
Department of Computer Science Spring  New Mexico State University

Ph.D. alifying Exam: Analysis of Algorithms
is is a closed book exam. e total score is  points. Please answer all questions.

. We write LCS(α , β) to denote the longest common subsequence of α and β , and lcs(α , β) to denote the
length of LCS(α , β).

(a)( points) Suppose there is a function M(x ,y) that takes two sequences x and y of lengthsm and n > 1
respectively, and in time Θ(mn) and space Θ(m + n) returns an integer i such that

lcs(x [1..m],y[1..n]) = lcs(x [1..i],y[1..⌊n/2⌋]) + lcs(x [i + 1..m],y[⌊n/2⌋ + 1..n]).

Give an efficient algorithm for computing LCS(x ,y) in space o(mn) and time O(mn), using func-
tion M(). Analyze the space usage and running time of your algorithm.

Solution:

printLCS(x[1..m], y[1..n]) {
if (n==1)

if (m>=1) && (y[1] exists in x[1..m])) print y[1]
else

i = MID(x[1..m], y[1..n])
printLCS(x[1..i], y[1..n/2])
printLCS(x[i+1..m], y[(n/2)+1..n])

}

Time analysis: T (m,n) = T (i ,n/2) +T (m − i ,n/2) + Θ(mn). We denote Θ(mn) by cmn for
some constant c > 0. We hypothesize that T (m,n) = 2cmn. By the induction hypothesis,
T (m,n) = 2ci(n/2)+ 2c(m − i)(n/2)+ cmn = cmn+ cmn = 2cmn. us,T (m,n) = Θ(mn).

Space analysis: S(m,n) = max(S(i ,n/2), S(m−i ,n/2),Θ(m)). We hypothesize that S(m,n) =
Θ(m+ n). By the induction hypothesis, S(m,n) = max(Θ(i + n/2),Θ(m − i + n/2),Θ(m+
n)) = Θ(m + n) = o(mn).

(b)( points) e function M(x ,y) can be implemented as

argmax
1≤i≤m

lcs(x [1..i],y[1..⌊n/2⌋]) + lcs(x [i + 1..m],y[⌊n/2⌋ + 1..n])

and computed in time and space O(m) provided that

lcs(x [1..i],y[1..⌊n/2⌋])

and
lcs(x [i ..m],y[⌊n/2⌋ + 1..n])

have been computed for all i ∈ [1,m].

Show how to compute lcs(x [1..i],y[1..⌊n/2⌋]) for all i ∈ [1,m] in timeO(mn) and spaceO(m+n).

Solution: We first compute the quantities in time O(mn) by dynamic programming. Define
a table t where t [i , j] denotes lcs(x [1..i],y[1..j]), and t [i , j] = 0 if i = 0 or j = 0, t [i − 1, j −
1] + 1 if x [i] = y[j], and max(t [i − 1, j], t [i , j − 1]) otherwise. e ⌊n/2⌋-th column gives
{lcs(x [1..i],y[1..⌊n/2⌋]) | 1 ≤ i ≤ m}. However, table t takes O(mn) space.

Nowwe compute the same quantities in reduced spaceO(m+n). We achieve this by allocating
space for only two columns in table t . As computing column j depends only on column (j−1),
we can reduce the space usage by maintaining only the last column when computing values
for the current column. Since each column hasm entries and sequence y[1..⌊n/2⌋] has ⌊n/2⌋
elements, the space used is O(m + n).

(c)( points) Show how to compute lcs(x [i ..m],y[⌊n/2⌋ + 1..n]) for all i ∈ [1,m] in time O(mn) and space
O(m+n). Hint: lcs(x ,y) = lcs(xR ,yR)where xR and yR are the reversals of x and y respectively.

Solution: By considering the reversal of x andy, the problem is similar to that for computing
lcs(x [1..i],y[1..⌊n/2⌋]) in (b), and can be solved in time O(mn) and space O(m + n).

Page 

. In a directed graph, a path is Eulerian if the path traverses each edge of the graph exactly once. In this
question, we call an Eulerian path an Euler path if the path begins and ends with different vertices. An
Euler path may visit a vertex multiple times and not be simple. An Euler path may not exist in a graph.
Figure  shows two directed graphs with and without Euler paths.

..



.



.



.



.



.



..



.



.



.



.



.



Figure : Examples. On the le graph, no Euler path exists; on the right graph, there are two Euler paths:
6→ 4→ 5→ 2→ 3→ 5→ 1→ 2 and 6→ 4→ 5→ 1→ 2→ 3→ 5→ 2
.

(a)( points) State and justify (carefully and mathematically) the necessary and sufficient conditions for the
existence of an Euler path in a directed graph based on in- and out-degrees of each node. We
assume that the graph has an underlying connected undirected graph.

Solution:

e necessary and sufficient conditions are:

. Exactly one node s satisfies outdeg(s)-indeg(s)=. (is will serve as the source node of
the Euler path).

. Exactly one node d satisfies indeg(d)-outdeg(d)=. (is will serve as the destination
node of the Euler path).

. All other nodes v with indeg(v)=outdeg(v). (ese will be the intermediate nodes on
the Euler path).

Justification:

Necessary: Euler path⇒ conditions

(By contradiction)

• Condition : A source node s must visit an outgoing edge as the first edge on the
Euler path.

If the source node had outdeg≤indeg, aer all out-going edges are used the path
must still arrive at the node to use the incoming edges but get stuck as no more
outgoing edges are available. is contradicts the definition of Euler path.

If the source node had outdeg>indeg+, at least one outgoing edge will never be
used aer the incoming edges are used up. is again contradicts the existence of
an Euler path.

erefore, the source node must have outdeg=indeg+.

Page 

• Condition : Symmetrically we can argue the destination node must have in-
deg=outdeg+

• Condition : For an intermediate node, wemust have indeg=outdeg. If indeg>outdeg,
the Euler path would get stuck at this node; if indeg < outdeg, some outgoing
edges would never be visited. Both contradict the existence of an Euler path.

Sufficient: conditions⇒ Euler path

(By constructing an Euler path)

A simple path must exist and lead from s to d . Mark edges on the simple path as visited.
Call this path P .

If some visited vertexv on P with unvisited outgoing edges exist, a simple cycleC must
exist starting from and ending at v using unvisited edges.

Joining all such simple cycles to the previous path P will give rise to an Euler path. is
path must have visited every edge exactly once.

(b)( points) Develop an efficient algorithm to compute an Euler path in a directed graph where such a path
exists. Give the asymptotic time complexity of your algorithm.

Solution:

FEP(G)

. Find the source node s (out-deg(s) - in-deg(s) = )

. Find a simple path from s to reach d by depth-first search.

. Mark vertices and edges on the simple path as visited.

. Call this path P .

. Repeat:

(a) Identify a node v on P with unvisited outgoing edges.

(b) If v does not exist, return P

(c) Find a simple cycle C starting from and ending at v . All edges on C must be
unvisited (not in P) before. Now mark vertices and edges on C as visited.

(d) Join the simple cycle C to the previous path P by

P = P(s { v)→ C → P(v { s)

where P(s { v) is the sub-path of P from s to v .

Runtime: O(|E |), where E is the collection of edges in the graph. e algorithm traverses each
edge exactly once if visited edges are removed from the graph immediately upon visit.

Page 

