Automata Qual Exam (Spring 2012)
Answer ALL questions (Closed Book Exam)

Question 1 (15 points)

(a) If Ly U Lo is regular, then L; is regular.

Answer: No. Let Ly = {a"b" | n > 0} and Ly = {a,b}*.
(b) If Ly - Lo is regular, then L, is regular.

Answer: No. Let Ly = {a"b" | n > 0} and Ly = {a,b}*.
(c) If L* is regular, then L is regular.

Answer: No. Let L = {a™b" | n > 0} U{a,b}.

Question 2

Consider the following context-free grammar G:

S — aaSb | aSbb | €

Note: L(G) C a*b*. Below are the possible i and j such that a’t/ € L(G):

5,8,11,14
4,7,10,13,16
6,9,12,15,18
5,8,11,14, 17,20
7,10,13,16, 19,22

© 00 g O U i W N~ O
N
ot
oo

—_ =
= o

—
w N

(a) (15 points)

It is given that L(G) = {a®*b/ (%) | 0 < k < n}U{a® 169k | 0 < k < n}.
What are f(n,k) and g(n, k)?

Answer: f(n,k) =n+ 3k and g(n, k) =n+ 3k + 2.

(b) (15 points) Prove that the characterization for L(G) given in part (a) is
correct using mathematical induction. Note: you can assume without proof
that L(G) C a*b*.

Answer:
Let L, = {a®"+3k o2 H1pnt3k+2 | 0 < k < n}. Claim: L(G) = Up>o L.

As it is assumed that L(G) C a*b*, and L,’s differ in the number of a’s, it
suffices to prove by induction on n that L(G) N (a®"b* U a®*1b*) = L,,.

Base case (n = 0)
From the grammar rules, it is clear that L(G) N (a%* Ua!b*) = {a"°, a'v?}.
On the other hand, Ly = {a%%, a'p3*+2 | 0 < k < 0} = {a"", a'b?}.

Induction hypothesis: (n = p)
It is assumed that L(G) N (a®b* U a?PT1b*) = L,,.

Induction step: (n=p+ 1)
(1) To show L(G) Na2®tDp* = {2@tDpe+tD43k | 0 < k < (p+1)}.
There are two cases in the derivation sequence for a string with 2(p+1) a’s.

Case (i) S — aaSb = aawb = a where w € a?P¥7.
Since S = w = a®V and by the induction hypothesis, j = p + 3k for
0 < k < p. Therefore, a = a?PT2pi 1 = 2D+ +3k for 0 < | < p.

Case (ii) S — aSbb = awbb = where w € a?P+1b.
Since S = w = a??T' and by the induction hypothesis, j = p + 3k + 2
for 0 < k < p. Therefore, § = a?T2p12 = 2+t t3k+2+2

a2 HDpptD+3k43 . — 20+ p(e+ D30+ for 0 < k < p. Equivalently,
B = a2PtpetD)+3k for 1 < k< p+ 1.

The two cases give rise to strings a2PtDpE+D+3E for 0 <k < p+ 1.
(2) To show L(G) N a2+ +1px — {a2(p+1)+1b(p+1)+3k:+2 |0<k<(p+1)}
There are two cases for deriving a string with 2(p+ 1) + 1 a’s.

Case (i) S — aaSb = aawb = a where w € a?? 117,
Since S = w = a?’*t11/ and by the induction hypothesis, j = p+3k+2 for
0 < k < p. Therefore, a = a2Pt3pit1 = 2D+ D+3k42 {6, 0 < | < p.

Case (ii) S — aSbb = awbb = B where w € a*>PTpJ.

Since S = w = a®>PTVUH and by the result of (1), j = (p + 1) + 3k for
0 <k < (p+1). Therefore, § = a?PtDH1pi+2 = 2+ D+H1pp+H)+3k42 fo
0<k<p+1.

The two cases give rise to strings a2@+DH1pE+D+3k+2 for 0 < | < p + 1.

(¢) (10 points) Give a context-free grammar G’ such that L(G') = {w | w €
L(G), |w| is even }.

Answer: S, — aaSeb | aaS.bbbb | €

(d) (10 points) Give a context-free grammar G” such that L(G") = {w | w €
L(G), |w]| is odd }.

Answer: S, — aS.bb

Question 3

(a) (20 points) Explain how a deterministic Turing machine can simulate a
nondeterministic Turing machine for recognizing the same language.

Answer: (see the textbook)

(b) (15 points) Suppose we modify the definition of nondeterministic Turing
machine so that a string is accepted if the string is accepted by every possible
computation path. (In contrast, a normal nondeterministic Turing machine
accepts a string w if there exists one accepting path that accepts w.) Explain
how a deterministic Turing machine can simulate a nondeterministic Turing
machine according to the modified definition.

Answer: Let w be the input to a nondeterministic Turing machine M. If M
accepts w, M will accept w in all possible computation paths. That is, there
is a time t such that all computation paths are completed successfully within
time ¢t. We want to simulate M by a deterministic machine M’. M’ will try
out each possible ¢ in ascending order. For a specific ¢, M’ will enumerate
all possible computation paths of lengths within ¢ in a lexicographical way
according to the sequence of ’choices’ made during the nondeterministic
computation. For a specific t, there are finitely many enumeration of paths
of lengths at most ¢. Therefore, M’ can try out all the computation paths in
a finite amount of time. If all computation paths are successfully completed
within ¢ steps, then M’ accepts. If there are some computation paths that
fail within ¢ steps, then M’ rejects. Otherwise, every computation path may

either succeed or may attempt to continue for more than ¢ steps. In the
last case, M’ will start another round of simulation for computation paths
of lengths up to t + 1 steps.

