted to writing a sequential log of block
updates
●  Used exactly like nonvolatile RAM

! Write to log disk is very fast since no seeks are required
! No need for special hardware (NV-RAM)

■  File systems typically reorder writes to disk to improve
performance
●  Journaling file systems write data in safe order to NV-

RAM or log disk

16

■ RAID (S.S.)

17

Storage and File Structure

■  Physical Storage Media
● Magnetic Disks

■  Disk Space Manager
■  Buffer Manager
■  File Organization
■  Data-Dictionary Storage

18

Managing Free Blocks

■  Disk space manager, manages space on disk
■  Disk space manager supports the concept of a page

as a unit of data
■  The size of a page is chosen to be the size of a disk

block
■  Useful to allocate a sequence of pages as a

contiguous sequence of blocks to hold data
frequently accessed.

19

Managing Free Blocks

■  Disk space manager keeps track of
● Which blocks are in use
● Which blocks are on which disk blocks

■  Linked list of free blocks
● When a block is de-allocated, it is added to the

free list
● A pointer to the first block on the free block list is

stored in a known location on disk.
■  Bitmap

● One bit for each disk block
● Allow very fast identification and allocation of

contiguous areas on disk.

20

Disk space manager

■  Use OS files
●  The entire DB resides in one or more OS files for

which a number of blocks are allocated (by the
OS) and initialized

■  Do not rely on OS file system
● Self-contained code to support several OS

platforms
● A file may be too small (e.g., 32 bit system, the

largest file size is 4GB)
● OS files cannot span disk devices

21

Storage and File Structure

■  Physical Storage Media
● Magnetic Disks

■  Disk Space Manager
■  Buffer Manager
■  File Organization
■  Data-Dictionary Storage

22

Buffer manager

■  Motivation
● DB contains 1M pages
● Main memory can only hold 1000 pages

■  Buffer manager: bring pages from disk to main
memory as needed.

■  Buffer manager manages available main memory by
partitioning it to a collection of pages, buffer pool.

■  The main memory pages are called frames.

23

Buffer Manager

■  Maintains book-keeping information and two
variables for each frame in the pool
● Variable pin_count: the number of times that a

page currently in a given frame has been
requested but not released

● Variable dirty: indicates whether the page has
been modified since it was brought into the buffer
pool from the disk

■  Pinning: incrementing pin_count
■  Unpinning: the requestor releases a page and its

pin_count is decremented

24

Buffer Manager

■  When a page is requested, the bugger manager does:
●  If the requested page is in the buffer pool, increments

the pin_count of that frame.
●  If the request page is not in the buffer pool, the buffer

manager
!  Chooses a frame for replacement using the

replacement policy and increments its pin_count
!  If the dirty bit for the replacement frame is on, write

the page it contains to disk
!  Reads the requested page into the replacement

frame
●  Returns the main memory address of the frame

containing the requested page to the requestor.

25

Buffer Manager

■  The buffer manager will not read another page into a frame
until its pin_count becomes 0
●  When a frame is needed, a frame with pin_count 0 is

chosen for replacement; If there are many such frames,
buffer replacement policies are applied.

●  Frame whose dirty bit is not set, newly requested page
directly replace such frames

●  Frames whose dirty bit is set, propagate modification to
the disk (recovery manager)

■  If no page in the buffer pool has pin_count 0 and a page
that is not in the pool is requested, the buffer manager must
wait until some page is released before responding to the page
request

■  A buffer manager assumes that an appropriate lock has been
obtained before a page is requested (Transaction manager)

26

Buffer Replacement Policies

■  Choose an unpinned page for replacement
■  LRU (least recently used): use a queue of pointers to

unpinned pages (enter to queue tail and chosen from queue
head)

■  LRU can be a bad strategy for certain access patterns
involving repeated scans of data. E.g.,
●  buffer pool has 10 pages
●  r has 1 page, s has 11 pages
●  Join r and s by a nested loops 

 for each tuple tr of r do  
 for each tuple ts of s do  
 if the tuples tr and ts match …

●  for each tr, read 11 pages

27

Storage and File Structure

■  Physical Storage Media
● Magnetic Disks

■  Disk Space Manager
■  Buffer Manager
■  File Organization
■  Data-Dictionary Storage

28

Issues

■  File format: how are the pages organized in a file
■  Page formats: how are records organized in a page
■  Record formats: how are attributes organized in a

record

29

File Format - Heap Files

■  The data in the pages of a heap file is not ordered.
■  The database is stored as a collection of files. Each

file consists of one or more pages.
■  Every page in a file is of the same size.
■  Every record in the file has a unique rid.
■  Supported operations

●  File creation and destroy
● Record insertion, deletion, and retrieval

■  Information to keep
● Keep track of pages in each heap file
● Keep track of pages that contain free space

30

Heap files – linked list of pages

■  Heap file: doubly linked list of pages
■  DBMS remembers the first page (header page) in a table

containing <heap_file_name, header_page_address>
■  Track pages that are not full (i.e., have some free space)
■  Track free space within a page (later)

Header
page

Data
page

Data
page

… Data
page

Full pages

Pages with some free space

Data
page

Data
page

… Data
page

31

Heap files – linked list of pages

■  Disadvantage
●  For records of variable length, virtually every

page has some space

Header
page

Data
page

Data
page

… Data
page

Full pages

Pages with some free space

Data
page

Data
page

… Data
page

32

Heap files – directory of pages

■  DBMS remembers the
first directory page of
each heap file

■  Each directory entry
●  a bit (indicating

whether the
corresponding page
has any free space)

●  OR a count
(indicating the
amount of free space
on the page)

Data
page

Data
page

Header

Directory

Data
page

33

Page Formats

■  How a collection of records are arranged on a
page?

