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Introduction — Answer Set Programming

Answer set programming is a new programming paradigm. It was
introduced in the late 90’s and manages to attract the intention of
different groups of researchers thanks to its:

I declarativeness: programs do not specify how answers are
computed;

I modularity: programs can be developed incrementally;

I expressiveness: answer set programming can be used to solve
problems in high complexity classes (e.g. Σ2

P , Π2P, etc.)

Answer set programming has been applied in several areas:
reasoning about actions and changes, planning, configuration, wire
routing, phylogenetic inference, semantic web, information
integration, etc.
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Rules and Constraints

r : b1 or . . . or bm ← a1, . . . , an,not an+1, . . . ,not an+k

I ai , bj : atom of a language L (L can either be propositional or
first order)

I not a: a negation-as-failure atom (naf-atom).

Reading 1

If a1, . . . , an are true and none of an+1, . . . , an+k can be proven to
be true then at least one of b1, . . . , bm must be true.

Reading 2

If a1, . . . , an are believed to be true and there is no reason to
believe that any of an+1, . . . , an+k is true then at least one of
b1, . . . , bm must be true.
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Notations

r : b1 or . . . or bm︸ ︷︷ ︸
head(r)

← a1, . . . , an,not an+1, . . . ,not an+k︸ ︷︷ ︸
body(r)

I head(r) = {b1, . . . , bm}
I pos(r) = {a1, . . . , an} (also: body +(r) = {a1, . . . , an})
I neg(r) = {an+1, . . . , an+k} (also:

body−(r) = {an+1, . . . , an+k})

Special cases

I n = k = 0: r encodes a fact;

I k = 0: r is a positive rule; and

I m = 0: r encodes a constraint.



Program

I Program: a set of rules.

I Herbrand universe: the set of ground terms constructed
constructed from function symbols and constants occurring in
the program. (Uπ)

I Herbrand base: the set of ground atoms constructed from
predicate symbols and ground terms from the Herbrand
universe. (Bπ)

I Rule with variables: shorthand for the collection of its ground
instances. (ground(r))

I Program with variables: collection of ground instances of its
rules. (ground(π))



L is a propositional language

L: set of propositions such as p, q, r , a, b ...

P1 =


a←
b ← a, c
c ← a, p
c ←

P2 =


a← not b
b ← not a, c
p ← a,not p
c ←

P3 =

{
a←
b ← c



L is a first order language

L has one function symbol f (arity: 1) and one predicate symbol p
(arity 1)

Q1 =
{

p(f (X ))← p(X )

Q2 =
{

p(f (f (X ))← p(f (X )),not p(X )

Q3 =

{
p(f (X ))←
p(f (f (f (X ))))← p(X )



Semantics: Positive Propositional Programs

For a program without not and every rule m = 1. So, every rule
in P is of the form: a← a1, . . . , an

Definition
For a positive program P,

TP(X ) = {a | ∃(a← a1, . . . , an) ∈ P.[∀i .(ai ∈ X )]}

Observations

I every fact in P belongs to TP(X ) for every X

I If X ⊆ Y then TP(X ) ⊆ TP(Y )

I ∅ ⊆ TP(∅) ⊆ TP(TP(∅)) ⊆ . . . ⊆ T n
P(∅) ⊆ and T n(∅) for

n→∞ converges to lfp(TP)



Computing TP : Example 1

L: set of propositions such as p, q, r , a, b ...

P1 =


a←
b ← a, c
c ← a, p
c ←

TP1(∅) = {a, c}
T 2

P1
(∅) = TP1(TP1(∅)) = TP1(({a, c}) = {a, c , b}

T 3
P1

(∅) = TP1(T 2
P1

(∅)) = TP1({a, c , b}) = {a, c , b} = lfp(TP1)



Computing TP : Example 2

L: set of propositions such as p, q, r , a, b ...

P2 =


a← b
b ← a, c
p ← a, p
c ←

TP2(∅) = {c}
T 2

P2
(∅) = TP2(TP2(∅)) = TP2({c}) = {c} = lfp(TP2)



Computing TP : Example 3

P3 =

{
a←
b ← c

TP3(∅) = {a}
T 2

P3
(∅) = TP3(TP3(∅)) = TP3({a}) = {a} = lfp(TP3)



Computing TP : Example 4 and 5

P4 =

{
a← b
b ← a

TP4(∅) = ∅ = lfp(TP4)

P5 =

{
a←
b ← a, b

TP5(∅) = {a}
T 2

P5
(∅) = TP5(TP5(∅)) = TP5({a}) = {a} = lfp(TP5)



Terminologies – many borrowed from classical logic

I variables: X ,Y ,Z , etc.

I object constants (or simply constants): a, b, c , etc.

I function symbols: f , g , h, etc.

I predicate symbols: p, q, etc.

I terms: variables, constants, and f (t1, . . . , tn) such that ti ’s
are terms.

I atoms: p(t1, . . . , tn) such that ti s are terms.

I literals: atoms or an atom preceded by ¬.

I naf-literals: atoms or an atom preceded by not.

I gen-literals: literals or a literal preceded by not.

I ground terms (atoms, literals) : terms (atoms, literals resp.)
without variables.



FOL, Herbrand Universe, and Herbrand Base

I L – a first order language with its usual components (e.g.,
variables, constants, function symbols, predicate symbols,
arity of functions and predicates, etc.)

I UL – Herbrand Universe of a language L: the set of all
ground terms which can be formed with the functions and
constants in L.

I BL – Herbrand Base of a language L: the set of all ground
atoms which can be formed with the functions, constants and
predicates in L.

I Example: Consider a language L1 with variables X ,Y ;
constants a, b; function symbol f of arity 1; and predicate
symbol p of arity 1.

I UL1 = {a, b, f (a), f (b), f (f (a)), f (f (b)), f (f (f (a))),
f (f (f (b))), . . .}.

I BL1 = {p(a), p(b), p(f (a)), p(f (b)), p(f (f (a))), p(f (f (b))),
p(f (f (f (a)))), p(f (f (f (b)))), . . .}.



Programs with FOL Atoms

r : b1 or . . . or bm ← a1, . . . , an,not an+1, . . . ,not an+k

The language L of a program Π is often given implicitly.

Rules with Variables
ground(r ,L): the set of all rules obtained from r by all possible
substitution of elements of UL for the variables in r .

Example

Consider the rule “p(f (X ))← p(X ).” and the language L1 (with
variables X ,Y ; constants a, b; function symbol f of arity 1; and
predicate symbol p of arity 1). Then ground(r ,L1) will consist of
the following rules:
p(f (a))← p(a).
p(f (b))← p(b).
p(f (f (a)))← p(f (a)).
p(f (f (b)))← p(f (b)).
...



Main Definitions

I ground(r ,L): the set of all rules obtained from r by all
possible substitution of elements of UL for the variables in r .

I For a program Π:

I ground(Π,L) =
⋃

r∈Π ground(r ,L)
I LΠ: The language of a program Π is the language consists of

the constants, variables, function and predicate symbols (with
their corresponding arities) occurring in Π. In addition, it
contains a constant a if no constant occurs in Π.

I ground(Π) =
⋃

r∈Π ground(r ,LΠ).



Example 2

I Π:
p(a). p(b). p(c).
p(f (X ))← p(X ).

I ground(Π):
p(a)←.
p(b)← .
p(c)← .
p(f (a))← p(a).
p(f (b))← p(b).
p(f (c))← p(c).
p(f (f (a)))← p(f (a)).
p(f (f (b)))← p(f (b)).
p(f (f (c)))← p(f (c)).
...
p(f k+1(x))← p(f k (x)). for x ∈ {a, b, c}



Herbrand Interpretation I

Definition
The Herbrand universe (resp. Herbrand base) of Π, denoted by UΠ

(resp. BΠ), is the Herbrand universe (resp. Herbrand base) of LΠ.

Example For Π = {p(X )← q(f (X ), g(X )). r(Y )←}
the language of Π consists of two function symbols: f (arity 1) and
g (arity 2); two predicate symbols: p (arity 1), q (arity 2) and r
(arity 1); variables X ,Y ; and a (added) constant a.
UΠ = ULΠ

= {a, f (a), g(a), f (f (a)), g(f (a)), g(f (a)),
g(g(a)), f (f (f (a))), g(f (f (g(a)))), . . .}

BΠ = BLΠ
= {p(a), q(a, a), r(a), p(f (a)), q(a, f (a)), r(f (a)),

q(f (g(a)), g(f (f (a)))), . . .}
Definition (Herbrand Interpretation)

A Herbrand interpretation of a program Π is a set of atoms from
its Herbrand base.



Semantics – Positive Programs without Constraints I

Let Π be a positive proram and I be a Herbrand interpretation of
Π.
I is called a Herbrand model of Π if for every rule
“a0 ← a1, . . . , an” in ground(Π), a1, . . . , an are true with respect
to I (or {a1, . . . , an} ⊆ I ) then a0 is also true with respect to I (or
a0 ∈ I ).

Definition
The least Herbrand model for a program Π is called the minimal
model of Π and is denoted by MΠ.

Computing MP . Let Π be a program. We define a fixpoint
operator TΠ that maps a set of atoms (of program Π) to another
set of atoms as follows.

TΠ(X ) = {a | a ∈ BΠ,
there exists a rule

a← a1, . . . , anin Π s. t. ai ∈ X}
(1)



Semantics – Positive Programs without Constraints II

Note: By a0 ← a1, . . . , an in ground(Π) we mean there exists a
rule b0 ← b1, . . . , bn in Π (that might contain variables) and a
ground substitution σ such that a0 = b0σ and ai = biσ.

Remark
The operator TΠ is often called the van Emden and Kowalski’s
iteration operator.



Some Examples

For Π = {p(f (X ))← p(X ). q(a)← p(X ).}
we have

UΠ = {a, f (a), f (f (a)), f (f (f (a))), . . .} = {f i (a) | i = 0, 1, . . . , }

and
BΠ = {q(f i (a)), p(f i (a)) | i = 0, . . . , }

Computing TΠ(X ):

I For X = BΠ, TΠ(X ) = {q(a)} ∪ {p(f (t)) | t ∈ UΠ}.
I For X = ∅, TΠ(X ) = ∅.
I For X = {p(a)}, TΠ(X ) = {q(a), p(f (a))}.
I We have that MΠ = ∅ (Why?).



Properties of TΠ

I TΠ is monotonic: TΠ(X ) ⊆ TΠ(Y ) if X ⊆ Y .

I TΠ has a least fixpoint that can be computed as follows.

1. Let X1 = TΠ(∅) and k = 1
2. Compute Xk+1 = TΠ(Xk ). If Xk+1 = Xk then stops and return

Xk .
3. Otherwise, increase k and repeat the second step.

Note: The above algorithm will terminate for positive program Π
with finite BΠ.
We denote the least fix point of TΠ with T∞Π (∅) or lfp(TΠ).

Theorem
MΠ = lfp(TΠ).

Theorem
For every positive program Π without constraint, MΠ is unique.



More Examples I

I For Π1 = {p(X )← q(f (X ), g(X )). r(Y )←}
we have that UΠ1 =
{a, f (a), g(a), f (f (a)), g(f (a)), g(f (a)), g(g(a)), f (f (f (a))), . . .}

BΠ1 = {p(a), q(a, a), r(a), p(f (a)), q(a, f (a)), r(f (a)), . . .}
Computing MΠ:
X0 = TΠ1(∅) =
{r(a), r(f (a)), r(g(a)), r(f (f (a))), r(g(f (a))), r(f (g(a))), ...}
X1 = TΠ1(X0) = X0

So, lfp(Π1) = {r(a), r(f (a)), r(g(a)), r(f (f (a))), ...}.
I For Π2 = {p(f (X ))← p(X ). q(a)← p(X ).}

UΠ2 = {a, f (a), f (f (a)), f (f (f (a))), . . .}
BΠ2 = {q(a), p(a), p(f (a)), p(f (f (a))), . . .}

Computing MΠ2:
X0 = TΠ2(∅) = ∅
X1 = TΠ2(X0) = X0

So, lfp(Π2) = ∅.



More Examples II
I For Π3 = {p(f (X ))← p(X ). q(a)← p(X ). p(b).}

UΠ3 = {a, b, f (a), f (b), f (f (a)), f (f (b)), f (f (f (a))), . . .}
BΠ3 =

{q(a), q(b), p(a), p(b), p(f (a)), p(f (b)), p(f (f (a))), . . .}
Computing MΠ3:
X0 = TΠ3(∅) = {p(b)}
X1 = TΠ3(X0) = {p(b), q(a), p(f (b))}
X2 = TΠ3(X1) = {p(b), q(a), p(f (b)), p(f (f (b)))}
. . .
So, lfp(TΠ3) = {q(a)} ∪ {p(f i (b)) | i = 0, 1, . . .}.

I For Π4 = {p ← a. q ← b. a← .}, MΠ4 = {a, p}.
I For Π5 = {p ← p.}, MΠ5 = ∅
I For Π6 = {p ← p. q ← .}, MΠ6 = {q}.
I For Π7 = {p(b). p(c). p(f (X ))← p(X ).},

MΠ7 = {p(f n(b)) | n = 0, . . . , } ∪ {p(f n(c)) | n = 0, 1. . . . , }



Entailment

For a program Π and an atom a, Π entails a (with respect to the
minimal model semantics), denoted by Π |= a, iff a ∈ MΠ.
We say that Π entails ¬a (with respect to the minimal model
semantics), denoted by Π |= ¬a, iff a 6∈ MΠ.

Example

Let

Π =


p(f (X )) ← p(X ).
q(a) ← p(X ).
p(b).

We have that MΠ = lfp(TΠ) = {q(a)} ∪ {p(f i (b)) | i = 0, 1, . . .}
where f i (b) = f (f (. . . (f (b)))) (f repeated i times)
So, we say:

Π |= q(a),
Π |= ¬q(b), and
Π |= p(f i (b)) for i = 0, 1, . . .



Entailment – Another Example I

I Consider the parent-child database with facts of the form
p(X ,Y ) (X is a parent of Y ). We can define the ancestor
relationship, a(X ,Y ) (X is an ancestor of Y ), using the
following rules

Πa =

{
a(X ,Y ) ← p(X ,Y ).
a(X ,Y ) ← p(X ,Z ), a(Z ,Y ).

Given the set of facts I = {p(a, b), p(b, c), p(c , d)}, let
Π = Πa ∪ I . We can easily compute

MΠ = I ∪ {a(X ,Y ) | p(X ,Y ) ∈ I} ∪ {a(a, c), a(a, d), a(b, d)}

So, Π |= a(a, c) and Π |= a(a, d), i.e., a is an ancestor of c
and d ; on the other hand, Π |= ¬a(d , a), i.e., d is not an
ancestor of a.



Entailment – Another Example II

I Consider a directed graph G described by a set of atoms of
the form edge(X ,Y ). The following program can be used to
determine whether there is a path connecting two nodes of G .

ΠG =



reachable(X ,Y ) ← edge(X ,Y )
reachable(X ,Y ) ← edge(X ,Z ), reachable(Z ,Y )

edge(a, b) ←
edge(b, c) ←
edge(c , a) ←
. . .

It can be shown that for every pair of nodes p and q of the
graph G , reachable(p, q) belongs to MΠG

iff there exists a
path from p to q in the graph G .



Entailment – Another Example III

Remark
Reasoning using positive programs assumes the closed world
assumption (CWA): anything, that cannot be proven to be true, is
false.



