Automata Qual Exam (Spring 2014)

Answer ALL questions (Closed Book Exam)

1. (15 points)

We define that a language L is co-Turing-recognizable if and only if the complement of L is Turing-recognizable. Note that a Turing-recognizable language is also called a recursively enumerable language.

Show that the equivalence problem of context-free grammars $EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$ is co-Turing-recognizable.

Hint: You can make use of the result (without proof) that the CFG membership problem $\{\langle G, x \rangle \mid G \text{ is a CFG and } x \in L(G)\}$ is decidable.

Note: $\langle G, H \rangle$ denotes the encoding of the grammars G and H, and $\langle G, x \rangle$ denotes the encoding of the grammar G and the input x.

Answer: To recognize the complement of EQ_{CFG} , we design a Turing machine to enumerate all strings lexicographically; and, for each string x enumerated, if $x \in L(G)$ and $x \notin L(H)$, or $x \notin L(G)$ and $x \in L(H)$, then accept.

2. (20 points)

Let L be an infinite Turing-recognizable (recursively enumerable) language. Let M be a Turing machine that accepts L. Explain how one can modify M to return one string in L. Note that it does not matter which string in L is returned. It is required that the Turing machine constructed must halt and return a string in L. That is, you cannot construct a Turing machine that may run forever without returning a string.

Answer: Let the strings over Σ^* be ordered lexicographically, and are named w_1, w_2, \ldots respectively. We run M in a time sharing way on w_1 for one step, on w_2 for one step, on w_1 (resume) for one step, on w_2 (resume) for one step, on w_3 for one step, on w_1 (resume) for one step, on w_2 (resume) for one step, on w_3 (resume) for one step, on w_4 for one step,... etc. When some string is accepted by M, then we return that string.

3.

Let $L = \{baba^2ba^3 \dots ba^{n-1}ba^nb \mid n \ge 1\} \subseteq \Sigma^*$ where $\Sigma = \{a, b\}$.

(a) (15 points) Show that L is not context-free using the pumping method.

Answer (Sketch): Let p be the pumping constant. Then consider $baba^2ba^3...ba^{p-1}ba^pb$. For all different ways of breaking the string into u, v, w, x, y, we pump the string down which results in a string not in L.

(b) (20 points) Show that $\Sigma^* - L$ (i.e., the complement of L) is context-free.

Answer: We design a nondeterministic PDA to accept strings in $\Sigma^* - L$. The PDA checks, using the finite state control, that the string begins with bab and ends with b. If not, PDA accepts. Also, the PDA nondeterministically guesses a substring baⁱba^jb to check if j = i + 1 by first pushing i copies of a into the stack, which later are matched against j copies of a that are read next. If it is found that $j \neq i + 1$, then PDA also accepts.

4.

Given a string w, we define its reversal w^R inductively as follows: $\epsilon^R = \epsilon$ and $(xa)^R = a(x^R)$, where $a \in \Sigma$ and $x \in \Sigma^*$.

For a language L, we write $L^R = \{ w^R \mid w \in L \}.$

(a) (10 points) Show how to define *formally*, for each NFA $M = (Q, \Sigma, \delta, q_0, F)$, an NFA M' such that $L(M') = L(M)^R$. Note that we do not allow an NFA to have ϵ transitions. But an NFA is allowed to have multiple starting states.

Answer: $M' = (Q, \Sigma, \delta', F, \{q_0\})$ such that $(p, a, q) \in \delta'$ iff $(q, a, p) \in \delta$.

(b) (20 points) Explain how to prove formally that your construction of M' is correct. Note: you do not have to provide a detailed formal proof; but a careful explanation of how the formal proof is organized, and on what principles that proof is based is expected.

Answer: Recall that $\delta \subseteq Q \times \Sigma \times Q$. We define $\delta^* \subseteq Q \times \Sigma^* \times Q$ inductively such that $(p, a, q) \in \delta^*$ if $(p, a, q) \in \delta$, and $(p, xy, q) \in \delta^*$ if $(p, x, q') \in \delta^*$ and $(q', y, q) \in \delta^*$. Similarly, we define δ'^* given δ' . Using induction on the the structures of δ^* and δ'^* , we show that for every string x, $(p, w, q) \in \delta^*$ iff $(q, w^R, p) \in \delta'^*$. To show that $L(M') = L(M)^R$, we verify that for all w, $w \in L(M')$ iff $\exists q \in F$, $(q, w, q_0) \in \delta'^*$ iff $\exists q \in F$, $(q_0, w^R, q) \in \delta^*$ iff $w^R \in L(M)$ iff $w \in L(M)^R$.