
1) Indicate whether f=O(g) or f=Ω(g) or both(in which case f=θ(g)) along with your justification.

f (n) = n1/2 g (n) = 8^(log n2)

F(n) < g(n), hence f(n)=O(g(n)

2) Arrange the following functions in the order of complexity: (You can simply state the function

names in the order you decide if you would like)

Log n < n log n < n \sqrt n < n^10 < 2^n

OR

f3 < f5 < f1 < f2 < f4

3) Write the complexity of the Merge Sort algorithm using the Master theorem. You need to

explain the breakdown of the Merge Sort algorithm in order to come up with the final

complexity.

In merge sort, we divide the problem into 2 subproblems and solve each subproblem to obtain

the final sorted

No of subproblems: 2

Size of each subproblem: n/2

Time for merge: constant time O(1)

By taking the above into consideration a and b turns out to be 2 and 2 respectively and d = 0.

T(n) =2T(n/2)+O(n^1)

d=log a = log 2 = 1

 Hence T(n) = 2T(n/2) + O(n) which results in O(n log n)

4) A) MST application: Consider a telecommunications company wants to lay cable in this

neighborhood. Nodes are the houses, the edges are the paths between them, and the edge

weights are the maintenance cost. The goal is to find the cheapest way to lay cable while

connecting all houses. MSTs can help with that.

B) Kruskal’s: Repeatedly add the next best edge that does not produce a cycle. Ties are broken

arbitrarily. The most dominant cost in Kruskal’s algorithm is to sort the edges, which takes

𝑂(|𝐸| log |𝐸|) time. It is preferred to have a tight upper bound with V instead of E. In a

complete graph (i.e. where each node is connected to every other node), we have:

|𝐸| ≤ |𝑉|2

log|𝐸| ≤ log|𝑉|2

log|𝐸| ≤ 2 log |𝑉|

Hence, total running time complexity is:

𝑂(|𝐸| log |𝑉|)

 Prim’s algorithm: Choose any vertex randomly. Select the best edge from the set of edges

connected to one of the seen vertices. Cannot produce a cycle. Same complexity as Kruskal’s if

Binary min-heaps are used.

5) Given two strings S and T, find the number of times T occurs in the first string S (it can be

continuous or discontinuous as a subsequence)

Example 1:

Input:

S: sequence

T: sue

Output: 2 because: sequence, sequence

Example 2:

Input:

S: distinct

T: it

Output: 3 because: distinct, distinct, distinct

What is the naive algorithm to do this? What is the complexity of the overall naive algorithm?

2^n for a string of length n

6) Write a dynamic programming solution for the Longest Palindromic
Subsequence problem (https://www.geeksforgeeks.org/longest-
palindromic-subsequence-dp-12/)

for (i = 0; i < n; i++)
 L[i][i] = 1;

for (cl=2; cl<=n; cl++)
 {
 for (i=0; i<n-cl+1; i++)
 {
 j = i+cl-1;
 if (str[i] == str[j] && cl == 2)
 L[i][j] = 2;
 else if (str[i] == str[j])
 L[i][j] = L[i+1][j-1] + 2;
 else
 L[i][j] = max(L[i][j-1], L[i+1][j]);
 }
 }