Semantics – General Logic Programs without Constraints I

Recall that a program is a collection of rules of the form

a← a1, . . . , an,not an+1,not an+k .

Let Π be a program and X be a set of atoms, by ΠX we denote
the program obtained from ground(Π) by

1. Deleting from ground(Π) any rule
a← a1, . . . , an,not an+1,not an+k for that
{an+1, . . . , an+k} ∩ X 6= ∅, i.e., the body of the rule contains
a naf-atom not al and al belongs to X ; and

2. Removing all of the naf-atoms from the remaining rules.



Semantics – General Logic Programs without Constraints II

Remark
The above transformation is often referred to as the
Gelfond-Lifschitz transformation.

Remark
ΠX is a positive program.

Definition
A set of atoms X is called an answer set of a program Π if X is the
minimal model of the program ΠX .

Theorem
For every positive program Π, the minimal model of Π, MΠ, is also
the unique answer set of Π.



Detailed Computation I

I Consider Π2 = {a← not b. b ← not a.}. We will show that
its has two answer sets {a} and {b}

S1 = ∅ S2 = {a} S3 = {b} S4 = {a, b}
ΠS1

2 : ΠS2
2 : ΠS3

2 : ΠS4
2 :

a← a←
b ← b ←
M

Π
S1
2

= {a, b} M
Π

S2
2

= {a} M
Π

S3
2

= {b} M
Π

S4
2

= ∅
M

Π
S1
2

6= S1 M
Π

S2
2

= S2 M
Π

S3
2

= S3 M
Π

S4
2

6= S4

NO YES YES NO

I Assume that our language contains two object constants a
and b and consider Π = {p(X )← not q(X ). q(a)←}. We
show that S = {q(a), p(b)} is an answer set of Π. We have
that ΠS = {p(b)← q(a)←} whose minimal model is
exactly S . So, S is an answer set of Π.



Detailed Computation II
I Π4 = {p ← not p.} We will show that Π does not have an

answer set.
S1 = ∅, then ΠS1

4 = {p ←} whose minimal model is {p}.
{p} 6= ∅ implies that S1 is not an answer set of Π4.
S2 = {p}, then ΠS2

4 = ∅ whose minimal model is ∅. {p} 6= ∅
implies that S2 is not an answer set of Π4.
This shows that Π does not have an answer set.



Detailed Computation III

In computing answer sets, the following theorem is useful:

Theorem
Let Π be a program.

1. Let r be a rule in ground(P) whose body contains an atom a
that does not occur in the head of any rule in ground(P).
Then, S is an answer set of Π iff S is an answer set of
ground(P) \ {r}.

2. Let r be a rule in ground(P) whose body contains a naf-atom
not a that does not occur in the head of any rule in
ground(P). Let r ′ be the rule obtained from r by removing
not a. Then, S is an answer set of P iff S is an answer set of
ground(P) \ {r} ∪ {r ′}.



More Examples

Remark
A program may have zero, one, or more than one answer sets.

I Π1 = {a← not b.}.
Π1 has a unique answer set {a}.

I Π2 = {a← not b. b ← not a.}.
The program has two answer sets: {a} and {b}.

I Π3 = {p ← a. a← not b. b ← not a.}
The program has two answer sets: {a, p} and {b}.

I Π4 = {a← not b. b ← not c . d ← .}
Answer sets: {d , b}.

I Π5 = {p ← not p.}
No answer set.

I Π6 = {p ← not p, d . r ← not d . d ← not r .}
Answer set {r}.



Entailment w.r.t. Answer Set Semantics I

I For a program Π and an atom a, Π entails a, denoted by
Π |= a, if a ∈ S for every answer set S of Π.

I For a program Π and an atom a, Π entails ¬a, denoted by
Π |= ¬a, if a 6∈ S for every answer set S of Π.

I If neither Π |= a nor Π |= ¬a, then we say that a is unknown
with respect to Π.

Remark
Π does not entail a DOES NOT IMPLY that Π entails ¬a, i.e.,
reasoning using answer set semantics does not employ the closed
world assumption.

I Π1 = {a← not b.}.
Π1 has a unique answer set {a}. Π1 |= a, Π1 |= ¬b.

I Π2 = {a← not b. b ← not a.}.
The program has two answer sets: {a} and {b}. Both a and
b are unknown w.r.t. Π2.



Entailment w.r.t. Answer Set Semantics II

I Π3 = {p ← a. a← not b. b ← not a.}
The program has two answer sets: {a, p} and {b}. Everything
is unknown.

I Π4 = {a← not b. b ← not c . d ← .}
Answer sets: {d , b}. Π4 |= b; Π4 |= ¬a; etc.

I Π5 = {p ← not p.}
No answer set. p is unknown.

I Π6 = {p ← not p, d . r ← not d . d ← not r .}
Answer set {r}. Π6 |= r ; Π6 |= ¬p; etc.

I Π7 = {p ← not a. p ← not b. a← not b. b ← not a.}
Two answer sets: {p, a} and {p, b}. So, Π7 |= p but Π7 6|= a
and Π7 6|= ¬a? (likewise b).

I Π8 = {q ← not r . r ← not q. p ← not p. p ← not r .}
One stable model: {p, q}. So, Π7 |= p and Π7 |= q.



Entailment w.r.t. Answer Set Semantics III

Brave Reasoning vs. Skeptical Reasoning The entailment
defined earlier required that Π |= a iff a belongs to every answer
set of Π. This is termed as skeptical reasoning w.r.t. answer set
semantics.

Brave reasoning is an alternative that can be useful in different
situations. Brave reasoning relaxes the notion of entailment as
follows: for a program Π and an atom a, Π bravely entails a (resp.
¬a), denoted by Π |=b a (resp. Π |=b ¬a), if a ∈ S (resp. a 6∈ S)
for some answer set S of Π.

Brave reasoning is the semantics underlying answer set
programming.



Computation of Answer Sets I

Consider Π3 = {p ← a. a← not b. b ← not a.}
The Herbrand base of this program is {p, a, b}. So, this program
has eight possible answer sets. Each answer set is a subset of
{p, a, b}. Let us consider each of them.

1. X0 = ∅. Computing ΠX0
3 , we have that

ΠX0
3 =


p ← a
a←
b ←

The minimal model of this program is: M
Π

X0
3

= {p, a, b}.
M

Π
X0
3

= {p, a, b} 6= X0. This implies that X0 is not an answer

set.



Computation of Answer Sets II

2. X1 = {p}. Computing ΠX1
3 , we have that

ΠX1
3 =


p ← a
a←
b ←

The minimal model of this program is: M
Π

X1
3

= {p, a, b}.
M

Π
X1
3

= {p, a, b} 6= X1. This implies that X1 is not an answer

set.

3. X2 = {a}. Computing ΠX2
3 , we have that

ΠX2
3 =

{
p ← a
a←

The minimal model of this program is: M
Π

X2
3

= {p, a}.
M

Π
X2
3

= {p, a} 6= X2. This implies that X2 is not an answer

set.



Computation of Answer Sets III

4. X3 = {b}. Computing ΠX3
3 , we have that

ΠX3
3 =

{
p ← a
b ←

The minimal model of this program is: M
Π

X3
3

= {b}.
M

Π
X3
3

= {b} = X3. This implies that X3 is an answer set.

5. X4 = {p, a}. Computing ΠX4
3 , we have that

ΠX4
3 =

{
p ← a
a←

The minimal model of this program is: M
Π

X4
3

= {p, a}.
M

Π
X4
3

= {p, a} = X4. This implies that X4 is an answer set.



Computation of Answer Sets IV

6. X5 = {p, b}. Computing ΠX5
3 , we have that

ΠX5
3 =

{
p ← a
b ←

The minimal model of this program is: M
Π

X5
3

= {b}.
M

Π
X5
3

= {b} 6= X5. This implies that X5 is not an answer set.

7. X6 = {a, b}. Computing ΠX6
3 , we have that

ΠX6
3 =

{
p ← a

The minimal model of this program is: M
Π

X6
3

= ∅.
M

Π
X6
3

= ∅ 6= X6. This implies that X6 is not an answer set.



Computation of Answer Sets V

8. X7 = {p, a, b}. Computing ΠX7
3 , we have that

ΠX7
3 =

{
p ← a

The minimal model of this program is: M
Π

X7
3

= ∅.
M

Π
X7
3

= ∅ 6= X7. This implies that X7 is not an answer set.

So, the program has two answer sets: {b} and {p, a}.
Notice that in the computation, I did not detail how the minimal
model of a positive program is computed. One should notice the
difference between minimal model of the program ΠX5

3 and ΠX5
3

and know the reason why it is so.



Further intuitions behind the semantics I

I A set of atoms S is closed under a program Π if for all rules
of the form
a0 ← a1, . . . , am,not am+1, . . . ,not an.
in Π, {a1, . . . , am} ⊆ S and {am+1, . . . , an} ∩ S = ∅ implies
that a0 ∈ S .

I A set of atoms S is said to be supported by Π if for all p ∈ S
there is a rule of the form
p ← a1, . . . , am,not am+1, . . . ,not an.
in Π, such that {a1, . . . , am} ⊆ S and {am+1, . . . , an} ∩ S = ∅.

I A set of atoms S is an answer set of a program Π iff (i) S is
closed under Π and (ii) there exists a level mapping function λ
(that maps atoms in S to a number) such that for each p ∈ S
there is a rule in Π of the form
p ← a1, . . . , am,not am+1, . . . ,not an. such that
{a1, . . . , am} ⊆ S , {am+1, . . . , an} ∩ S = ∅ and λ(p) > λ(ai ),
for 1 ≤ i ≤ m.



Further intuitions behind the semantics II

I Note that (ii) above implies that S is supported by Π.

I It is known that if S is an answer set of Π then

1. S must be closed under Π and
2. S must be supported by Π.

The above notions are useful for the computation of answer sets.
They allow us to eliminate possible answer sets quickly. Let us
look at our computation of the answer sets of Π3.

1. Let us consider X0 = ∅. Consider the rule a← not b in Π3.
We have that the set of positive atoms in the body of this rule
is empty (i.e., the set {a1, . . . , am} in the definition of
closedness) and the set of negative atoms in the body of this
rule is {b} and {b} ∩X0 = ∅. This means that X0 violates the
closedness condition, i.e., X0 is not closed under the rule
a← not b of Π3 and hence it is not closed under Π3. As
such, X0 cannot be an answer set of Π3.



Further intuitions behind the semantics III

2. Let us consider X7 = {p, a, b}t. Consider the atom a ∈ X7.
The only rule in Π3 whose head is a is the rule a← not b.
We have that the set of positive atoms in the body of this rule
is empty (i.e., the set {a1, . . . , am} in the definition of
supportedness) and the set of negative atoms in the body of
this rule is {b} and {b} ∩ X7 6= ∅. This means that a has no
rule to support it in Π3, i.e., X7 is not supported by Π3. As
such, X7 cannot be an answer set of Π3.



Answer Sets of Programs with Constraints I
For a set of ground atoms S and a constraint c of the form

← a0, . . . , an,not an+1, . . . ,not an+k

we say that c is satisfied by S if {a0, . . . , an} \ S 6= ∅ or
{an+1, . . . , an+k} ∩ S 6= ∅.
Let Π be a program with constraints. Let

ΠO = {r | r ∈ Π, r has non-empty head}

(ΠO is the set of normal logic program rules in Π) and

ΠC = Π \ ΠO

(ΠC is the set of constraints in Π).

Definition
A set of atoms S is an answer sets of a program Π if it is an
answer set of ΠO and satisfies all the constraints in ground(ΠC ).



Answer Sets of Programs with Constraints II

Π2 = {a← not b. b ← not a.}: two answer sets {a} and {b}.
I R1 = {a← not b. b ← not a. ← not a.} has only one

answer set {a}.
I R2 = {a← not b. b ← not a. ← not a,not b.} has

again two answer sets {a} and {b}.
I R3 = {a← not b. b ← not a. p ← a. ← not p.} has

only one answer set {b}.



Disjunctive Logic Programs I
We define the general logic program rule as

b1 or . . . or bm ← a1, . . . , an,not an+1, . . . ,not an+k

This rule is often called a disjunctive logic program rule (or simply
disjunction rule). A rule of this form says that whenever a1, . . . , an are
true and an+1, . . . , an+k are false then at least one of b1, . . . , bm must be
true. There are several situations where disjunctive logic programs are
necessary since disjunctive logic program (DLP) is strictly more
expressive than normal logic program.
An example is the map coloring problem:

colored(N, red) or colored(N, blue) or colored(N, yellow)← node(N).



Disjunctive Logic Programs II
Semantics of DLP is also defined by answer sets. The definition also
makes use of the Gelfond-Lifschitz reduct: given a DLP program π and a
set of atoms X , πX is the result of the Gelfond-Lifschitz reduct of π over
X .
The program πX does not contain negation-as-failure atoms.
A set of atoms X is an answer set of π if and only if X is a minimal set
of atoms satisfying πX .

Examples

I π1 = {a or b ← c . a← c . b ← c . c .}
π1 is a positive program. It has only one answer set: {c , a, b}.

I π2 = {a or b ← c . c .}
π2 is also a positive program. It has two answer sets: {c , a} and
{c , b}.



Disjunctive Logic Programs III

It is useful for representing incomplete knowledge. For example, consider
the story

John’s Injury
John ran and broke one of his arms. We do not know whether his left or
right arm was broken but we are sure that only one was broken.

This story can be represented by the disjunctive program consisting of
the fact:

broken(left) or broken(right)←
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Running clingo

I Download from https://potassco.org, set up, etc.

I Run clingo <params>

I Set of examples

I Let solve some problems

I Some syntactical notes:

I “←” is replaced by “:-”
I “ or ” is replaced by “|”

https://potassco.org


Graph Coloring I

Problem
Given a undirected graph G . Color each node of the graph by red,
yellow, or blue so that no two adjacent nodes have the same color.

Approach

We will solve the problem by writing a logic program ΠG such that
each answer set of ΠG gives us a solution to the problem.
Furthermore, each solution of the problem corresponds to an
answer set.

The program ΠG needs to contain information about the graph
and then the definition of the problem. So,

I Graph representation:
– The nodes: node(1), . . . , node(n).
– The edges: edge(i , j).

I Solution representation: use the predicate colored(X ,Y ) -
node X is assigned the color Y .



Graph Coloring II

I Generating the solutions: Each node is assigned one color.
The three rules

colored(X , red) ← not colored(X , blue),not colored(X , yellow).(2)

colored(X , blue) ← not colored(X , red),not colored(X , yellow).(3)

colored(X , yellow) ← not colored(X , blue),not colored(X , red). (4)

I Checking for a solution: needs to make sure that no edge
connects two nodes of the same color. This can be
represented by a constraint:

← edge(X ,Y ), colored(X ,C ), colored(Y ,C ). (5)



Graph Coloring III
%% graphcolor.lp
%% the graph
node(1). node(2). node(3).
node(4). node(5). edge(1,2).
edge(1,3). edge(2,4).
edge(2,5). edge(3,4). edge(3,5).

%% each node is assigned a color
colored(X,red):- node(X), not colored(X,blue), not colored(X, yellow).
colored(X,blue):- node(X), not colored(X,red), not colored(X, yellow).
colored(X,yellow):- node(X), not colored(X,blue), not colored(X, red).
%% constraint checking

:- edge(X,Y), colored(X,C), colored(Y,C).