■  A page is a collection of slots, which are for records
■  Each record is identified by

● RID = <page_id, slot_number>
●  There are alternative ways to maintain record ids

■  Issues to consider
●  1 page = fixed size (e.g. 8KB)
● Records: Fixed length, Variable length

34

Page formats – fixed-length records

Rec1 Rec2 … RecN Free space N

■  Fixed-length records: packed representation
■  Delete a record: move the last record on the page

to the vacated slot
■  Locate the ith record by a simple offset calculation
■  Disadvantage: there are external references to the

record that is moved

One page

35

Page formats – fixed-length records

Rec1 Rec2 … RecN Free space 0 … 1 0 1 N

■  Fixed-length records: unpacked representation
■  Handle deletions using an array of bitsM
■  Delete a record: set its bit off
■  Locating a record: scanning the bit array
■  N: number of slots

One page

36

Page formats – variable-length records

Rec1 Rec2 Free space

■  Maintain a directory of slots for each page
■  Each slot <record offset, record length>
■  Delete a record: set its record offset to be -1, and the

record can be actually moved around
■  Insert a record: search for an empty slot

One page Slot directory

37

Page formats – variable-length records

■  Variations
■  Can be used for fixed-length records if the fixed-length

records need to be moved frequently
■  Slots only maintain the record offsets (without the length)

and the length is stored with the record (This works for both
fixed-length and variable-length records)

38

Record Formats: fixed-length

■  How to organize fields within a record?
■  Information about field types same for all records in a file;

stored in system catalogs.

■  The number of fields is fixed and each field has a fixed length
■  Finding i’th field: requires scan of record.

id name deptname salary

L1 L2 L3 L4

Base address (B) Address: B+L1+L2

39

Record Header

■  Need the header because:
●  The schema may change for a while new+old may coexist
●  Records from different relations may coexist

id name deptname salary

To schema

length

timestamp

40

Variable Length Record

■  Array of integer offsets at the beginning of a record
●  The ith integer is the starting address of the ith field
●  ending offset?
●  Place the fixed fields first: F1
●  Then the variable length fields: F2, F3, F4.

■  Null values: pointer to the end of the field = pointer to the
beginning of the field

F1 F2 F3 F4

Other header information

length

41

BLOB

■  Binary large objects
■  Supported by modern database systems

● E.g. images, sounds, etc.
● Storage: attempt to cluster blocks together

■  CLOB = character large object
● Supports only restricted operations

42

Page format (used by Postgres)

■  Used by Postgres tables and indexes
■  Every table/index is stored as an array of pages of a fixed size

(8KB)
●  Index: the first page special use

■  Each page
●  Header (PageHeaderData, 24 bytes: WAL entry, … free

space pointer…)
●  ItemIdData: pairs of (offset, length), each pair requires 4

bytes
●  Free Space
●  Items (table rows or index entries)

■  http://www.postgresql.org/docs/9.2/static/storage-page-
layout.html

43

Organization of Records in Files

■  Heap – (random order) files: Suitable when typical
access is a file scan retrieving all records.

■  Sorted File (Sequential) – Best if records must be
retrieved in some order, or only a `range’ of records is
needed.

■  Hashing – a hash function computed on some
attribute of each record; the result specifies in which
block of the file the record should be placed

■  Records of each relation may be stored in a separate
file. In a multi-table clustering file organization
records of several different relations can be stored in
the same file
● Motivation: store related records on the same block

to minimize I/O

44

Multitable Clustering File Organization

Store several relations in one file using a multitable clustering
file organization.

45

Multitable Clustering File Organization (cont.)

Multitable clustering organization of department and instructor:

Katz
Srinivasan

Taylor

Brandt
Watson
Gold

100000

70000
87000

92000

75000
65000

Comp. Sci.
45564
10101
83821
Physics
33456

●  good for queries involving department instructor
●  bad for queries involving only instructor
●  results in variable size records
●  Can add pointer chains to link records of a particular relation

46

Storage and File Structure

■  Physical Storage Media
● Magnetic Disks

■  Disk Space Manager
■  Buffer Manager
■  File Organization
■  Data-Dictionary Storage

47

Data Dictionary Storage

■  Information about relations
●  names of relations
●  names and types of attributes of each relation
●  names and definitions of views
●  integrity constraints

■  User and accounting information, including passwords
■  Statistical and descriptive data

●  number of tuples in each relation
■  Physical file organization information

●  How relation is stored (sequential/hash/…)
●  Physical location of relation

■  Information about indices

Data dictionary (also called system catalog) stores metadata;
that is, data about data, such as

48

Data Dictionary Storage (Cont.)

■  Catalog structure
●  Relational representation on disk
●  specialized data structures designed for efficient access, in

memory
■  A possible catalog representation:

Relation_metadata = (relation_name, number_of_attributes,  
 storage_organization, location)  

Attribute_metadata = (attribute_name, relation_name, domain_type,  
position, length)

User_metadata = (user_name, encrypted_password, group)
Index_metadata = (index_name, relation_name, index_type,  

index_attributes)
View_metadata = (view_name, definition)

49

Data Dictionary Storage (Cont.)

■  Mysql: INFORMATION_SCHEMA database
●  http://www.java2s.com/Tutorial/MySQL/0500__Data-Dictionary/

TheINFORMATIONSCHEMADatabase.htm
■  Postgres: System catalogs

●  http://www.postgresql.org/docs/8.3/static/catalogs.html

