Department of Computer Science

Spring 2013

Ph.D. Qualifying Exam: Analysis of Algorithms

This is a closed book exam. The total score is 100 points. Please answer all questions.

- We write LCS(α, β) to denote the longest common subsequence of α and β, and lcs(α, β) to denote the length of LCS(α, β).
- (20 points) (a) Suppose there is a function MID(x, y) that takes two sequences x and y of lengths m and n > 1 respectively, and in time $\Theta(mn)$ and space $\Theta(m+n)$ returns an integer i such that

 $lcs(x[1..m], y[1..n]) = lcs(x[1..i], y[1..\lfloor n/2 \rfloor]) + lcs(x[i+1..m], y[\lfloor n/2 \rfloor + 1..n]).$

Give an efficient algorithm for computing LCS(x, y) in space o(mn) and time O(mn), using function MID(). Analyze the space usage and running time of your algorithm.

(10 points) (b) The function MID(x, y) can be implemented as

$$\underset{1 \leq i \leq m}{\operatorname{argmax}} \quad lcs(x[1..i], y[1..\lfloor n/2 \rfloor]) \ + \ lcs(x[i+1..m], y[\lfloor n/2 \rfloor + 1..n])$$

and computed in time and space O(m) provided that

$$lcs(x[1..i], y[1..\lfloor n/2 \rfloor])$$

and

$$lcs(x[i..m], y[\lfloor n/2 \rfloor + 1..n])$$

have been computed for all $i \in [1, m]$.

Show how to compute $lcs(x[1..i], y[1..\lfloor n/2 \rfloor])$ for all $i \in [1, m]$ in time O(mn) and space O(m + n).

(10 points) (c) Show how to compute $lcs(x[i..m], y[\lfloor n/2 \rfloor + 1..n])$ for all $i \in [1, m]$ in time O(mn) and space O(m + n). Hint: $lcs(x, y) = lcs(x^R, y^R)$ where x^R and y^R are the reversals of x and y respectively.

2. In a directed graph, a path is *Eulerian* if the path traverses each edge of the graph exactly once. In this question, we call an Eulerian path an *Euler path* if the path begins and ends with different vertices. An Euler path may visit a vertex multiple times and not be simple. An Euler path may not exist in a graph. Figure 1 shows two directed graphs with and without Euler paths.

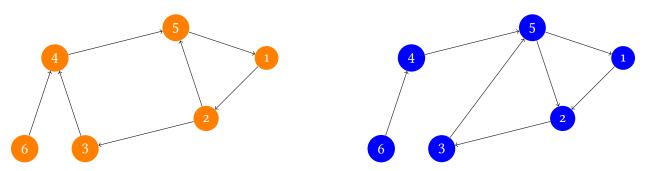


Figure 1: Examples. On the left graph, no Euler path exists; on the right graph, there are two Euler paths: $6 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 1 \rightarrow 2$ and $6 \rightarrow 4 \rightarrow 5 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 2$.

- (30 points)(a) State and justify (carefully and mathematically) the necessary and sufficient conditions for the existence of an Euler path in a directed graph based on in- and out-degrees of each node. We assume that the graph has an underlying connected undirected graph.
- (30 points)(b) Develop an efficient algorithm to compute an Euler path in a directed graph where such a path exists. Give the asymptotic time complexity of your algorithm.