Try with
clingo graphcolor.lp or
clingo 0 graphcolor.lp

and see the result. The atom node(X) in the rules with the head
colored(X , ) is needed because the solver’s “unsafe variable” error.



Graph Coloring IV

graphcolor.lp can be divided into three group of rules

I Rules for describing the graph;

I Rules for generating the hypothetical solutions; and

I Rules for checking the correctness of the solutions.

It is a good practice to separate the rules into two files: (a) the
first file contains rules for describing the graph (let us called this
file graphcolor1.lp, for our example, this program contains the
first three lines of graphcolor.lp); and (b) the second file
contains other rules. (let us called this file graphcolor2.lp which
contains the other rules of graphcolor2.lp).

Command line: clingo graphcolor1.lp graphcolor2.lp



Correctness of graphcolor.lp I

Let us denote the program graphcolor.lp developed for a graph
G by ΠG .

I What is to prove? (one-to-one mapping between solutions
of G and answer sets of ΠG .) Intuitively, this means

I If ΠG has an answer set then the 3-coloring problem for G has
a solution and vice versa.

I If ΠG does not have an answer set then the coloring problem
of G has no solution.

I How can we prove this?
I Take an answer set S of ΠG , construct a solution for the

coloring problem of G from S .
I Take a color mapping M, which is a solution for the problem,

construct an answer set for ΠG .



Correctness of graphcolor.lp II

We can prove the following theorems.

Theorem
Let S be an answer set of ΠG . Then, the 3-coloring problem of G
has a solution corresponds to S.

Proof. We prove the following:
1. For every node k of the graph G , S contains one and only one
atom from the set
C = {colored(k , red), colored(k , blue), colored(k, yellow)}, i.e.,
S ∩ C has only one element. Assume that it is not the case. Then,
there are only three cases: S contains zero, two, or three elements
of the set C . Assume that
Case 1: S does not contain any element from C . Then, ΠS

G

contains
colored(k , red)← node(k). (because of rule (2))
colored(k , blue)← node(k). (because of rule (3))
colored(k , yellow)← node(k). (because of rule (4))



Correctness of graphcolor.lp III

Because k is a node of G , we can easily see that colored(k , red),
colored(k , yellow), and colored(k, blue) belong to the minimal
model of ΠS

G . Thus, S cannot be an answer set of ΠG because it
cannot be equal the minimal model of ΠS

G . This contradicts the
assumption that S is an answer set of ΠG . Hence, this case cannot
happen.
Case 2: S contains two elements from C . Since the three colors
are equivalent and so, without loss of generality, we assume that S
contains colored(k , red) and colored(k, blue); and it does not
contain colored(k , yellow). Then, ΠS

G will not contain any rule
whose head is an atom belonging to C . (all the rules of the form
(2)-(4) for X = k are removed). This implies that the minimal
model of ΠS

G cannot contain any element of C . This implies that S
cannot be an answer set of ΠG because it cannot be equal the
minimal model of ΠS

G . Again, this contradicts the assumption that
S is an answer set of ΠG . Hence, this case cannot happen.



Correctness of graphcolor.lp IV
Case 3: S contains all elements of C . This is similar to the second
case, i.e., ΠS

G does not contain any rule whose head is a member
of C , and hence, S would not be an answer set of ΠG .
The three cases show that for each node k , S contains
1-and-only-1 member of the set
{colored(k, red), colored(k , blue), colored(k , yellow)}.
2. Now we need to show that the color mapping specified by the
answer set S is a solution to the coloring problem.
Let 1, . . . , n be the nodes of the graph and c1, . . . , cn be the color
such that colored(i , ci ) ∈ S for i = 1, . . . , n. We need to show that
if edge(i , j) belongs to G then ci 6= cj . Again, we prove by
contradiction. Let assume that there is an edge (p, q) in G and
cp = cq. This means that the body of the rule (5) for edge(p, q),
colored(p, cp), and colored(q, cq) is satisfied. This means that S is
not an answer set of ΠG , i.e., our assumption contradicts the fact
that S is an answer set of ΠG . Thus, our assumption is incorrect,
i.e., we have proved that for every edge (i , j) of G , ci 6= cj . This



Correctness of graphcolor.lp V

shows that S corresponds to a solution of the 3-coloring problem
for G .

Theorem
If the 3-coloring problem for G has a solution M then ΠG has an
answer set corresponds to M.

Proof. Let 1, . . . , n be the nodes of the graph. Consider a solution
for the 3-coloring problem for G . Let c1, . . . , cn be the color of the
node i = 1, . . . , n, respectively. We will show that the set of atoms

S = {node(i) | i = 1, . . . , n}∪
{edge(i , j) | (i , j) is an edge of G}∪
{colored(i , ci ) | i = 1, . . . , n}

is an answer set of ΠG .
Let us compute ΠS

G . We can see that ΠS
G consists of the following

rules:



Correctness of graphcolor.lp VI

I the rules defining the graph, i.e., the rules node(1)← ....
node(n)← (nodes of the graph) and the rules edge(i , j)← if
(i , j) is an edge of G .

I for each node i , one rule of the form colored(i , ci )← node(i)
which comes from one of the rules (2)-(4).

I for each edge (i , j), three constraints:
← edge(i , j), colored(i , red), colored(j , red)
← edge(i , j), colored(i , yellow), colored(j , yellow)
← edge(i , j), colored(i , blue), colored(j , blue)

We need to show that S is the minimal model of ΠS
G that does not

violate any of the constraints.
Let
X0 = {node(i) | i = 1, . . . , n}∪{edge(i , j) | (i , j) is an edge of G}.
Obviously, TΠS

G
(∅) = X0 and

TΠS
G

(X0) = S , and TΠS
G

(S) = S . (*)



Correctness of graphcolor.lp VII

Furthermore, because for every edge (i , j), ci 6= cj , we can
conclude that there exists no edge (i , j) in G and a color
C ∈ {red , blue, yellow} such that S contains colored(i ,C ) and
colored(j ,C ). This is equivalent to say that the constraints in ΠS

G

are satisfied by S . Together with (*), we conclude that S is an
answer set of ΠG .



Seating Arrangements I

Problem
Ann, John, Sally, and Mike often have lunch in the break room of
the department. The room has two tables.

I Mike wants to be alone or with Ann.

I John does not care.

I Ann likes to be either with Mike and Sally or with Sally and
John.

I Sally does not want to be alone.

Find a seat arrangement that can make everybody happy.



Seating Arrangements II

I Problem representation: table(1) and table(2); person(mike),
person(sally), person(ann), and person(john).

I Result representation: at(mike, 1), at(mike, 2), etc.

I The rules:
at(X , 1)← not at(X , 2).
at(X , 2)← not at(X , 1).

I clingo and see “X is unsafe”

I add “what is X ” to the rule: person(X ) or table(X )?

I run the command clingo 0 seats.lp and see the possible
arrangements.

I add constraints to remove unwanted answer sets.



Syntactic Extensions of Logic Programming

Choice Atoms
colored(X,red):- node(X), not colored(X,blue), not colored(X, yellow).
colored(X,blue):- node(X), not colored(X,red), not colored(X, yellow).
colored(X,yellow):- node(X), not colored(X,blue), not colored(X, red).
replaced by

1 {colored(X, C) : is color(C)} 1 :- node(X).

and a set of atoms
is color(yellow). is color(red). is color(blue).

Choice atoms allow for a succinct representation. General form of choice
atoms is

l {p1, p2, . . . , pk} u

where 0 ≤ l ≤ u are integers and pi ’s are atoms. Expression of the from

{p(~X ) : q( ~Y )} where all variables in ~Y appear in ~X . A choice atom is

true with respect to a set of atoms S if l ≤ |{pi | pi ∈ S}| ≤ u.



Syntactic Extensions of Logic Programming

Weighted Atoms

l{l0 = w0, . . . , lk = wk ,not lk+1 = wk+1, . . . ,not lk+n = wk+n}u
where li ’s are atoms, wi are integers, and l ≤ u are integers. This
atom is true with respect to a set of literals S if

l ≤
0≤j≤k∑

lj∈S

wj +

k+1≤j≤k+n∑
lj 6∈S

wj ≤ u

Special case: choice atom – wi = 1 for every i .

Aggregates

Sum(Ω), Count(Ω), Average(Ω), Min(Ω), Max(Ω) where Ω
denotes a multiset (e.g., {p(a,X ) | X ∈ {1, 2, 3}})



n-Queens

Problem: Place n queens on a n× n chess board so that no queen
is attacked (by another one).



n-Queens

I Representation: the chess board
can be represented by a set of
cells cell(i , j) and the size n.

I Solution: Each cell is assigned a
number 1 or 0. cell(i , j) = 1
means that a queen is placed at
the position (i , j) and
cell(i , j) = 0 if no queen is placed
at the position (i , j)

I Generating a possible solution:
I cell(i , j) is either true or false
I select n cells, each on a column,

assign 1 to these cells.

I Checking for the solution:
ensures that no queen is attacked



n-Queens – writing a program

Use a constant n to represent the size of the board
col(1..n). // n columns
row(1..n). // n rows

Since two queens can not be on the same column, we know that
each column has to have one and only one queen. Thus, using the
choice atom in the rule

1{cell(I , J) : row(J)}1← col(I ).
we can make sure that only one queen is placed on one column.
To complete the program, we need to make sure that the queens
do not attack each other.
• No two queens on the same row

← cell(I , J1), cell(I , J2), J1 6= J2.
• No two queens on the same column (not really needed)

← cell(I 1, J), cell(I 2, J), I 1 6= I 2.
• No two queens on the same diagonal

← cell(I 1, J1), cell(I 2, J2), |I 1− I 2| = |J1− J2|



Code

% representing the board, using n as a constant
col(1..n). % n column
row(1..n). % n row
% generating solutions
1 {cell(I,J) : row(J) } 1:- col(I).
% two queens cannot be on the same row/column
:- col(I), row(J1), row(J2), J1!=J2, cell(I,J1), cell(I,J2).
:- row(J), col(I1), col(I2), I1!=I2, cell(I1,J), cell(I2,J).
% two queens cannot be on a diagonal
:- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 > I2, cell(I1,J1),
cell(I2,J2), I1 - I2 == J1 - J2.
:- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 < I2, cell(I1,J1),
cell(I2,J2), I2 - I1 == J1 - J2.
Command line: clingo -c n=input queens.lp



Sudoku

Facts : c(1..9). r(1..9). num(1..9).
an(1, 1, 2). an(1, 3, 9). an(1, 4, 6)....
ar(1..3, 1..3, 1). ar(1..3, 4..6, 2). ar(1..3, 7..9, 3).
ar(4..6, 1..3, 4). ar(4..6, 4..6, 5). ar(4..6, 7..9, 6).
ar(7..9, 1..3, 7). ar(7..9, 4..6, 8). ar(7..9, 7..9, 9).

Generation :
1{an(X ,Y ,N) : num(N)}1 : −c(X ), r(Y ).

Check :
: −c(Y ), c(X ),X 6= Y , r(R), an(R,X ,N), an(R,Y ,N).
: −r(Y ), r(X ),X 6= Y , c(C ), an(Y ,C ,N), an(X ,C ,N).
: −ar(X ,Y ,Z ), ar(P,Q,Z ),X 6= P, an(X ,Y ,N), an(P,Q,N).
: −ar(X ,Y ,Z ), ar(P,Q,Z ),Y 6= Q, an(X ,Y ,N), an(P,Q,N).

(c - column, r - row, num - number, an - answer, ar - area)



Knapsack Problem

Problem
There are several items. Each
has some weight and value.
There is a backpack that can
only cary a maximal weight of
M. Identify the set of items that
should be put in the backpack so
that the total value is maximal.

Example

Five items: i1 (12kg, $4), i2 (2kg, $2), i3 (1kg, $1), i4 (4kg, $10),
i5 (1kg, $2).
Backpack: maximal 15 kg.



Knapsack Problem

I Problem representation: items, values, weights

I Solution generation:

I Checking for solution:



Knapsack Problem

I Problem representation: items, values, weights
item(1..n). value(1,4). weight(1,12). ...

I Solution generation:
{in(I)} :- item(I).

I Checking for solution:
Compute the total weight
total weight(W) :- W = #sum {N : in(I), weight(I,N)}.
:- total weight(W), W > 15.
Compute total value
total value(V) :- V = #sum {VA : in(I), value(I, VA)}.
#maximize {V : total value(V)}.



Knapsack Problem: Code

item(1..5).
value(1,4). value(2,2).
value(3,1). value(4,10).
value(5,2).
weight(1,12). weight(2,2).
weight(3,1). weight(4,4).
weight(5,1).
{in(I)} :- item(I).
total weight(W) :- W = #sum
{N : in(I), weight(I,N)}. :-
total weight(W), W > 15.
total value(V) :- V = #sum {VA
: in(I), value(I, VA)}.
#maximize {V : total value(V)}.



Some Notes on Syntax used by clingo

item(1..5).
value(1,4). value(2,2). value(3,1). value(4,10). value(5,2).
weight(1,12). weight(2,2). weight(3,1). weight(4,4). weight(5,1).
{in(I)} :- item(I).

Old
total weight(W) :- W = #sum {N : in(I), weight(I,N)}.
:- total weight(W), W > 15.
total value(V) :- V = #sum {VA : in(I), value(I, VA)}.
#maximize {V : total value(V)}.

New
total weight(W) :- W = #sum {N,I : in(I), weight(I,N)}.
:- total weight(W), W > 15.
total value(V) :- V = #sum {VA,I : in(I), value(I, VA)}.
#maximize {V : total value(V)}.



General Syntax: guide.pdf (2.0)

s1 ≺1 α {t1 : L1; t2 : L2; . . . ; tn : Ln} ≺2 s2

where

I ti and Li are non-empty tuples of terms and atoms,
respectively.

I α can either be #count, #sum, #min, #max , #sum+ (sum
only positive weights)

I ≺1 and ≺2: comparison operator (=,≤,≥, <,>, default is ≤)

Example
#sum { 3 : bananas; 25 : cigars; 10 : broom } ≤ 30.
� if bananas, cigars, broom are true then it results in 38 ≤ 30 (false)
� if bananas, cigars are true (broom is false) it results in 28 ≤ 30 (true)
#count { 42 : a; 42 : a; t : not b; t : not b } = 2.
� if a and b are true then it results in {42} = 2 (false)

� if a is true and b is false then it results in {42;t} = 2 (true)



Knapsack Revisited

Set atom with variable
total weight(W) :- W = #sum {N,I : in(I), weight(I,N)}.
The variables: I and N

This stands for
total weight(W) :- W = #sum { 12,1 : in(1);

2,2 : in(2);
1,3 : in(3);
4,4 : in(4);
1,5 : in(5) }.



K-clique

I Problem: Given a number k and a graph G . G has a clique of size
k if there is a set of k different vertices (nodes) in G such that each
pair of vertices from this set is connected through an egde.

I Representation:
• Graph (node() and edge())
• Clique (clique(N)) to say that node N belongs to the clique if

clique(N) is true; otherwise it does not belong to the clique.

I Generating a solution: Selecting k nodes – this is equivalent to
assigning k atoms of the set {clique(1), . . . , clique(n)} the truth
value true. This can be achieved by the rule

I Checking for a solution: if every pair of the selected nodes is
connected then this is a solution; otherwise it is not a solution. This
means that there exists no pair (I , J) such that clique(I ) and
clique(J) are true but edge(I , J) is not true.



