May 2022 Discrete Mathematics Qualifying Exam

Closed book, closed notes, no calculators.

1) Induction. (22 pts) Prove using mathematical induction that

$$
\sum_{i=2}^{n}(4 i-3)=(2 n+1)(n-1) \text { for all integers } n \geq 2
$$

Note: You have to use mathematical induction; if you prove the statement using any other method, it will not count.
2) Logic.
(a) (10 pts) Let A, B, C be the following statements:

A: Today is Tuesday
B: Mary is at work
C: Today is a holiday
Translate the following English statements into propositional logic:
i. Mary is at work only if today is Tuesday and not a holiday.
ii. Mary not being at work is a necessary condition for today being a holiday.
(b) (9 pts) Determine whether the following logical expressions are logically equivalent or not: $(p \rightarrow q) \wedge(r \rightarrow q)$ and $(p \wedge r) \rightarrow q$. Justify your answer.
3) Sets. Recall that $X \in Y$ means that X is an element of set Y (X can be an object or a set). $X \subseteq Y$ means that set X is a subset of set $\mathrm{Y} . \mathrm{X} \subset \mathrm{Y}$ means that set X is a proper subset of set $\mathrm{Y} . \varnothing$ denotes an empty set (a set with no elements). Which of the following statements are true for all sets A, B, and C ?
(a) $(3 \mathrm{pts}) \varnothing \in \mathrm{A}$.
(b) (3 pts) If $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{C}$, then $\mathrm{A} \subset \mathrm{C}$.
(c) $(3 \mathrm{pts})$ If $\mathrm{A} \neq \mathrm{B}$ and $\mathrm{B} \neq \mathrm{C}$, then $\mathrm{A} \neq \mathrm{C}$.
(d) (3 pts) If $A \in B$ and B is not a subset of C, then $A \notin C$.
(e) $(3 \mathrm{pts})(\mathrm{A}-\mathrm{B}) \cap(\mathrm{B}-\mathrm{A})=\varnothing$.
(f) $(3 \mathrm{pts}) \mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$.
(g) (3 pts) $\varnothing \times \mathrm{A}=\varnothing$.
4) Functions.
(a) Let $\mathrm{S}=\{2,3,5,7\}$ and $\mathrm{T}=\{4,6,8\}$.
i. (6 points) Give an example of a function from S to T that is onto.
ii. (6 points) How many different functions from S to T are there?
iii. (6 points) How many 1-to-1 functions from S to T are there?
(b) (6 points) Modular arithmetic. Give an integer value for the following expression. You should not need a calculator.

$$
\left(431^{12}+19\right) \bmod 10
$$

5) Proofs. (14 pts) Give a proof by contradiction of the following statement:

Among any group of 25 people, at least three of the chosen people have the same birth month.

