
Automata Qual Exam (Spring 2014)
Answer ALL questions (Closed Book Exam)

1. (15 points)

We define that a language L is co-Turing-recognizable if and only if the
complement of L is Turing-recognizable. Note that a Turing-recognizable
language is also called a recursively enumerable language.

Show that the equivalence problem of context-free grammars EQCFG = {
<G,H> | G and H are CFGs and L(G) = L(H)} is co-Turing-recognizable.

Hint: You can make use of the result (without proof) that the CFG mem-
bership problem {<G, x> | G is a CFG and x ∈ L(G)} is decidable.

Note: <G,H> denotes the encoding of the grammars G and H, and <G, x>
denotes the encoding of the grammar G and the input x.

Answer: To recognize the complement of EQCFG, we design a Turing machine to enu-

merate all strings lexicographically; and, for each string x enumerated, if x ∈ L(G) and

x 6∈ L(H), or x 6∈ L(G) and x ∈ L(H), then accept.

2. (20 points)

Let L be an infinite Turing-recognizable (recursively enumerable) language.
Let M be a Turing machine that accepts L. Explain how one can modify
M to return one string in L. Note that it does not matter which string in
L is returned. It is required that the Turing machine constructed must halt
and return a string in L. That is, you cannot construct a Turing machine
that may run forever without returning a string.

Answer: Let the strings over Σ∗ be ordered lexicographically, and are named w1, w2, . . .

respectively. We run M in a time sharing way on w1 for one step, on w2 for one step,

on w1 (resume) for one step, on w2 (resume) for one step, on w3 for one step, on w1

(resume) for one step, on w2 (resume) for one step, on w3 (resume) for one step, on w4

for one step,... etc. When some string is accepted by M , then we return that string.

3.

Let L = {baba2ba3 . . . ban−1banb | n ≥ 1} ⊆ Σ∗ where Σ = {a, b}.



(a) (15 points) Show that L is not context-free using the pumping method.

Answer (Sketch): Let p be the pumping constant. Then consider baba2ba3 . . . bap−1bapb.

For all different ways of breaking the string into u, v, w, x, y, we pump the string down

which results in a string not in L.

(b) (20 points) Show that Σ∗−L (i.e., the complement of L) is context-free.

Answer: We design a nondeterministic PDA to accept strings in Σ∗ − L. The PDA

checks, using the finite state control, that the string begins with bab and ends with b. If

not, PDA accepts. Also, the PDA nondeterministically guesses a substring baibajb to check

if j = i+ 1 by first pushing i copies of a into the stack, which later are matched against j

copies of a that are read next. If it is found that j 6= i+ 1, then PDA also accepts.

4.

Given a string w, we define its reversal wR inductively as follows: εR = ε
and (xa)R = a(xR), where a ∈ Σ and x ∈ Σ∗.

For a language L, we write LR = {wR | w ∈ L}.

(a) (10 points) Show how to define formally, for each NFA M =
(Q,Σ, δ, q0, F ), an NFA M ′ such that L(M ′) = L(M)R. Note that we do not
allow an NFA to have ε transitions. But an NFA is allowed to have multiple
starting states.

Answer: M ′ = (Q,Σ, δ′, F, {q0}) such that (p, a, q) ∈ δ′ iff (q, a, p) ∈ δ.

(b) (20 points) Explain how to prove formally that your construction of M ′

is correct. Note: you do not have to provide a detailed formal proof; but
a careful explanation of how the formal proof is organized, and on what
principles that proof is based is expected.

Answer: Recall that δ ⊆ Q × Σ × Q. We define δ∗ ⊆ Q × Σ∗ × Q inductively such

that (p, a, q) ∈ δ∗ if (p, a, q) ∈ δ, and (p, xy, q) ∈ δ∗ if (p, x, q′) ∈ δ∗ and (q′, y, q) ∈ δ∗.
Similarly, we define δ′∗ given δ′. Using induction on the the structures of δ∗ and δ′∗, we

show that for every string x, (p, w, q) ∈ δ∗ iff (q, wR, p) ∈ δ′∗. To show that L(M ′) =

L(M)R, we verify that for all w, w ∈ L(M ′) iff ∃q ∈ F , (q, w, q0) ∈ δ′∗ iff ∃q ∈ F ,

(q0, w
R, q) ∈ δ∗ iff wR ∈ L(M) iff w ∈ L(M)R.