K-clique

I Problem: Given a number k and a graph G . G has a clique of size
k if there is a set of k different vertices (nodes) in G such that each
pair of vertices from this set is connected through an egde.

I Representation:
• Graph (node() and edge())
• Clique (clique(N)) to say that node N belongs to the clique if

clique(N) is true; otherwise it does not belong to the clique.

I Generating a solution: Selecting k nodes – this is equivalent to
assigning k atoms of the set {clique(1), . . . , clique(n)} the truth
value true. This can be achieved by the rule
k{clique(N) : node(N)}k .

I Checking for a solution: if every pair of the selected nodes is
connected then this is a solution; otherwise it is not a solution. This
means that there exists no pair (I , J) such that clique(I ) and
clique(J) are true but edge(I , J) is not true.
← clique(I ), clique(J), I 6= J,not edge(I , J),not edge(J, I ).



K-clique: Code

% Graph
node(1..5).
edge(1,2). edge(1,3). edge(2,3).
edge(1,4). edge(1,5).
edge(N1,N2):- edge(N2,N1).
% generating solution
k {clique(N):node(N)} k.
% checking solution
:- clique(N1), clique(N2), N1 !=N2,

not edge(N1,N2).

1 2

3

4

5



Tile covering problem

Problem: Given a slightly
damaged chess board (n × n).
Find a covering of the board
using m 1× 2-tiles so that all
the good squares on the board
are covered. If no such covering
exists, report there is no solution.

4 x 4 Problem
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Tile covering problem I

I Problem: Given a slightly damaged chess board (n× n). Find
a covering of the board using m 1× 2-tiles so that all the
good squares on the board are covered. If no such covering
exists, report there is no solution.

I Representation:
• the board
− dimension
− damaged/good cells

• the tiles with their coverage

As with N-queens problem, we can use the two predicates
row() and col() to represent the possible board cells
We can use bad(i , j) to indicate that the cell (i , j) is damaged
We can use the predicate cell(i , j , t) to represent the
information that the cell (i , j) is covered by the tile t



Tile covering problem II

I Generating a possible solution: We assign each tile a
number. Then we can assign a tile to a location. Since each
tile covers two and only two cells, we can used the
weighted-rule:

2{cell(I , J,T ) : col(I ), row(J)}2← tile(T ).

to generate a possible solution.

I Checking for a solution: We need to check for the following
constraints:

I bad cell needs not be covered
I no two tiles on the same cell
I The cells covered by a tile must be neightbor
I The cells covered by a tile cannot lie on a diagonal



Tile covering problem III

% Board representation
col(1..n). row(1..n). tile(1..ntiles).
bad(1,1). bad(3,2).
% generating solution
2 {cell(I,J,T) : col(I),row(J) } 2 :- tile(T).
% checking solution
% bad cell needs not ..
:- bad(I,J), cell(I,J,T).
% one cell one tile ....
:- cell(I,J,T1),cell(I,J,T2),T1!=T2.
% neightbor only ....
:- cell(I1,J1,T), cell(I2,J2,T), I1 - I2 > 1.
:- cell(I1,J1,T), cell(I2,J2,T), J1 - J2 > 1.
% no diagonal ...
:- cell(P,Q,T), cell(R,S,T), P!=R, Q!=S.
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Block World Domain
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Dynamic Domains
The state of the world continuously changes through the execution of
actions (by some agent). State of the world can be described by a set of
fluents (properties of the world whose truth values change over time).
We are interested in

I predicting the state of the world after the execution of an action
sequence;

I identifying ways to change the world to a pre-defined state;

I explaining the discrepancies that we observe.



Modeling the Block World Domain: Fluents and Actions

Fluents

I on(X ,Y ): block X is on block Y

I onTable(X ): block X is on the table

I clear(X ): block X is clear

I holding(X ): the agent holds the block X

I handEmpty : the agent does not hold
anything

c

b

a c

a

b

initial goal

Actions

I un/stack(X ,Y ): un/stack block X is on block Y

I pickup/putdown(X ): pickup or put down block X from/on to
the table



Modeling the Block World Domain: Action Description I

Action Preconditions and Effects:

I stack(X ,Y )

I Precondition:
I block Y is clear
I the agent holds the block X

I Effects:
I X is clear
I X is on Y
I Y is no longer clear
I the agent does not hold anything

I putdown(X )

I Precondition:
I the agent holds the block X

I Effects:
I X is clear
I X is on the table
I the agent does not hold anything

c

b

a c

a

b

initial goal



Modeling the Block World Domain: Action Description II
Action Preconditions and Effects:

I unstack(X ,Y )

I Precondition:
I X is clear
I X is on Y
I the agent does not hold anything

I Effects:
I the agent holds the block X
I Y becomes clear
I X is not clear

I pickup(X )

I Precondition:
I X is clear
I X is on the table
I the agent does not hold anything

I Effects:
I the agent holds the block X
I X is no longer on the table and not

clear

c

b

a c

a

b

initial goal



Block World Domain: Encoding I

% Defining the time constants and objects
time(0..length).
block(a). block(b). block(c).
% Defining fluents
fluent(on(X,Y)):- block(X), block(Y),X!=Y.
fluent(onTable(X)):- block(X).
fluent(clear(X)):- block(X).
fluent(holding(X)):- block(X).
fluent(handEmpty).
% Defining actions
action(stack(X,Y)):- block(X), block(Y), X!=Y.
action(unstack(X,Y)):- block(X),block(Y),X!=Y.
action(putdown(X)):- block(X).

action(pickup(X)):- block(X).

c

b

a c

a

b

initial goal



Block World Domain: Encoding II

% Action effects & precondition: pickup
excutable(pickup(X), T):- holds(clear(X), T),

holds(handEmpty, T),
holds(onTable(X), T).

:- occ(pickup(X),T), not executable(pickup(X),T).

c

b

a c

a

b

initial goal

holds(neg(clear(X)), T+1):- occ(pickup(X), T).
holds(neg(onTable(X)), T+1):- occ(pickup(X), T).
holds(neg(handEmpty), T+1):- occ(pickup(X), T).
holds(holding(X), T+1):- occ(pickup(X), T).
% unstack
executable(unstack(X,Y), T) :- holds(clear(X), T), holds(on(X,Y), T),

holds(handEmpty, T).
holds(neg(clear(X)), T+1):- occ(unstack(X,Y), T).
holds(neg(on(X,Y)), T+1):- occ(unstack(X,Y), T).
holds(holding(X), T+1):- occ(unstack(X,Y), T).
holds(neg(handEmpty), T+1):- occ(pickup(X), T).
holds(clear(Y), T+1):- occ(unstack(X,Y), T).

:- occ(unstack(X,Y),T), not executable(unstack(X,Y),T).



Block World Domain: Encoding III

% Action effects & precondition: putdown
executable(putdown(X), T):- holds(holding(X), T).
holds(clear(X), T+1):- occ(putdown(X), T).
holds(onTable(X), T+1):- occ(putdown(X), T).
holds(neg(holding(X)),T+1):- occ(putdown(X), T).
holds(handEmpty,T+1):- occ(putdown(X), T).

:- occ(putdown(X),T),not executable(putdown(X),T).

c

b
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a

b

initial goal

% stack
executable(stack(X,Y), T):- holds(clear(Y), T), holds(holding(X), T).
holds(clear(X), T+1):- occ(stack(X,Y), T).
holds(on(X,Y)), T+1):- occ(stack(X,Y), T).
holds(neg(holding(X)), T+1):- occ(stack(X,Y), T).
holds(neg(clear(Y)), T+1):- occ(stack(X,Y), T).
holds(handempty,T+1) :- occ(stack(X,Y), T).
:- occ(stack(X,Y),T), not executable(stack(X,Y),T).



Block World Domain: Initial State, Inertial Axiom

holds(on(b,c), 0). holds(onTable(b), 0).
holds(onTable(a), 0). holds(clear(a), 0).
holds(clear(b), 0). holds(handEmpty,0).
holds(neg(F), 0) :- fluent(F), not holds(F,0).

c

b
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a

b

initial goal

% inertial axioms
holds(F, T+1) :- fluent(F), holds(F, T), not holds(neg(F), T+1).
holds(neg(F), T+1) :- fluent(F), holds(neg(F), T), not holds(F, T+1).

Planning
% action occurrences generation
1 {occ(A,T) : action(A) } 1 :- time(T), T ¡ length.
% Goal checking
goal(T) :- holds(on(b,a), T), holds(on(a,c), T), holds(onTable(c), T).
:- not goal(length).



Reasoning Problems in the Block World Domain

Let Πblock(n) be the program for the block world domain with
length sets to n without the set of rules for planning (the rules in
the block below, denoted by Plan(n)).

Plan(n)
% action occurrences generation
1 {occ(A,T) : action(A) } 1 :- time(T), T < length.
% Goal checking
goal(T) :- holds(on(b,a), T), holds(on(a,c), T), holds(onTable(c), T).
:- not goal(length).

This program can be used for two tasks: planning and hypothetical
reasoning.



Planning in the Block World Domain

Planning is the problem of computing an action
sequence that transforms the state of the world
from the initial state to the goal state. c

b

a c

a

b

initial goal

To use the program for planning, we need to add the planning module
(Plan(n)) to the program. This module generates the action occurrences,
defines the goal, and checks for the satisfiability of the goal.
To run the code, we need to provide an estimated length or use a script
to run with length=1, 2, ... : clingo -c length=<n> block.lp
Answer sets of Πblock (n) ∪ Plan(n) contain atoms of the form

I occ(a, t) where a is an action and t is an integer.

I holds(l , t) where l is a fluent literal (f /neg(f )) and t is an integer.

I others such as executable(a, t), etc.

We can show that if A is an answer set of the program Πblock (n)

∪Plan(n) then A will contain the atoms occ(a0, 0), . . ., occ(an−1, n − 1)

and [a0, . . . , an−1] is a solution (soundness); and if the problem has a

plan [b0, . . . , bn−1], then Πblock (n) ∪ Plan(n) has an answer set B

containing occ(b0, 0), . . . , occ(bn−1, n − 1) (completeness).



Example 1

How do we encode the problem?

I the initial state

I the goal state c

b

a c

a

b

initial goal

I Initial state:
% Expressing what are true!

holds(on(b,c),0). holds(onTable(c),0). holds(onTable(a),0).
holds(clear(a),0). holds(clear(b),0). holds(handEmpty,0).

% Expressing what we do not state as true are false!

holds(neg(F),0) :- fluent(F), not holds(F,0).

I The goal state:

% Defining what should be the goal!

goal(T) :- holds(on(b,a),T), holds(on(a,c),T), holds(onTable(c),T).



Example 2

I What should be changed?

I How to encode the changes?

There is one additional block (Block d).

The initial state and the goal state change.
c

d b

a

d

c

a

b

initial goal

I The object: add block(d).

I % Initial state: Expressing what are true!

holds(on(d,c),0). holds(onTable(c),0). holds(clear(d),0).
holds(on(b,a),0). holds(onTable(a),0). holds(clear(b),0).
holds(handEmpty,0).

% Expressing what we do not state as true are false!

holds(neg(F),0) :- fluent(F), not holds(F,0).

I % The goal state: Defining what should be the goal!

goal(T) :- holds(on(d,b),T), holds(on(b,a),T),
holds(on(a,c),T), holds(onTable(c),T).



Organizing Code

The ASP code for the block world domain is often organized into
different files:

I The action description: this contains the description of the
fluents, the actions, the action effects, the inertial axioms.

I The instance: this includes the rules defining the objects, the
initial state, and the goal state.

Alternative Goal Encoding

For a set of literal {l1, . . . , ln}, the goal l1 ∧ l2 . . . ∧ ln can be
encoded using the set of rules:

goal(l1). . . . goal(ln).
:- goal(l), not holds(l , length).



Hypothetical reasoning in the Block World Domain

Hypothetical reasoning: predicting what state
of the world will be after the execution of an
action sequence. c

b

a ?

[pickup(a);stack(a,b)]

initial final

Assume that we would like to execute the sequence of actions
α = [a0, . . . , ak−1]. To use Πblock (n) for hypothetical reasoning we need
to:

I set the value of length to be k the length of the action sequence

I add to the program the collection of facts
OCC (α) = {occ(a0, 0), . . . , occ(ak−1, k − 1)}.

To find out whether a fluent f is true (false) after the execution of the
action sequence α, we need to

I compute all answer sets of Πblock (k) ∪ OCC (α)

I check whether holds(f , k) is in each answer set; if it is, then answer
YES.



Examples

I unstack(b); putdown(b)

I unstack(b); putdown(b); stack(b, a)

I unstack(b); putdown(b); pickup(a); stack(a, c);
pickup(b); stack(b, a)

I unstack(b); putdown(b); pickup(a); stack(a, c);
pickup(b); stack(b, a)

I pickup(a); putdown(a); unstack(b); putdown(b);
pickup(a); stack(a, c); pickup(b); stack(b, a)



A Variation of the Yale Shooting Problem

Consider the story: Matt – a turkey – is walking along the road.
Jimmy – a hunter – is coming from the opposite direction. He
takes out a loaded gun and shoots at Matt.

There are several

questions that arise given the above story:

I Is Matt still alive?

I Is the gun still loaded?

I Is Jimmy walking?

I Does Jimmy have the same number of guns?

I etc.

How do we answer the above questions?
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Frame and Ramification Problem

Consider the story: Matt – a turkey – is walking along the road. Jimmy –
a hunter – is coming from the opposite direction. He takes out one of his
loaded guns and shoots at Matt.

Frame Problem
From the story, we know that the action “shoot” occurs. Commonsense
tells us that the turkey will be dead and the gun becomes unloaded if it
can hold at most one bullet. However, several other properties of the
environment stay unchanged after the action has completed. For
instance,

I the number of bullets in other guns of Jimmy does not change;

I the number of guns belonging to Jimmy does not change

I the amount of water in the lake nearby does not change; etc.

Ramification Problem
We also know that if Matt is hit by the gun, he will be dead and if he is
dead he cannot not continue walking.



Fluents and Actions

We consider the situation where Jimmy has only one gun for now.

I Fluents: walking, loaded, dead
We know that alive and dead are “two sides of a coin.” For
now, let us consider only one of them.

I Actions: shoot, load
I shoot: if the is loaded then the turkey to be dead; otherwise,

nothing happens
I Precondition: True
I Effects: two situations (loaded then dead ; ¬loaded then

nothing)

I load :
I Precondition: the gun is unloaded
I Effects: the gun is loaded



ASP Encoding

% Defining the steps
time(0..length).
% Defining fluents
fluent(loaded). fluent(dead). fluent(walking).
% Defining actions
action(load). action(shoot).
% Representing action’s effects
executable(shoot, T):- time(T).
holds(dead, T+1) :- occ(shoot, T), holds(loaded, T).
holds(-loaded, T+1) :- time(T), occ(shoot, T).
executable(load, T):- time(T), holds(-loaded, T).
holds(loaded, T+1) :- time(T), occ(load, T).
% The inertial rule
holds(F,T+1):- time(T), fluent(F), holds(F,T), not holds(-F,T+1).
holds(-F,T+1):- time(T),fluent(F),holds(-F,T),not holds(F,T+1).
% The initial state
holds(loaded, 0). holds(-dead, 0). holds(walking, 0).

