
May 2021.  Algorithms.  Qualifying exam with solutions.  

Closed books, closed notes. 

1. (10 pts) Suppose that we have numbers between 1 and 100 in a binary search tree and want to search for the 

number 45. Which (possibly multiple) of the following sequences could be the sequence of nodes examined? 

(a) 5, 2, 1, 10, 39, 34, 77, 63. 

(b) 8, 7, 6, 5, 4, 3, 2, 1.  

(c) 9, 8, 63, 0, 4, 3, 2, 1. 

(d) 50, 25, 26, 27, 40, 44, 42. 

(e) 32, 48, 40, 44, 42, 43. 

 

Solution: For any number in the sequence, all numbers after it must be either all greater than the number or all 

less than or equal to the number. Possible sequences are (b), (d), (e). Sequences (a) and (c) can not be sequences 

of nodes examined. 

 

2. (15 pts) Consider a binary heap (min-heap) with n nodes. Give an efficient algorithm that would find (print) all 

nodes in the heap that have keys less than a given number X. Analyze the running time of your algorithm. 

Solution: It can be done recursively in the following manner. Start from the root of the heap. If the value of the 

root is smaller than X then print this value and call the procedure recursively once for its left child and once for its 

right child . If the value of a node is bigger or equal than X then the procedure stops without printing that value. 

The complexity of this algorithm is O(n), where n is the total number of nodes in the heap. This bound takes place 

in the worst case, where the value of every node in the heap will be smaller than X, so the procedure has to call 

each node of the heap. 

3. Recall that a contiguous subsequence of a sequence S is a subsequence made up of consecutive elements of S. 

E.g., if S is {5, 15, -30, 10, -5, 40, 10} then 15, -30, 10 is a contiguous subsequence. 

Consider the following problem: 

You are given as input a sequence L of n numbers, where each number is at most 100. You task is to partition it 

into as few contiguous subsequences as possible such that the sum of numbers within each contiguous 

subsequence is at most 100.  

For example, for the input L=[80, -40, 30, 60, 20, 30], the optimal partition has two contiguous subsequences: [80] 

and [-40, 30, 60, 20, 30]. Indeed, each of the numbers from [80, -40, 30, 60, 20, 30] is in exactly one of the two 

contiguous subsequences, and the sum of numbers in each of the two subsequences is less than or equal to 100. 

Notice, that the optimal partition in this example can not consist of only one subsequence because the sum of 

numbers in [80, -40, 30, 60, 20, 30] is greater than 100. 

Subproblems are defined as follows: Let C[i] denote the number of contiguous subsequences in the optimal 

solution of the sequence consisting of the first i numbers of the input sequence L.  

For instance, for the above example, C[3] = 1 (the first 3 numbers in L are 80, -40, 30, and they need only one 

contiguous subsequence ([80, -40, 30]) and C[6] = 2 as shown earlier. 

 

(a) (8 pts) Let L be a sequence of n numbers. Suppose that the last subsequence in the optimal solution for all of L 

has k terms. For example, in the input L=[80, -40, 30, 60, 20, 30] from the earlier example, k = 5 (the optimal 



solution for L has five numbers in the last subsequence). Write a formula showing how to compute C[n] from k and 

from earlier values of C. 

(b) (12 pts) Write a recursive solution to subproblems, that is, express C[i] in terms of smaller subproblems. 

 

Solution: 

(a) C[n] = C[n-k] + 1 

(b) C[i] = min
1≤𝑘≤𝑖−1

(𝐶[𝑖 − 𝑘] + 1) if i>1 

C[i] = 1 if i=1. 

 

 

4. Suppose you are choosing between the following three algorithms: 

 Algorithm A solves problems of size n by recursively solving one subproblem of size n-1 and then obtaining the 
solution to the original problem in linear time. 

 Algorithm B solves problems of size n by recursively solving 16 subproblems of size n/4 and then combining the 
solutions in quadratic time. 

 Algorithm C solves problems by dividing them into 10 subproblems of size n/3, recursively solving each 
subproblem, and then combining the solutions in quadratic time. 

a) (24 pts; 8pts per each algorithm) Compute the running time of each of these algorithms (in big-O notation). Show 
your work.  
b) (5 pts) Which algorithm would you choose? Explain your answer. 

 
Solution: 

a) Algorithm A. Recurrence for the running time:  𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑐𝑛. Solving it using recursion tree method. 

             level argument of T 

cn  0      n 

 | 

        c(n-1)  1      n-1 

             | 

        c(n-2)  2      n-2 

 . 

 . 

         c(n-i)  i      n-i 

 . 

 . 

          T(1)  k      n-k 

                                                                                                                       

Since on the last level k the argument of T is equal to 1 (T(1)), therefore, 𝑛 − 𝑘 = 1 and 𝑘 = 𝑛 − 1. 

Total cost:  
𝑇(𝑛) = 𝑐𝑛 + 𝑐(𝑛 − 1) + 𝑐(𝑛 − 2) + ⋯+ 𝑐(𝑛 − 𝑘 + 1) + 𝑇(1)

= 𝑇(1) + 𝑐(𝑛 − 𝑘 + 1) +⋯+ 𝑐(𝑛 − 2) + 𝑐(𝑛 − 1) + 𝑐𝑛

= 𝑇(1) + 𝑐(2 + 3 + ⋯+ (𝑛 − 1) + 𝑛)

= 𝑇(1) + 𝑐
(𝑛 + 2)(𝑛 − 1)

2
= 𝑂(𝑛2)

 

 



Algorithm B. Recurrence for the running time:  𝑇(𝑛) = 16𝑇(𝑛/4) + 𝑐𝑛2. Solving it using the Master theorem. 

Since log4(16) = 2  , the Master Theorem gives us    𝑇(𝑛) = 𝑂(𝑛2 log 𝑛). 
 

Algorithm C: Recurrence for the running time:  𝑇(𝑛) = 10𝑇(𝑛/3) + 𝑐𝑛2. Solving it using the Master theorem. 

Since log3(10) > 2  , the Master Theorem gives us    𝑇(𝑛) = 𝑂(𝑛log3 10). 
 
b) We want to pick the one with the best asymptotic running time, A. 

 
 

5. Figure 1 below shows a directed graph. Figure 2 shows the same graph but without directions on edges. 

                                                 Figure 1                  Figure 2 

                                                                    
a) (10 points) Run Dijkstra’s algorithm on the graph of Figure 1 starting at vertex A. If there are any ties, the vertex 

which is alphabetically first comes first. List the vertices in the order in which they are deleted from the priority 
queue and for each write the shortest distance from A to the vertex. 

b) (8 points) Run Kruskal's algorithm on the graph in Figure 2, in case of ties add the edge which is 
lexicographically first. (Assume that equal weight edges are ordered lexicographically by the labels of their 
vertices assuming that the lower labeled vertex always comes first when specifying an edge, e.g. (C, E) is before 
(C, F) which in turn is before (D, G)). List the edges in the order in which they are added to the developing MST 
(minimum spanning tree). 

c) (8 points) Run Prim's algorithm on the graph in Figure 2; whenever there is a choice of vertices, always use 
alphabetic ordering (e.g., start from node A). List the edges in the order in which they are added to the 
developing MST. 

 
 

Solution: 

         a) A-0, D-3, B-4, G-4, C-6, E-6, F-7 
         b) (C,E) (C,F) (D,G) (B,C) (A,D) (E,G)  
         c) (A,D) (D,G) (E,G) (C,E) (C,F) (B,C) 


