
Algorithm Qual Exam (Spring 2016)
Closed book exam

Question 1 (15%)

In Java, it is known that the concatenation of Java’s String objects is ineffi-
cient, while concatenation of Java’s StringBuilder objects is more efficient.

Suppose for an application, we are only limited to concatenatation of a string
with a letter; that is, no concatenation of two general strings. We want to cre-
ate our own string class, called myString, to support efficient implementation
of this concatenation operation.

Specifically, you need to support the following:

• public myString( myString s, char c )

a constructor that returns the concatenation of string s and character c.

• public String toString()

an instance method that returns a Java’s String object with the same
string content.

It is required that the constructor takes O(1) time, while toString takes time
linear in the length of the string.

Give the Java codes for myString class.

If you are not familiar with Java, you may give the codes in C/C++/Python.

(Note: You will not be penalized for syntax errors. Just pay attention to the
logic behind the design. You can also introduce helper methods that support
your implememtation.)

Answer:

public class myString {

private char c;

private myString next;

public myString(myString s, char ch) {

c = ch;

next = s;

}

public String toString() {

if (next == null) return "" + c;

return next.toString() + c;

}

}



Question 2

Given a sequence X = [x1, x2, . . . , xm], another sequence Y = [y1, y2, . . . , yn] is
a subsequence of X if there exists a strictly increasing sequence [i1, i2, . . . , ik]
of indices of X such that for all j = 1, 2, . . . , k, we have xij = yj .

In the longest common subsequence problem, given two sequences X =
[x1, x2, . . . , xm] and Y = [y1, y2, . . . , yn], we want to return a maximum-length
common subsequence of X and Y .

(a) (15%) Design a dynamic programming solution that runs in O(mn) time
and space. Note: you are required to return the longest common subsequence,
not just the length of the longest common subsequence.

Answer:

(b[i, j], c[i, j]) =


(—, 0) if i = 0 or j = 0
(↖, c[i− 1, j − 1] + 1) if i, j > 0 and xi = yj
(↑ , c[i− 1, j]) if c[i− 1, j] ≥ c[i, j − 1]
(←, c[i, j − 1]) otherwise

From b[m,n], we can retrace the b table to reconstruct the longest common subsequence.

(b) (10%) Suppose we are only required to compute the length of the longest
common subsequence. Improve your solution to run in space O(min(m,n))
and time O(mn).

Answer:

If the c table is computed in a row-major order, we only need to keep track of the last row

of c entries. Thus, space usage is O(m). Similarly, computing in a column-major order uses

O(n) space. By choosing the more favorable method, space used can be O(min(m,n)).

(c) (15%) Now we want to incorporate into the solution for part (b) the return
of the longest common subsequence. Explain how it can be done in space
O(k ·min(m,n)) and time O(mn), where k is the length of the longest common
subsequence. Hint: make use of myString class (Question 1) with adaptation.

Answer:

We modify the b[i, j] entries to hold the longest common subsequence of X[1..i] and Y [1..j].

b[i, j] =

{
myString(b[i− 1, j − 1], xi) if i, j > 0 and xi = yj
b[i− 1, j] if c[i− 1, j] ≥ c[i, j − 1]
b[i, j − 1] otherwise

Each b[i, j] entry is a string of length O(k). As in the solution for part (b), we only need to

keep track of the last row or column of b array. By also incoporating garbage collection using

reference counters for reclaiming unused myString objects, the space used is O(k ·min(m,n)).

The overhead time for garbage collection is linear in the number of times the constructors

for myString is invoked, which is O(mn).



Question 3.

Consider a divide-and-conquer algorithm for matrix computations. An ex-
ample is Strassen’s method for matrix multiplication. We assume that the
submatrices passed in recursive calls are the four quadrants of an n × n ma-
trix, where n is a power of 2.