Let us denote this program with ΠTurkey (length) .



Answering Questions

I Is Matt still alive? (after the shoot action!)

I Is the gun still loaded?

I Is Jimmy walking?

I Does Jimmy have the same number of guns?



Answering Questions

I Is Matt still alive? (after the shoot action!)

I length = 1 (only one action occurrence)

I Add the occ(shoot, 0) to ΠTurkey (1)

I Computer answer sets of the resulting program and check for
answer

I Is the gun still loaded?

I Is Jimmy walking?

I Does Jimmy have the same number of guns?
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Answering Questions

I Is Matt still alive? (after the shoot action!)

I length = 1 (only one action occurrence)

I Add the occ(shoot, 0) to ΠTurkey (1)

I Computer answer sets of the resulting program and check for
answer

I Is the gun still loaded? Same as above

I Is Jimmy walking?
We cannot answer the question as our modeling does not consider
this! How to change this?

I Does Jimmy have the same number of guns?
Again, our modeling does not consider this! How to change this?



Answering Questions

I Is Matt still alive? (after the shoot action!)

I length = 1 (only one action occurrence)

I Add the occ(shoot, 0) to ΠTurkey (1)

I Computer answer sets of the resulting program and check for
answer

I Is the gun still loaded? Same as above

I Is Jimmy walking?

Change the fluent walking to walking(.) and model it as follows.

individual(matt). individual(jimmy).
fluent(walking(I)):- individual(I).

I Does Jimmy have the same number of guns?



Answering Questions

I Is Matt still alive? (after the shoot action!)

I length = 1 (only one action occurrence)

I Add the occ(shoot, 0) to ΠTurkey (1)

I Computer answer sets of the resulting program and check for
answer

I Is the gun still loaded? Same as above

I Is Jimmy walking?

Change the fluent walking to walking(.) and model it as follows.

individual(matt). individual(jimmy).
fluent(walking(I)):- individual(I).

I Does Jimmy have the same number of guns?

Add a fluent number of guns(.) and represent it as follows.

number(0..10).
fluent(number of guns(I)):- number(I).



After adding a fluent

I specify the truth values of these fluents in the initial state

I make sure that they are modeled correctly in action effects

Jimmy walking?
individual(matt). individual(jimmy).
fluent(walking(I)):- individual(I).
holds(walking(jimmy), 0). holds(walking(matt, 0).

There exists no action that affects walking ...

number of guns
number(0..10).
fluent(number of guns(I)):- number(I).
holds(number of guns(1), 0).

There exists no action that affects number of guns ...



Is Matt Walking?

It does not matter how we change the program, the current
formalization will not allow us to conclude that Matt is not
walking, i.e., for every answer set of the program
Πturkey (1) ∪ {occ(shoot, 0)} will contain h(walking , 1).
What is the reason?
How to correct this?



Is Matt Walking?

It does not matter how we change the program, the current
formalization will not allow us to conclude that Matt is not
walking, i.e., for every answer set of the program
Πturkey (1) ∪ {occ(shoot, 0)} will contain h(walking , 1).

What is the reason? there is no rule with the head -walking
How to correct this?

I Because dead implies -walking

I We add the rule
h(-walking,T) :- time(T), h(dead,T).



Ramification Problem

We know that if Matt is hit by the gun, he will be dead and if he is
dead he cannot not continue walking. Therefore, we add the rule:

h(-walking,T) :- time(T), h(dead,T).
This rule represents a static causal law (or state constraint). It
states a relationship between fluents and can cause a fluent to
change its value even though the action does not directly change
it. In general form, a static causal law is given by the statement of
the form

If l1, . . . , ln are true then so is l .
This static causal law is written in answer set programing by the
rule:

h(l ,T ) : −time(T ), h(l1,T ), . . . , h(ln,T ).
Representing and reasoning with static causal laws are often called
the ramification problem.



Another Example — Missionaries and Cannibals I

https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem

River-Crossing Problem
Three missionaries and three cannibals must cross a river using a boat
which can carry at most two people, under the constraint that, for both
banks, if there are missionaries present on the bank, they cannot be
outnumbered by cannibals (if they were, the cannibals would eat the
missionaries). The boat cannot cross the river by itself with no people on
board. And, in some variations, one of the cannibals has only one arm
and cannot row.

Jealous Husbands Problem
Three married couples, with the constraint that no woman can be in the
presence of another man unless her husband is also present. Under this
constraint, there cannot be both women and men present on a bank with
women outnumbering men, since if there were, some woman would be
husbandless. Therefore, upon changing men to missionaries and women
to cannibals, any solution to the jealous husbands problem will also
become a solution to the missionaries and cannibals problem.

https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem


First Encoding

% Defining the constants

time(0..length). number(0..3).
location(l1). location(l2). % two banks

% X missionaries and Y cannibals are at location L
fluent(at(X,Y,L)):- missionary(X),cannibal(Y),location(L).

% the boat is at location L
fluent(boat at(L)):- location(L).

% X missionaries and Y cannibals move from one bank to another
action(cross(I,J,L)):-

number(I), number(J), location(L), I+J ≤ 2, I+J > 0.
back to the discussion



First Encoding I
% Effects of (M,N) crossing from one bank to another

holds(at(M+P,N+Q,L1),T+1):- time(T), number(P), number(Q),
action(cross(M,N,L)), location(L1), L!=L1,
occ(cross(M,N,L), T), holds(at(P,Q,L1), T).

holds(at(P-M,Q-N,L),T+1):- time(T), number(P), number(Q),
action(cross(M,N,L)), occ(cross(M,N,L), T), holds(at(P,Q,L), T).

holds(boat at(L1),T+1):- time(T),location(L1), L!=L1,
action(cross(M,N,L)), occ(cross(M,N,L), T).

% executability condition

executable(cross(I,J,L), T):- time(T), number(P), number(Q),
action(cross(I,J,L)), holds(boat at(L), T),
holds(at(P, Q, L), T), P≥I, Q≥J.

% constraint
:- time(T), action(cross(I,J,L)),

occ(cross(I,J,L), T), not executable(cross(I,J,L), T).
:- number(I), number(J), location(L),

time(T), holds(at(I,J,L), T), I < J, I> 0.



First Encoding II

% initial condition
holds(at(3,3,l1),0).
holds(at(0,0,l2),0).
holds(boat at(l1),0).

% goal

:- not goal(length).
goal(T):- holds(at(3,3,l2), T).
1 { occ(A, T): action(A) } 1 :- time(T), not goal(T).

Differences from previous encoding

I We ignore the negative information (neg(.)). Why? (the negative
information is implicit!)

I We add an extra constraint to represent the requirement “...for both
banks, if there are missionaries present on the bank, they cannot be
outnumbered by cannibals...” (we could have included it in the
executability condition but we make use of the flexibility of logic
programming)



The Second Encoding I
% Defining the constants
time(0..length).
% Three missionaries/three cannibals
number(0..3).
% Two banks of the river
location(l1). location(l2).
% X missionaries and Y cannibals are at location L
fluent(at(X,Y,L)):- number(X),number(Y),location(L).
% X missionaries and Y cannibals are in the boat
fluent(in boat(X,Y)):- number(X),number(Y).
% the boat is at location L
fluent(boat at(L)):- location(L).
% The boat moves from one bank to another
action(cross(L)):- location(L).
% X missionaries and Y cannibals depart the boat
action(depart(I,J)):- number(I), number(J), I+J>0.
% X missionaries and Y cannibals get on the boat
action(board(I,J)):- number(I), number(J), I+J>0.



The Second Encoding II
% Effects of departing from the boat
% increasing the number of individuals on the bank
holds(at(M+P,N+Q, L),T+1):- time(T), occ(depart(M,N), T),

holds(boat at(L), T), holds(at(P,Q,L), T),
holds(in boat(X,Y), T), M ≤ X, N ≤ Y.

% reducing the number in the boat
holds(in boat(P,Q),T+1):- time(T), occ(depart(M,N), T),

holds(boat at(L), T), fluent(in boat(P,Q)),
holds(in boat(M+P,N+Q), T).

% does not change the number of individuals on the other bank
holds(at(P,Q,L1),T+1):- time(T), occ(depart(M,N), T),

holds(boat at(L), T), holds(at(P,Q,L1), T),
location(L1), L1!=L.

% does not change the location of the boat
holds(boat at(L), T+1):- time(T), location(L),

holds(boat at(L), T), action(depart(M,N)),
occ(depart(M,N), T).



The Second Encoding III
% boarding to the boat
% reducing the number of individuals on the bank
holds(at(M-P,N-Q,L),T+1):- time(T), occ(board(P,Q), T),

holds(boat at(L), T), holds(at(M,N,L), T),
M >= P, N >= Q.

% increasing the number of individuals in the boat
holds(in boat(M+P,N+Q),T+1):- time(T), occ(board(P,Q), T),

holds(boat at(L), T), holds(in boat(M,N), T).
% does not change the number of individuals on the other bank
holds(at(M,N,L1),T+1):- time(T), occ(board(P,Q), T),

holds(boat at(L), T), holds(at(M,N,L1), T),
location(L1), L1!=L.

% does not change the location of the boat
holds(boat at(L), T+1):- time(T), location(L),

action(board(P,Q)), holds(boat at(L), T),
occ(board(P,Q), T).



The Second Encoding IV
% boat crossing
% change the location of the boat
holds(boat at(L1),T+1):- time(T), location(L1), L!=L1,

occ(cross(L), T).
% does not change the number of individuals in the boat
holds(in boat(M,N), T+1):- time(T), holds(in boat(M,N), T),

occ(cross(L), T).
% does not change the number of individuals on the banks
holds(at(M,N,L1),T+1):- time(T), occ(cross(L), T),

holds(at(M,N,L1), T), location(L1).



The Second Encoding V
% executability condition
executable(cross(L), T):-

time(T),
action(cross(L)),
holds(boat at(L), T).

executable(board(M,N), T):-
time(T),
action(board(M,N)),
holds(boat at(L), T),
holds(in boat(P,Q), T),
holds(at(X,Y,L), T),
X>=M, Y>=N, M+N>0, M+N+P+Q<=2.

executable(depart(M,N), T):-
time(T),
action(depart(M,N)),
holds(in boat(P,Q), T),
M<=P, N<=Q, M+N>0.



The Second Encoding VI

% initial condition
holds(at(3,3,l1),0).
holds(at(0,0,l2),0).
holds(boat at(l1),0).
holds(in boat(0,0),0).
% constraint
:- time(T), action(A), occ(A, T), not executable(A, T).
:- number(I), number(J), location(L),

time(T), holds(at(I,J,L), T), I<J, I>0.
% goal
:- not goal(length).
goal(T):- holds(at(3,3,l2), T).
1 { occ(A, T): action(A) } 1 :- time(T), T < length.

This program has the shortest plan with 28 actions. clingo takes
more than 1 hour and cannot even verify it!



Modeling and Encoding in ASP

I The right level of abstraction: one type of actions
(cross(I , J, L)) vs. three types (cross(L), board(X ,Y ),
depart(X ,Y )). The second provides more details. However,
the program would not even run!

Trade off: details vs. computability!

I Use the right constructs and vocabularies: When we have one
type of actions (cross(X ,Y , L)), we need to encode all
information (who is crossing and from which bank), we could
have used cross(X ,Y , L1, L2) to denote the direction of
movement of the boat. However, the second representation is
not necessary in this problem. It will be necessary to introduce
the second parameter if the setting changes. For example, the
river is replaced by a triangle pond!



High Level Action Languages I

A is a high-level action language for representing and reasoning about
actions and change. It has a simple and independent semantics based on
transition system. It is introduced in

I M. Gelfond and V. Lifschitz: “Representing Actions and Change by
Logic Programs”, Journal of Logic Programming, vol. 17, Num.
2,3,4, pp. 301–323, 1993.

Several extensions of A have been proposed. We will use AL, which is
introduced in

I C. Baral, M. Gelfond: “Reasoning agents in Dynamic Domains.”
Logic Based Artificial Intelligence , Edited By J. Minker, Kluwer
2000



High Level Action Languages II
In AL, an action theory is defined over two disjoint sets, a set of fluents
(a fluent is a property whose value changes over time) and a set of
actions, and is a set of propositional propositions of the form

a causes f if p1, . . . , pn (6)

f if p1, . . . , pn (7)

initially f (8)

a executable if p1 . . . , pn (9)

where f and pi ’s are fluent literals (a fluent literal is either a fluent g or
its negation ¬g , written as neg(g)) and a is an action. (6), referred as
dynamic law, represents the (conditional) effect of action a. (7) is a
static law which represents the relationship between fluents. Propositions
of the form (8), also called v-propositions, are used to describe the initial
situation. An action theory is given by a pair (D, I ) where D consists of
propositions of the form (6)-(8) and I consists of propositions of the form
(8). D and I will be called the domain description and initial state,
respectively. We assume that for each fluent f , initially f or
initially ¬f belongs to I but not both.



High Level Action Languages III

I To say that initially, the turkey is walking and not dead, we write
initially ¬dead and
initially walking

I Initially, the gun is loaded:
initially loaded

I Shooting causes the turkey to be dead if the gun is loaded can be
expressed by

shoot causes dead if loaded and
shoot causes ¬loaded if loaded

I Un/Loading the gun causes the gun to be un/loaded
load causes leaded and
unload causes ¬loaded

I Dead turkeys cannot walk
¬walking if dead

I A gun can be loaded only when it is not loaded
load executable if ¬loaded



High Level Action Languages IV

So, the action theory is

Iy = { initially ¬dead , initially walking , initially loaded}

and

Dy =



shoot causes dead if loaded
shoot causes ¬loaded if loaded
load causes leaded
¬walking if dead
shoot executable if true
load executable if ¬loaded





Why High Level Action Languages?

Each action theory can be easily translated into an ASP program. In
fact,

I each law a causes f if p1, . . . , pk is translated into the rule:
holds(f ,T + 1)← occ(a,T ), holds(p1,T ), . . . , holds(pk ,T ).

I each law f if p1, . . . , pk is translated into the rule:
holds(f ,T )← holds(p1,T ), . . . , holds(pk ,T ).

I each law a executable if p1, . . . , pk is translated into the rules:
executable(a,T )← holds(p1,T ), . . . , holds(pk ,T ).

I each law initially f is translated into the rule:
holds(f , 0).

The other rules that we have seen are the same for all theories:
← occ(a,T ),not executable(a,T ).

1{occ(a,T ) : action(A)}1.



Diagnosis

Consider the following narrative

I 9am: John arrived at work and turned the light on. As usual,
the light went on and John started his daily work.

I 12 pm: John turned off the light and went to lunch.

I 1pm: John turned on the light when he got back from lunch.
The light did not go on.

I 1:15pm: The company’s electrician arrived. He replaced the
bulb and turned on the light, the light did not go on. He then
checked the fuses and replaced one which was blown. The
light is back.



Narrative Description – General Idea

¬on on ¬on ¬on

turn on

s0

turn off

s1

turn on

s2 s3

on means light on

The narrative can be described by a triple (SD,COMPS ,OBS) where

I SD is an action theory describing actions (e.g. turn on, turn off,
replace bulb, etc.) and their expected outcomes and relationships
between fluents. It includes also actions that are beyond the control
of the agents such as break(bulb) causes the bulb to be broke.

I COMP is a set of objects that can be broken (bulb, fuse, ...); for
each object o, an action of the form break(o) with the outcome
ab(o), indicating that o is broken, is included in SD.

