

CODE:______________________________

Operating Systems

Ph.D. Qualifying Exam

Spring 2022

1. PAGING

Write a method(s) to implement Last In First Out (LIFO) page

replacement algorithm using your favorite programming language with

the assumption that the LIFO can hold up to 100 entries. You may use

any language provided data structures. The add method assigns a

frame/process/page element to the LIFO. When the LIFO is full, the

algorithm should update the LIFO appropriately and execute an

“evict(process, page, frame)” for the page being evicted. You can

assume frames are initially assigned incrementally with a counter.

When you evict an entry, you can reuse the frame number from the entry

that you are removing. Evict() is an OS primitive and you do not need

to implement this function, you only need to implement add(). Each

entry on your LIFO can be a record (or object) of the form:

struct LIFO_element {int process, page, frame; struct

LIFO_element * next);

add(int process, int page); // takes parameters and adds to LIFO;

evicts eligible candidate if full

Is the LIFO page replacement algorithm and effective page replacement

algorithm? Support your response.

2. Memory Management

An operating system is running on a machine with 4GB of physical

memory. The virtual memory is implemented as a pure paging scheme.

Assume that each page table entry takes one byte

What is the size of a single level page table if the the virtual

address space is 64-bits, page size is 8K?

 What will be the size of an inverted page table for this system?

3. Mutual Exclusion

Many processes in an operating system use a shared counting variable

(often called a one-up number). Assume there is a single common,

shared variable called COUNT. Write a method Get_count() returns

the current value of COUNT and increments COUNT atomically. You

are to use OS provided libraries and tools that allow you to guarantee

that COUNT is always updated correctly and avoids race conditions.

4. OS Performance

Consider a demand-paging system in which processes are

performing sequential data accesses with the following time-

measured utilizations:

 CPU utilization 20%

 Paging disk 98%

 Other I/O devices 10%

 For each of the following, indicate yes or no and provide a short

supporting sentence on whether the proposed change is likely to improve

CPU utilization:

 a. Install a faster CPU

 b. Install a bigger paging disk.

 c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

e. Install more main memory.

f. Install a faster hard disk.

g. Install multiple controllers with multiple hard disks and

stripe the data across the disks.

 h. Add prepaging to the page-fetch algorithms.

 i. Increase the page size.

 j. Increase the I/O bus speed.

5. Deadlock Avoidance

What is Deadlock Avoidance? Give an example algorithm that

implements deadlock avoidance. What are the requirements for

deadlock avoidance?

What is Deadlock Prevention? How is Deadlock prevention

implemented? How effective is deadlock prevention?

6. Concurrency

main() {

 int a = 0;

 int rc = fork();

 a++;

 if (rc == 0) {

 rc = fork();

 a++;

 } else {

 a++;

 }

 printf(“Hello!\n”);

 printf(“a is %d\n”, a);

 } // or main

7. Scheduling

Suppose there are four processes (P1 - P4) with respective arrival

times of 0, 10, 20, and 40, priorities 1, 2, 3, and 4(highest) , and

job times of 30, 20, 50, and 20 ms. These processes are scheduled

from a single run queue to run on a dual-processor machine.

Assume the context switch has no overhead.

What is the average turnaround time for scheduling the four

processes using the following preemptive schedulers: priority (

highest-priority-first), round-robin, and shortest time remaining

first? For round-robin, assume a 20 ms time quantum.