Consider the following 8 × 8 matrix A:

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64


In memory, the matrix entries are organized in row-major order as in: 1 2
3 4 5 6 7 8 9 10 11 . . . 64. That is, the entries of each quadrant of the
matrix are not located in physically contiguous locations in memory. When
passing a submatrix in recursive call, we cannot simply pass (by reference)
the starting memory location of the submatrix. Instead, we need to pass
by copying. Repeatedly passing submatrices in recursive calls by copying
may not be efficient. One idea is to reorder the way the matrix entries are
organized in memory so that entries that belong to the same quadrant are
located together physically. The reordering is done by a recursive algorithm.
To reorder the above 8 × 8 matrix A, we reorder submatrix A11, followed by
the reorder of A12, then the reorder of A21, and finally the reorder of A22,

where A11 =

[
1 2 3 4
9 10 11 12

17 18 19 20
25 26 27 28

]
, A12 =

[
5 6 7 8

13 14 15 16
21 22 23 24
29 30 31 32

]
, A21 =

[
33 34 35 36
41 42 43 44
49 50 51 52
57 58 59 60

]
,

and A22 =

[
37 38 39 40
45 46 47 48
53 54 55 56
61 62 63 64

]
.

Recursively applying the reordering logic, matrix A is represented in memory
as follows:

1 2 9 10 3 4 11 12 17 18 25 26 19 20 27 28 5 6 13 14 7 8 15 16 21 22 29 30 23
24 31 32 33 34 41 42 35 36 43 44 49 50 57 58 51 52 59 60 37 38 45 46 39 40 47
48 53 54 61 62 55 56 63 64.



(a) (15%) Give Java/C/C++/Python codes that implement the reorder logic.

Answer:

reorderHelper(int a[][], int i, int j, int d, int b[], int k) {

if (d==1) {b[k] = a[i][j]; return;}

reorderHelper(a, i, j, d/2, b, k );

reorderHelper(a, i, j+d/2, d/2, b, k+ d*d/4);

reorderHelper(a, i+d/2,j, d/2, b, k+ d*d/2);

reorderHelper(a, i+d/2,j+d/2, d/2, b, k+3*d*d/4);

}

reorder( int a[][], int b[] ) { // a is of dimension n x n, b is an array of length n*n

reorderHelper( a, 0, 0, n, b, 0 );

}

(b) (10%) Analyze the running time of the reorder algorithm in Θ notation in
terms of n.

Answer:

T (n) = 4T (n/2) + Θ(1)

T (n) = Θ(nlogb a) = Θ(nlog2 4) = Θ(n2) by master theorem as logb a = log2 4 = 2 > 0 = d.

(c) (10%) Assuming that your logic for part (a) is recursive, analyze (i) the
depth of recursions, and (ii) the total number of recursive calls in terms of
n that are needed for reordering the entries of an n × n matrix. Note: your
answer should not be in Θ or O notation as we want to understand more
accurately the efficiency of the conversion algorithm.

Answer:

(i) The depth of recursion is lgn where n is the matrix dimension.

(ii) Total number of function calls is 1 + 4 + 42 + ... + 4lgn = 41+lg n−1
4−1

≈ 41+lg n

3
= 4

3
n2.

(d) (10%) Give Java/C/C++/Python codes that convert a matrix with re-
ordered entries back to a matrix with entries in the usual order.

Answer:

reorderRevHelper(int a[][], int i, int j, int d, int b[], int k) {

if (d==1) {a[i][j] = b[k]; return;}

reorderRevHelper(a, i, j, d/2, b, k );

reorderRevHelper(a, i, j+d/2, d/2, b, k+ d*d/4);

reorderRevHelper(a, i+d/2,j, d/2, b, k+ d*d/2);

reorderRevHelper(a, i+d/2,j+d/2, d/2, b, k+3*d*d/4);

}

reorderRev( int a[][], int b[] ) { // a is of dimension n x n, b is an array of length n*n

reorderRevHelper( a, 0, 0, n, b, 0 );

}