I OBS is a set of observations that describes the history of the world
(might be incomplete) in term of which actions were executed,
when they were executed relative to each other, and what are the
outcomes of the actions;



The Narrative as a System

We illustrate the concepts using the example. Let
Sys = (SD, {bulb},OBS) be a ssytem with

SD =


(r1) turn on causes light on if ¬ab(bulb)
(r2) turn off causes ¬light on
(r3) ¬light on if ab(bulb)
(r4) break(bulb) causes ab(bulb)

and

OBS =



(o1) turn on occurs at s0

(o2) turn off occurs at s1

(o3) turn on between s2, s3

(o4) s0 precedes s1

(o5) s1 precedes s2

(o6) s2 precedes s3

(o7) ¬light on at s0

(o8) light on at s1

(o9) ¬light on at s2

(o10) ¬light on at s3



Diagnostic Reasoning Process

Address the questions

I when does a system need a diagnosis?

Answer: When there are inconsistency between observations
and expected outcomes; or when the system does not have a
model if we remove all actions break(o) from SD.

I what are the diagnoses?

Answer: Additional action occurrences that help explain the
indescrepancies between observations and expected outcomes.

I how to fix a system that needs a diagnosis?

Answer: Collecting enough information and executing test
actions if necessary so that a diagnosis is singed out.
Thereafter, executing the repair actions necessary to fix the
system.



Diagnostic Reasoning Process – A Summary

Answer the question: when a system needs a diagnosis and what
are the diagnoses.

I generating candidate diagnoses based on an incomplete
history of events that have occurred and observations that
have been made.

I in the event of multiple candidate diagnoses, performing
actions to enable observations that will discriminate candidate
diagnoses. The selection of a particular action is often biased
towards confirming the most likely diagnosis, or the one that
is easiest to test.

I generating (possibly with conditional) plans, comprising both
world-altering actions and sensing actions, to discriminate
candidate diagnoses.

I updating the space of diagnoses in the face of changes in the
state of the world, and in the face of new observations.



The Narrative as a Logic Program – General Idea

Given a system description (SD,COMPS ,OBS) with

I SD: a set of propositions of the form a causes f if p1, . . . , pn or
f if p1, . . . , pn; this set of propositions describes the normal system
behavior;

I COMPS : a set of components that can be broken

I OBS : a set of observations representing a narrative of the system.

We will write a logic program Π(SD,COMPS ,OBS) (or Π for short) to
compute diagnoses. Π will need to contain the following parts:

I rules for generating a sequence of actions

I rules for checking if the generated sequence of actions is a possible
diagnosis; this includes

I rules that assign situations to time moments – this
assignement must respect the ordering between situations in
the observations

I rules that make sure that observations are satisfied.



General Idea

¬on on ¬on ¬on

turn on

s0

turn off

s1

turn on

s2 s3

0 1 2 3 4 5 6 7 time

The narrative happens over a course of time (0, 1, 2, ....).

I Our first task is to identify the time that the events happened. We
can do so by assigning a time step for each situation. The
assignment must satisfy the ordering of the situations. Some
assignments are good and some are not good.
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a possible history
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General Idea

¬on on ¬on ¬on

turn on

s0

turn off

s1

turn on

s2 s3

0 1 2 3 4 5 6 7 time

an impossible history

The narrative happens over a course of time (0, 1, 2, ....).

I Our first task is to identify the time that the events happened. We
can do so by assigning a time step for each situation. The
assignment must satisfy the ordering of the situations. Some
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General Idea

¬on on ¬on ¬on

turn on

s0

turn off

s1

turn on

s2 s3

0 1 2 3 4 5 6 7 time

a possible history

¬on on ¬on ¬on
turn on turn off turn on

The narrative happens over a course of time (0, 1, 2, ....).

I Our first task is to identify the time that the events happened. We
can do so by assigning a time step for each situation. The
assignment must satisfy the ordering of the situations. Some
assignments are good and some are not good.

I Assume that the assignment is good. We then need to generate
action occurrences and ensure that observations are true.



Elements of Π I
% Constants: time, situations, actions, fluents
time(0..length).
% situations
sit(s0). sit(s1). sit(s2). sit(s3).
% actions
action(turn on). action(turn off). action(break(bulb)).
% fluents
fluent(light on). fluent(ab(bulb)).
% Effects of actions (similar to what has been done in the part on
reasoning about actions/planning)
holds(light on, T+1):- time(T), occ(turn on,T), holds(neg(ab(bulb)),T).
holds(neg(light on), T+1):- time(T), occ(turn off, T).
holds(ab(bulb), T+1):- time(T), occ(break(bulb), T).
holds(neg(light on), T):- time(T), holds(ab(bulb), T).
% inertial axiom
holds(F, T+1):- time(T), fluent(F), holds(F, T), not holds(neg(F), T+1).
holds(neg(F),T+1):-time(T),fluent(F),holds(neg(F),T),not holds(F,T+1)



Elements of Π II
% specifying the set of observations situation order
prec(s0,s1). prec(s1,s2). prec(s2,s3).
% fluent observations
at(neg(light on), s0). at(neg(ab(bulb)), s0). at(light on, s1).
at(neg(light on), s2). at(neg(light on), s3).
% action observations
between(s0,s1,turn on). between(s2,s3,turn on).
exec at(s1,turn off).
% satisfying all the observations
% generating situation order each situation happens at a time moment
1 {happens(S, T): time(T) } 1 :- sit(S).
% s0 is always at the time moment 0
:- time(T), happens(s0,T), T > 0.
:- time(T), happens(s3,T), T < length.
:- time(T1), time(T2), sit(S1), sit(S2), happens(S1,T1),

happens(S2,T2), prec(S1,S2), T1>T2.
:- time(T1), time(T2), sit(S1), sit(S2), action(A),

happens(S1,T1), happens(S2,T2), between(S1,S2,A), T2 !=T1+1.



Elements of Π III

% generating action occurrences
1{occ(A, T): action(A) } 1 :- time(T), T < length.
% satisfying all the observations
% fluent observations
holds(F, T):- time(T), fluent(F), sit(S), at(F, S), happens(S, T).
holds(neg(F),T):-time(T),fluent(F),sit(S),at(neg(F),S),happens(S, T).
% constraints, making sure that action occurrences happen as they are
observed
:- time(T1), time(T2), action(A), action(A1), between(S1,S2,A),
happens(S1,T1), occ(A1,T1), A1!= A.
occ(A, T1):- time(T1), action(A), between(S1,S2,A), happens(S1,T1).
:- time(T), action(A1), action(A2), A1 != A2, occ(A1, T), occ(A2, T).
% constraints that eliminate inconsistency model

:- time(T), fluent(F), holds(F, T), holds(neg(F), T).



Running the program

clingo -c length=5 bulb.lp
that gives an answer set with the following:
occ(turn on,0) occ(turn off,1) occ(turn on,2)
occ(break(bulb),3) occ(turn on,4)
happens(s3,5) happens(s2,4) happens(s1,1) happens(s0,0)

¬on on ¬on ¬on

turn on

s0

turn off

s1

turn on

s2 s3

0 1 2 3 4 5 6 7 time

¬on on ¬on ¬on
turn on turn off turn on break(bulb) turn on



Missionaries and Cannibals, Blocks, etc.

Why?

I My program does not work!

I I add the action, I specify the effects, my program does not
work still!

I I did ...., my program does not work!

Reason
It is the inertial axiom!

It is the inertial axiom!

It is the inertial axiom!
What is it? The inertial law says that object at rest stays at rest.
Translated to reasoning about effects of actions and changes: what
is true/false stays true/false if it has not been changed by the
action execution.
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Inertial Axioms in Our Examples

Different ways to do it

I See Formalization in the block world domain

holds(F, T+1) :- fluent(F), holds(F, T), not holds(neg(F), T+1).

holds(neg(F),T+1):-fluent(F),holds(neg(F),T),not holds(F,T+1).

I See Formalization in the Yale shooting problem

Same as in the block world domain.

I The formalization in the missionaries and cannibals is
different. See MC problem

It seems that we forgot inertial rules! NO, we just did it in a
different way.



Frame Axioms in MC Problem I
We have fluents: at(M,N,L), boat at(L). 0 ≤ M,N ≤ 3. They can
be divided into three types: at(M,N,l1), at(M,N,l2), boat at(L)
(color coded: red, blue, black)
If you display the fluents from the program you will see the
following fluents:
fluent(at(0,0,l1)) fluent(at(1,0,l1)) fluent(at(2,0,l1)) fluent(at(3,0,l1))

fluent(at(0,1,l1)) fluent(at(1,1,l1)) fluent(at(2,1,l1)) fluent(at(3,1,l1))

fluent(at(0,2,l1)) fluent(at(1,2,l1)) fluent(at(2,2,l1)) fluent(at(3,2,l1))

fluent(at(0,3,l1)) fluent(at(1,3,l1)) fluent(at(2,3,l1)) fluent(at(3,3,l1))

fluent(at(0,0,l2)) fluent(at(1,0,l2)) fluent(at(2,0,l2)) fluent(at(3,0,l2))

fluent(at(0,1,l2)) fluent(at(1,1,l2)) fluent(at(2,1,l2)) fluent(at(3,1,l2))

fluent(at(0,2,l2)) fluent(at(1,2,l2)) fluent(at(2,2,l2)) fluent(at(3,2,l2))

fluent(at(0,3,l2)) fluent(at(1,3,l2)) fluent(at(2,3,l2)) fluent(at(3,3,l2))

fluent(boat at(l1)) fluent(boat at(l2))



Frame Axioms in MC Problem II
For each action cross(I , J, L) we have one rule that changes the
value of
holds(at(I,J,L),T+1) :- ... occ(cross(P,Q,L),T), ...
holds(at(I,J,L1),T+1) :- ... occ(cross(P,Q,L),T), L1!=L,...
holds(boat at(L1),T+1) :- ... occ(cross(P,Q,L),T), L1!=L,...
The three rules guarantee that there will be one fluent of each type
that is true in the next time step (T+1) if the action is executable.
Since we represent negative information implicitly (there is no
neg(.) in the program), we account for all the fluents in the
problem (holds(at(.,.,l), t)) records what is true; the missing
fluents are false).
For example, when we add occ(cross(1,1,l1),0) to the program and
display atoms of the form holds(.,.) we can see the following
holds(at(3,3,l1),0) holds(at(0,0,l2),0) holds(boat at(l1),0)
holds(at(2,2,l1),1) holds(at(1,1,l2),1) holds(boat at(l2),1)



Frame Axioms in MC Problem III

Why a new way?
We could represent the negative information to the MC program
by the rule (Closed World Assumption):
holds(neg(F),0) :- fluent(F), not holds(F, 0).
and the inertial rules
holds(F, T+1) :- fluent(F), holds(F, T), not holds(neg(F), T+1).

holds(neg(F),T+1):-fluent(F),holds(neg(F),T),not holds(F,T+1).

then we get the following results after the action cross(1, 1, l1)
occurs, i.e., occ(cross(1, 1, l1), 0) is added to the program (red for
positive information and black for negative information, which are
not good!):
holds(at(3,3,l1),0) holds(at(0,0,l2),0) holds(boat at(l1),0)

holds(boat at(l2),1) holds(boat at(l1),1) holds(at(2,2,l1),1)

holds(at(1,1,l2),1) holds(at(3,3,l1),1) holds(at(0,0,l2),1)

holds(boat at(l2),2) holds(boat at(l1),2) holds(at(2,2,l1),2)

holds(at(1,1,l2),2) holds(at(3,3,l1),2) holds(at(0,0,l2),2)

holds(neg(at(0,0,l1)),0) holds(neg(at(1,0,l1)),0) holds(neg(at(2,0,l1)),0)



Frame Axioms in MC Problem IV

holds(neg(at(3,0,l1)),0) holds(neg(at(0,1,l1)),0) holds(neg(at(1,1,l1)),0)

holds(neg(at(2,1,l1)),0) holds(neg(at(3,1,l1)),0) holds(neg(at(0,2,l1)),0)

holds(neg(at(1,2,l1)),0) holds(neg(at(2,2,l1)),0) holds(neg(at(3,2,l1)),0)

holds(neg(at(0,3,l1)),0) holds(neg(at(1,3,l1)),0) holds(neg(at(2,3,l1)),0)

holds(neg(at(1,0,l2)),0) holds(neg(at(2,0,l2)),0) holds(neg(at(3,0,l2)),0)

holds(neg(at(0,1,l2)),0) holds(neg(at(1,1,l2)),0) holds(neg(at(2,1,l2)),0)

holds(neg(at(3,1,l2)),0) holds(neg(at(0,2,l2)),0) holds(neg(at(1,2,l2)),0)

holds(neg(at(2,2,l2)),0) holds(neg(at(3,2,l2)),0) holds(neg(at(0,3,l2)),0)

holds(neg(at(1,3,l2)),0) holds(neg(at(2,3,l2)),0) holds(neg(at(3,3,l2)),0)

holds(neg(boat at(l2)),0) holds(neg(at(0,0,l1)),1)

holds(neg(at(1,0,l1)),1) holds(neg(at(2,0,l1)),1) holds(neg(at(3,0,l1)),1)

holds(neg(at(0,1,l1)),1) holds(neg(at(1,1,l1)),1) holds(neg(at(2,1,l1)),1)

holds(neg(at(3,1,l1)),1) holds(neg(at(0,2,l1)),1) holds(neg(at(1,2,l1)),1)

holds(neg(at(3,2,l1)),1) holds(neg(at(0,3,l1)),1) holds(neg(at(1,3,l1)),1)

holds(neg(at(2,3,l1)),1) holds(neg(at(1,0,l2)),1) holds(neg(at(2,0,l2)),1)

holds(neg(at(3,0,l2)),1) holds(neg(at(0,1,l2)),1) holds(neg(at(2,1,l2)),1)

holds(neg(at(3,1,l2)),1) holds(neg(at(0,2,l2)),1) holds(neg(at(1,2,l2)),1)



Frame Axioms in MC Problem V
holds(neg(at(2,2,l2)),1) holds(neg(at(3,2,l2)),1) holds(neg(at(0,3,l2)),1)

holds(neg(at(1,3,l2)),1) holds(neg(at(2,3,l2)),1) holds(neg(at(3,3,l2)),1)

holds(neg(at(0,0,l1)),2) holds(neg(at(1,0,l1)),2) holds(neg(at(2,0,l1)),2)

holds(neg(at(3,0,l1)),2) holds(neg(at(0,1,l1)),2) holds(neg(at(1,1,l1)),2)

holds(neg(at(2,1,l1)),2) holds(neg(at(3,1,l1)),2) holds(neg(at(0,2,l1)),2)

holds(neg(at(1,2,l1)),2) holds(neg(at(3,2,l1)),2) holds(neg(at(0,3,l1)),2)

holds(neg(at(1,3,l1)),2) holds(neg(at(2,3,l1)),2) holds(neg(at(1,0,l2)),2)

holds(neg(at(2,0,l2)),2) holds(neg(at(3,0,l2)),2) holds(neg(at(0,1,l2)),2)

holds(neg(at(2,1,l2)),2) holds(neg(at(3,1,l2)),2) holds(neg(at(0,2,l2)),2)

holds(neg(at(1,2,l2)),2) holds(neg(at(2,2,l2)),2) holds(neg(at(3,2,l2)),2)

holds(neg(at(0,3,l2)),2) holds(neg(at(1,3,l2)),2) holds(neg(at(2,3,l2)),2)

holds(neg(at(3,3,l2)),2)



Frame Axioms in MC Problem VI

The reason for the wrong results lies in that we do not have rules for
negative effects. For example, if we add
holds(neg(boat at(L)),T+1):- time(T),

action(cross(M,N,L)),occ(cross(M,N,L),T).
Then we solve the problem with holds(boat at(l2),1) holds(boat at(l1),1).
How do we solve the problem with holds(at(3,3,l1),0) holds(at(3,3,l1),1)?
holds(neg(at(P,Q,L)), T+1):- time(T), action(cross(M,N,L)),

occ(cross(M,N,L), T), holds(at(P,Q,L), T).
How do we solve the problem with holds(at(1,1,l2),1) holds(at(0,0,l2),1)?
holds(neg(at(P,Q,L1)), T+1):- time(T), action(cross(M,N,L)),

occ(cross(M,N,L), T), L!=L1, holds(at(P,Q,L1), T).
We get the following results:
holds(at(3,3,l1),0) holds(at(0,0,l2),0) holds(boat at(l1),0)
holds(boat at(l2),1) holds(at(2,2,l1),1) holds(at(1,1,l2),1)
holds(at(2,2,l1),2) holds(at(1,1,l2),2) holds(neg(boat at(l1)),1)
holds(neg(at(0,0,l1)),0) holds(neg(at(1,0,l1)),0) holds(neg(at(2,0,l1)),0)
holds(neg(at(3,0,l1)),0) holds(neg(at(0,1,l1)),0) holds(neg(at(1,1,l1)),0)
holds(neg(at(2,1,l1)),0) holds(neg(at(3,1,l1)),0) holds(neg(at(0,2,l1)),0)
holds(neg(at(1,2,l1)),0) holds(neg(at(2,2,l1)),0) holds(neg(at(3,2,l1)),0)



Frame Axioms in MC Problem VII

holds(neg(at(0,3,l1)),0) holds(neg(at(1,3,l1)),0) holds(neg(at(2,3,l1)),0)
holds(neg(at(1,0,l2)),0) holds(neg(at(2,0,l2)),0) holds(neg(at(3,0,l2)),0)
holds(neg(at(0,1,l2)),0) holds(neg(at(1,1,l2)),0) holds(neg(at(2,1,l2)),0)
holds(neg(at(3,1,l2)),0) holds(neg(at(0,2,l2)),0) holds(neg(at(1,2,l2)),0)
holds(neg(at(2,2,l2)),0) holds(neg(at(3,2,l2)),0) holds(neg(at(0,3,l2)),0)
holds(neg(at(1,3,l2)),0) holds(neg(at(2,3,l2)),0) holds(neg(at(3,3,l2)),0)
holds(neg(boat at(l2)),0) holds(neg(boat at(l1)),2) holds(boat at(l2),2)
holds(neg(at(0,0,l1)),1) holds(neg(at(1,0,l1)),1) holds(neg(at(2,0,l1)),1)
holds(neg(at(3,0,l1)),1) holds(neg(at(0,1,l1)),1) holds(neg(at(1,1,l1)),1)
holds(neg(at(2,1,l1)),1) holds(neg(at(3,1,l1)),1) holds(neg(at(0,2,l1)),1)
holds(neg(at(1,2,l1)),1) holds(neg(at(3,2,l1)),1) holds(neg(at(0,3,l1)),1)
holds(neg(at(1,3,l1)),1) holds(neg(at(2,3,l1)),1) holds(neg(at(1,0,l2)),1)
holds(neg(at(2,0,l2)),1) holds(neg(at(3,0,l2)),1) holds(neg(at(0,1,l2)),1)
holds(neg(at(2,1,l2)),1) holds(neg(at(3,1,l2)),1) holds(neg(at(0,2,l2)),1)
holds(neg(at(1,2,l2)),1) holds(neg(at(2,2,l2)),1) holds(neg(at(3,2,l2)),1)
holds(neg(at(0,3,l2)),1) holds(neg(at(1,3,l2)),1) holds(neg(at(2,3,l2)),1)
holds(neg(at(3,3,l2)),1) holds(neg(at(3,3,l1)),1) holds(neg(at(0,0,l2)),1)
holds(neg(at(0,0,l1)),2) holds(neg(at(1,0,l1)),2) holds(neg(at(2,0,l1)),2)
holds(neg(at(3,0,l1)),2) holds(neg(at(0,1,l1)),2) holds(neg(at(1,1,l1)),2)



Frame Axioms in MC Problem VIII
holds(neg(at(2,1,l1)),2) holds(neg(at(3,1,l1)),2) holds(neg(at(0,2,l1)),2)
holds(neg(at(1,2,l1)),2) holds(neg(at(3,2,l1)),2) holds(neg(at(0,3,l1)),2)
holds(neg(at(1,3,l1)),2) holds(neg(at(2,3,l1)),2) holds(neg(at(1,0,l2)),2)
holds(neg(at(2,0,l2)),2) holds(neg(at(3,0,l2)),2) holds(neg(at(0,1,l2)),2)
holds(neg(at(2,1,l2)),2) holds(neg(at(3,1,l2)),2) holds(neg(at(0,2,l2)),2)
holds(neg(at(1,2,l2)),2) holds(neg(at(2,2,l2)),2) holds(neg(at(3,2,l2)),2)
holds(neg(at(0,3,l2)),2) holds(neg(at(1,3,l2)),2) holds(neg(at(2,3,l2)),2)
holds(neg(at(3,3,l2)),2) holds(neg(at(3,3,l1)),2) holds(neg(at(0,0,l2)),2)



Frame Axioms in MC Problem IX

Two views of the same coin

holds(at(3,3,l1),0)

holds(at(0,0,l2),0)

holds(boat at(l1),0)

holds(boat at(l2),0)

holds(at(1,1,l2),0)

...

only what is true is inside!

holds(at(3,3,l1),0)

holds(at(0,0,l2),0)

holds(boat at(l1),0)

holds(neg(boat at(l2)),0)

holds(neg(at(1,1,l2)),0)

...

everything is inside



Adding Actions and Programs Stop Working I

Problem
I added an action that allows for the boat to move to an island.
The program stops working.

The changes you might have made:
number(0..4). % increase number of MC
location(island). % add the island
action(cross(I,J,L,L1)):- number(I), number(J), I+J ≤ 2, I+J > 0,

location(L), L!=L1, location(L1). % change actions
... replace cross(I,J,L) in the old program to cross(I,J,L,L1) ...
holds(at(0,0,island),0). % specify number of MC on island
goal(T):- holds(at(4,4,l2), T). % make the goal



Adding Actions and Programs Stop Working II

Why so?

Remove the goal and adding occ(cross(1,1,l1,l2),0) to the
program, run with length = 1, you will see
holds(at(4,4,l1),0) holds(at(0,0,l2),0) holds(boat at(l1),0)
holds(at(0,0,island),0)

holds(at(3,3,l1),1) holds(at(1,1,l2),1) holds(boat at(l2),1)

Oh, I expect that holds(at(0,0,island),1) be there!
Where does it go?
In fact, if you add occ(cross(1,1,l1,island),0) to the program, then
holds(at(0,0,l2),1) is expected but not present.
And, that was the source of the problem: something we expect to
be true but disappear! The reason was inertial axioms are missing.
By introducing the island, we create the fourth type of fluents
(analogous to our previous analysis, at(P,Q,island)). Our program
change the value of only three types of fluents after one action is
executed. The fourth type must stay the same.



Scheduling
Problem
We have several tasks t1, . . . , tn. For every i , we have

I a unique atom duration(ti , di ) that encodes the duration of the task
ti (we assume that di is a positive integer);

I a collection of atoms of the form prec(ti , tj ) which says that ti has
to be completed before tj can start.

I a collection of atoms of the form non overlap(ti , tj ) which says that
ti and tj cannot be overlapped.

Goal: find a schedule to complete the t1, . . . , tn with minimal span (total
time).

0 1 2 3 4 5 6 7 time

t1

t2

t1, t2: OVERLAPPING

t3

t1 BEFORE t3

duration(t1, 3)

duration(t2, 3)

duration(t3, 2)



A Schedule for a Set of Tasks: Definition
A schedule for the set of tasks T = {t1, . . . , tn} is a mapping of T to the
set of non-negative integers N, denoted by start : T −→ N, such that

I if prec(ti , tj ) is true then start(ti ) + di ≤ start(tj ) (ti completed
before tj )

I if non overlap(ti , tj ) is true then start(ti ) + di ≤ start(tj ) or
start(tj ) + dj ≤ start(ti )

Given three tasks t1, t2, t3 with duration(t1, 3), duration(t2, 3),

duration(t3, 2), and the constraints prec(t1, t3), non overlap(t1, t2) then

the assignment represents in the top half of the figure is not a schedule

for the set of tasks {t1, t2, t3};

0 1 2 3 4 5 6 7 time

t1

t2

t3 NOT A SCHEDULE



A Schedule for a Set of Tasks: Definition
A schedule for the set of tasks T = {t1, . . . , tn} is a mapping of T to the
set of non-negative integers N, denoted by start : T −→ N, such that

I if prec(ti , tj ) is true then start(ti ) + di ≤ start(tj ) (ti completed
before tj )

I if non overlap(ti , tj ) is true then start(ti ) + di ≤ start(tj ) or
start(tj ) + dj ≤ start(ti )

Given three tasks t1, t2, t3 with duration(t1, 3), duration(t2, 3),

duration(t3, 2), and the constraints prec(t1, t3), non overlap(t1, t2) then

the assignment represents in the top half of the figure is not a schedule

for the set of tasks {t1, t2, t3}; the assignment represents in the bottom

half is.

0 1 2 3 4 5 6 7 time

t1

t2

t3 NOT A SCHEDULE

A SCHEDULE
t1

t2

t3



Span of a Schedule: Definition
A schedule for the set of tasks T = {t1, . . . , tn} is a mapping of T to the
set of non-negative integers N, denoted by start : T −→ N, such that

I if prec(ti , tj ) is true then start(ti ) + di ≤ start(tj ) (ti completed
before tj )

I if non overlap(ti , tj ) is true then start(ti ) + di ≤ start(tj ) or
start(tj ) + dj ≤ start(ti )

The span of a schedule is defined by the formula
span = max end −min start where
max end = max{start(ti ) + di | i = 1, . . . , n} and
min start = min{start(ti ) | i = 1, . . . , n}.

0 1 2 3 4 5 6 7 time

t1

t2

t3 span = 6

span = 7

t1

t2

t3



ASP Encoding for Scheduling

Input: assume that the problem is given ...
task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj ), . . . , non overlap(ti , tj ), . . . ,

Code



ASP Encoding for Scheduling

Input: assume that the problem is given ...
task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj ), . . . , non overlap(ti , tj ), . . . ,

Code
time(0..length).
% generating start time
1 { start(T, S) : time(S) } 1 :- task(T).



ASP Encoding for Scheduling

Input: assume that the problem is given ...
task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj ), . . . , non overlap(ti , tj ), . . . ,

Code
time(0..length).
% generating start time
1 { start(T, S) : time(S) } 1 :- task(T).
% checking prec
:- prec(T1,T2),start(T1,S1),start(T2,S2),duration(T1,D1), S2<S1+D1.



ASP Encoding for Scheduling

Input: assume that the problem is given ...
task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj ), . . . , non overlap(ti , tj ), . . . ,

Code
time(0..length).
% generating start time
1 { start(T, S) : time(S) } 1 :- task(T).
% checking prec
:- prec(T1,T2),start(T1,S1),start(T2,S2),duration(T1,D1), S2<S1+D1.
% non-overlap
:- non overlap(T1,T2), start(T1, S1), start(T2,S2), duration(T1, D1),

S2 < S1+D1, S2 ≥ S1.
:- non overlap(T1,T2), start(T1, S1), start(T2,S2), duration(T2, D2),

S1 < S2+D1, S1≥ S2.



ASP Encoding for Scheduling

Input: assume that the problem is given ...
task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj ), . . . , non overlap(ti , tj ), . . . ,

Code
time(0..length).
% generating start time
1 { start(T, S) : time(S) } 1 :- task(T).
% checking prec
:- prec(T1,T2),start(T1,S1),start(T2,S2),duration(T1,D1), S2<S1+D1.
% non-overlap
:- non overlap(T1,T2), start(T1, S1), start(T2,S2), duration(T1, D1),

S2 < S1+D1, S2 ≥ S1.
:- non overlap(T1,T2), start(T1, S1), start(T2,S2), duration(T2, D2),

S1 < S2+D1, S1≥ S2.
% minimizing span
max end(M):- M=#max {D+S : task(T),duration(T,D),start(T,S)}.
min start(MS) :- MS = #min {S : task(T), start(T,S)}.
span(MA - MS) :- max end(MA), min start(MS).
#minimize {S : span(S)}.



Planning with Durative Actions and Numerical Fluents

Assumptions in Planning

I Actions are duration-less: every action takes one time step to
complete (sometime, it is also referred to as instantaneous) (not
realistic, e.g., driving takes time)

I Fluents are boolean: simplified the modeling but could increase the
grounding (e.g., the amount of gasoline in the tank is a real number)

Example 1
John is at the train station and wants to go to class. It is 7am and John
has a class at 8am. The train starts at 7:05 am and will take 40 minutes
to get to the school. Walking from the train station to the class will
require 15 minutes. John would like to have a cup of coffee before the
class (otherwise, he will just sleep in the class :-). Standing in line to get
the coffee at the coffee stand will take 10 minutes. He could also buy
coffee on the train. What should John do?



Planning with Durative Actions and Numerical Fluents

Assumptions in Planning

I Actions are duration-less: every action takes one time step to
complete (sometime, it is also referred to as instantaneous) (not
realistic, e.g., driving takes time)

I Fluents are boolean: simplified the modeling but could increase the
grounding (e.g., the amount of gasoline in the tank is a real number)

Example 2
John needs to catch his flight out of El Paso airport at 9 am. Driving
from Las Cruces to El Paso airport takes 45 minutes during non-rush
hours. It could take 1 hour and 15 minutes during rush hours. Rush
hours is between 7:30 am and 9:30 am. John needs to be at the airport
15 minutes earlier to check in and pass through security. When should
John start driving?



Planning with Durative Actions and Numerical Fluents

Problems and Ideas

I Representation of durative actions: this can be done similar to what
we use in scheduling; however, there is something more than that

I fixed duration: the train trip between two stations (John’s
home and school) takes 40 minutes. In this case, we can use a
fact of the form duration(a, d) to denote that the execution of
a takes d time units.

I variable duration: the time needed for driving from Las Cruces
to El Paso depends on how fast John drives. In this case, we
need to introduce a rule that defines duration(a, d), for
example,
duration(drive lc elp, 45/Speed) :- speed(drive lc elp, Speed).
duration(drive(A,B),D/S):-speed(A,B,S),distance(A,B,D).

I Representation of numerical fluents: use equality, for example,

holds(amount gasoline = 10, T+1) :- ....
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Commonsense Reasoning

Our knowledge

I is often incomplete (it does not contain complete information
about the world), and

I contains defaults (rules which have exceptions, also called
normative sentences).

I contains preferences between defaults (prefer a
conclusion/default).

For this reasons, we often jump to conclusions (ignore what we do
not know), and deal with exceptions and preferences whenever
they arise.



Representing Defaults

We know
Normally, birds fly.
Normally, computer science students can program.
Normally, students work hard.
Normally, things do not change.
Normally, students do not watch TV.
Normally, the speed limit on highways is 70 mph.
Normally, it is cold in December.

From this, we make conclusions such as Tweety flies if we know
that Tweey is a bird; Monica can program if she is a computer
science student; etc.



Representing Defaults: Example 1

Normally, a’s are b’s. b(X )← a(X ),not ab(r ,X )1

Normally, birds fly. fly(X )← bird(X ),not ab(bird fly ,X )
Normally, animals have four legs.

numberoflegs(X , 4)← animal(X ),not ab(animal ,X )
Normally, fishs swim. swim(X )← fish(X ),not ab(fish,X )
Normally, computer science students can program.

can program(X )← student(X ), is in(X , cs),not abp(X )
Normally, students work hard.

hard working(X )← student(X ),not ab(X )
Typically, classes start at 8am.

start time(X , 8am)← class(X ),not ab(X )

1r is the ’name’ of the statement; ab(X ) or abr (X ) can also be used.



Representing Defaults: Example 2 (Birds and Penguins) I
Suppose that we know

• r1: Normally, birds fly.
• r3: Penguins are birds.
• r3: Penguins do not fly.

• r4: Tweety is a penguin.
• r5: Tim is a bird.

Πb =


r1 : fly(X ) ← bird(X ),not ab(r1,X )
r2 : bird(X ) ← penguin(X )
r3 : ab(r1,X ) ← penguin(X )
r4 : penguin(tweety) ←
r5 : bird(tim) ←

Answer set of Πb: ?



Representing Defaults: Example 2 (Birds and Penguins) II

Πb =


r1 : fly(X ) ← bird(X ),not ab(r1,X )
r2 : bird(X ) ← penguin(X )
r3 : ab(r1,X ) ← penguin(X )
r4 : penguin(tweety) ←
r5 : bird(tim) ←

Answer set of Πb:
{bird(tim), fly(tim), penguin(tweety), ab(r1, tweety), bird(tweety)
Πb |= fly(tim) and Πb |= ¬fly(tweety)



Defaults – Example 3 (Animals) I

Consider the following information:
• Normally lions and tigers are cats.
• Sam and John are lions.
• Sam is not a cat.
• Sam is a sea lion.

This information can be represented by the following program

Πa =



r1 : cat(X ) ← lion(X ),not ab(r1,X )
r2 : cat(X ) ← tiger(X ),not ab(r2,X )
r3 : lion(X ) ← sea lion(X )
r4 : ab(r1,X ) ← sea lion(X )
r5 : sea lion(sam) ←
r6 : lion(john) ←

We can check that Πa entails that sam is a lion but not a cat while
john is a cat which is a lion.



Defaults – More Examples I

I We know that computers are normally fast machines, the
commodore is a slow machine because it is an old one. This
can be represented by the following program:

Πc =


r1 : fast machine(X ) ← computer(X ),not ab(X )
r2 : old(X ) ← comodore(X )
r3 : computer(X ) ← comodore(X )
r4 : ab(X ) ← old(X )



Defaults – More Examples II

I The Boeing 747, concord, and FA21314 are airplanes.
Airplanes normally fly unless they are out of order. FA21314 is
out of order. Πairplanes is given below:

r1 : fly(X ) ← airplane(X ),not ab(X )
r2 : ab(X ) ← out of order(X )
r3 : airplane(boeing 747) ←
r4 : airplane(concord) ←
r5 : airplane(fa21324) ←
r6 : out of order(fa21324) ←



Inheritance Reasoning I
In practical applications, there might be more than one defaults
and they interact with each others.

Example

Consider the knowledge base with the following statements:

I Normally, students are young adults.

I Normally, students are single.

I Young adults are adults.

I Normally, adults are married.

How to answer the following questions?

I Sam is a young adult. Is Sam married?

I Marry is an adult and she is a student.

I John is an adult. Is he a student?



Inheritance Reasoning II
The normal encoding of Πadult student is given below:

r1 : young adult(X ) ← student(X ),not ab(r1,X )
r2 : ¬married(X ) ← student(X ),not ab(r2,X )
r3 : adult(X ) ← young adult(X )
r4 : married(X ) ← adult(X ),not ab(r4,X )
r5 : young adult(sam) ←
r6 : adult(marry) ←
r7 : student(marry) ←
r8 : adult(john) ←

This program is inconsistent because of the conflict information about

Marry! The information that Marry is a student is more specific than

that of her being an adult. Therefore, information about her being single

should override that she is married.



Inheritance Reasoning III

Adding rules that allow for information about Marry being married to be
overridden:

r1 : young adult(X ) ← student(X ),not ab(r1,X )
r2 : ¬married(X ) ← student(X ),not ab(r2,X )
r3 : adult(X ) ← young adult(X )
r4 : married(X ) ← adult(X ),not ab(r4,X )
r ′4 : ab(r4,X ) ← student(X ),not ab(r ′4,X )
r5 : young adult(sam) ←
r6 : adult(marry) ←
r7 : student(marry) ←
r8 : adult(john) ←

This rule says that normally, students are exceptions to the default r4

(normally, adults are married!). It is derived from the principle:

Specificity principle

normally, more specific information overrides less specific one!
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Additional Features for KRR

To add expressiveness and to make logic programming more
suitable for knowledge representation and reasoning, additional
features and constructors are introduced:

I classical negation: instead of atoms, literals are used in the
rule

l0 ← l1, . . . , ln,not ln+1, . . . ,not ln+k

where li is a literal (an atom a or its negation ¬a). This will
allow us to represent and reason with negative information.

I nested expression: allowing not not l .



Using Classical Negation I

Πb =


r1 : fly(X ) ← bird(X ),not ab(r1,X )
r2 : bird(X ) ← penguin(X )
r3 : ab(r1,X ) ← penguin(X )
r4 : penguin(tweety) ←
r5 : bird(tim) ←

I In the bird example, “Penguins do not fly” is more intuitive than
“Normally, penguins do not fly.” So, r3 of Πb should be changed to

r ′3 : ¬fly(X )← penguin(X ).

Doing so will make the program Πb inconsistent! Obviously, r1 does
not account for the class of birds who do not fly. We should change
the rule r1 to

r ′1 : fly(X )← bird(X ),not ab(r1,X ),not ¬fly(X )

The new program, Π′b = Πb \ {r1, r3} ∪ {r ′1, r ′3} will correctly answer

the same questions such as “does Tim fly” and “does Tweety fly?”



Using Classical Negation II
I Suppose that we have a list of professors and their courses:

Professor Course
mike ai
sam db
staff C

where staff stands for “someone” – an unknown professor – who
might be different than mike and sam. This list can be expressed by
a set of atoms of the form teach(P,C ) (P teaches C ):
teach(mike, ai), teach(sam, db), and teach(staff , c).
By default, we know that if a professor P teaches the course C ,
then (P,C ) will be listed (and hence the atom teach(P,C ) will be
present.) Thus, by default, professor P does not teach the course C
if teach(P,C ) is not present. The exception to this rule are the
courses taught by “staff”. This leads to the following two rules:

¬teach(P,C ) ← not teach(P,C ),not ab(P,C ).
ab(P,C ) ← teach(staff ,C )

This will allow us to conclude that mike teaches ai but we do not

know whether he teaches c or not.



Closed World Assumption (CWA)

The Closed World Assumption is invented by Ray Reiter in his study on
deductive database. It has since been used in several areas of knowledge
representation. The key idea of the CWA is the presumption that
whatever is true is also known to be true. In other words, whatever is not
true is false.
We have used the CWA in representing the initial state of planning
problems. For example, to describe the initial state of the block world
domain, we list all fluents that are true and add a rule that completes the
initial state:
holds(on(a,b), 0).
holds(ontable(b), 0).
....
holds(clear(a), 0).

holds(neg(F), 0) :- fluent(F), not holds(F, 0).

The last rule is often called CWA rule.
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Advanced Problems in ASP

I Planning with durative actions and resources

I Integration of ASP with external solvers

I Multi-agent systems with ASP



Planning with durative actions and resources

Problem
Given a planning problem with durative actions and resources. How to
solve this type of problems using ASP?
The general idea is simple but scalable and efficient solution is yet to be
developed.

Example 1
In the block world domain, we can imagine that each block has some
weights. The cost of moving a block to the table or atop of another block
is given in some way (e.g., the robot arm needs gasoline to move around
and the amount of gasoline is proportional to the weight of the block).



Planning with durative actions and resources

Problem
Given a planning problem with durative actions and resources. How to
solve this type of problems using ASP?
The general idea is simple but scalable and efficient solution is yet to be
developed.

Example 2
Suppose that we are at the headquarter of FedEx. We need to create a
delivery plan for packets that we receive in the day. Assume that the
packets have been sorted, i.e., origins and destinations and type (e.g.,
express, normal, one-day, etc.) of packets are known. FedEx has
airplanes and trucks for transportation. The delivery plan would need to
take into consideration information such as

I the duration of each action (fly(from, to) or drive(from, to))

I the type of packet which implies the dateline for delivery

I the availability of the transportation means



Integration of ASP with external solvers

I Early ASP-solver is developed to run in batch mode. There is
no interaction with users during the answer set computation
process. This might not be an optimal way to deal with
problems that are, for example, interactive in nature. For
instance, if we were to use ASP to analyze video stream of an
airport to identify terrorists, we cannot wait until we get the
complete video. It will never be complete or if it is complete
then the terrorist might have been escaped already.

I The method of computing answer sets by ASP-solvers is
dominantly two steps: first the system grounds the program
and then it computes the answer sets. As such, scalability is a
challenge for ASP-based applications. For example, we cannot
consider variables with continuous domains such as the
amount of gasoline, probability, etc.
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Answer Set Programming

n-Queens

Facts:

I col(1..n): shorthand for col(1), . . . , col(n)
I row(1..n).

Generation: 1{at(I, J) : row(J)}1← col(I).

Check:

I No two queens on same column:

← at(I, J1),at(I, J2), J1 6= J2

I No two queens on same row:

← at(I1, J),at(I2, J), I1 6= I2

I No two queens on diagonal

← at(I1, J1),at(I2, J2), |J1− J2| = |I1− I2|
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Answer Set Programming

Sudoku

Facts : c(1..9). r(1..9). num(1..9).
an(1,1,2). an(1,3,9). an(1,4,6)....
ar(1..3,1..3,1). ar(1..3,4..6,2). ar(1..3,7..9,3).
ar(4..6,1..3,4). ar(4..6,4..6,5). ar(4..6,7..9,6).
ar(7..9,1..3,7). ar(7..9,4..6,8). ar(7..9,7..9,9).

Generation :
1{an(X ,Y ,N) : num(N)}1 : −c(X ), r(Y ).

Check :
: −c(Y ), c(X ),X 6= Y , r(R),an(R,X ,N),an(R,Y ,N).
: −r(Y ), r(X ),X 6= Y , c(C),an(Y ,C,N),an(X ,C,N).
: −ar(X ,Y ,Z ),ar(P,Q,Z ),X 6= P,an(X ,Y ,N),an(P,Q,N).
: −ar(X ,Y ,Z ),ar(P,Q,Z ),Y 6= Q,an(X ,Y ,N),an(P,Q,N).

(c - column, r - row, num - number, an - answer, ar - area)
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Answer Set Programming

Answer Set Planning: Block World Domain
Fluents

on(X ,Y ): block X is on block Y
onTable(X ): block X is on the table
clear(X ): block X is clear
holding(X ): the agent holds the
block X
. . .

Actions
un/stack(X ,Y ): un/stack block X is
on block Y
pickup/putdown(X ): pickup or put
block X is from/on the table
. . .

c
b a
Start

c
b
a

Goal
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Answer Set Programming

Answer Set Planning: Block World Domain
Action Preconditions and Effects:

stack(X ,Y )
I Precondition:

F both blocks are clear
F the agent holds the block X

I Effects:
F X is on Y
F Y is no longer clear

pickup(X )
I Precondition:

F X is clear
F X is on the table

I Effects:
F the agent holds the blockX
F X is no longer on the table

. . .

c
b a
Start

c
b
a

Goal
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Answer Set Programming

Answer Set Planning: Block World Domain (Encoding)

% Defining the time constants and objects
time(0..length).
block(a). block(b). block(c). c

b a
Start

c
b
a

Goal
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Answer Set Planning: Block World Domain

time(0..length).
block(a). block(b). block(c).
% Defining fluents
fluent(on(X,Y)):- block(X), block(Y),X!=Y.
fluent(onTable(X)):- block(X).
fluent(clear(X)):- block(X).
...

c
b a
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Answer Set Planning: Block World Domain

time(0..length).
block(a). block(b). block(c).
fluent(on(X,Y)):- block(X), block(Y),X!=Y.
fluent(onTable(X)):- block(X).
fluent(clear(X)):- block(X).
...
% Defining actions
action(stack(X,Y)):- block(X), block(Y), X!=Y.
action(putdown(X)):- block(X).
...

c
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Answer Set Planning: Block World Domain

time(0..length).
block(a). block(b). block(c).
fluent(on(X,Y)):- block(X), block(Y),X!=Y.
fluent(onTable(X)):- block(X).
fluent(clear(X)):- block(X).
...
action(stack(X,Y)):- block(X), block(Y), X!=Y.
action(putdown(X)):- block(X).
...
% Action effects & precondition
:- not holds(clear(X), T), occ(pickup(X), T).
holds(-onTable(X), T+1):- occ(pickup(X), T).
holds(holding(X), T+1):- occ(pickup(X), T).

c
b a
Start

c
b
a
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Answer Set Programming

Answer Set Planning: Block World Domain
time(0..length).
block(a). block(b). block(c).
fluent(on(X,Y)):- block(X), block(Y),X!=Y.
fluent(onTable(X)):- block(X).
fluent(clear(X)):- block(X).
...
action(stack(X,Y)):- block(X), block(Y), X!=Y.
action(putdown(X)):- block(X).
...
:- not holds(clear(X), T), occ(pickup(X), T).
holds(-onTable(X), T+1):- occ(pickup(X), T).
holds(holding(X), T+1):- occ(pickup(X), T).
% Planning
holds(on(c,b), 0). holds(onTable(b), 0). ...
1 {occ(A,T) : action(A) } 1 :- time(T).
goal(T) :- holds(on(a,b), T), holds(on(b,c), T),
holds(onTable(c), T).
:- not goal(length).

c
b a
Start

c
b
a

Goal
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Motivation

Outline

1 Answer Set Programming

2 Motivation

3 Challenges and Preliminary Work
NLP to Goal Description
Planning with Goal Description
What To Do When Planner Fails?
Generation of NLP Communication

4 Conclusions and Future Work
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Motivation

Human-Robot Interaction

Human Robot
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Integration of ASP with external solvers: Current
Directions

I Reactive ASP: for stream/reactive reasoning (e.g., elevator
controller)

I Multi-shot ASP: connection with Python (e.g., user interface,
game)

I Integration with external solver
I database (or ontology) solver for Semantic Web applications
I constraint solver for dealing with real number

I Integration with natural language processor to acquire
knowledge, represent it as an ASP program, and reason about
it. See presentation on ASP and HRI.



Multi-Agent Systems

I See agent based modeling slides

I Platform for agent based modeling
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