Ph.D. Qualifiers Exam Fall 2020
Operating Systems

Computer Science Department,
New Mexico State University

Exam time: 120 min. The exam contains a total of 6 problems.

If you believe that you cannot answer a question without making some assumptions, state those
assumptions in your answer.

Irrelevant verbosity will not gain you points. Clear and crisp answers will be appreciated.

This is a closed-book, closed-note exam.

Qnl. Answer following questions regarding process state transition.

e Draw clearly the state transition diagram of a process, clearly mark all the states and the event(s), which
causes the transition.

admitted

interrupt exit terminated

scheduler dispatch

I/O or event completion /O or event wait

e With respect to the above state-transition diagram, please answer the following questions clearly, yet briefly:

1. Can a process go from the new to the terminated state? Why?

No, the process has to get to the CPU first. new — ready — running — terminated is the
least number of states.

2. Can a process go from the waiting to the running state? Why?
No, to run, the process must first put into ready queue.

e Specify if each of the following processes are I/O-bound, CPU-bound, both, or neither. Explain in brief,
why.

1. A file-transfer application.
I/O bound, a lot of data transfer

2. The scheduler of the OS.
CPU bound, most of execution time is spent in solving the problem rather than read-
ing /writing

3. Video compression/decompression.
Both, I/O-intensive when CPU is free, CPU-intensive when I/O finishes

Textbook source: Chapter 3.1.2 from page 107 to 109

Qn2. Assume you are given a uniprocessor system with one gigabyte of memory and a 300 gigabyte disk. The OS
on the machine has a demand paged virtual memory system with a local page replacement policy and a multi-level
feedback queue (MLFQ) CPU scheduler. On the system there are two compute-intensive jobs running: Job-A and
Job-B. Job-A has a working set of 50 gigabytes while Job-B has a working set of 100 megabytes. Assume you left
the system to run for a while until it reached a steady state with both jobs running.

1. Which job would you expect to have a higher CPU scheduling priority from the MLFQ scheduler?

Job-A. Because the memory allocated to Job-A is less than its working set, it is thrashing and
spending a major portion of its time in servicing the page faults, resulting in a higher priority
in MLFQ.

2. Assume you add a second CPU to system, how would this affect the priorities of the jobs?
It doesn’t help. Adding a second CPU cannot relieve thrashing of Job-A. It doesn’t affect
their priorities.

3. Assume you switch from a local to a global page replacement policy, how does this change affect the priorities

of the jobs?

It will increase the priority of Job B. A global page-replacement algorithm replaces pages
without regard to the process to which they belong, so both jobs are thrashing and have a
high priority.

Justify your answer and state any assumptions you make.

Textbook source: Chapter 6.3.6 from page 275 to 277, Chapter 9.6 from page 425 to 429

Qn3. Consider the following program:

#include<stdio .h>
main ()
{
int pl=1, p2=2, p3=3;
pl = fork ();
if (p2>0) p2 = fork ();
if (p1>0) p3 =fork ();
if (pl==0) printf(” type
L)
f(p

7
)
b

1
2
37);
>0))

p3!=0) printf(” type
2!=0) printf(”typ
i1 ((p1>0)]](p250) |]
printf(” type 47);
if ((p2==0) & (p3==0))
printf(” type 57);

);
);
)
)

e
p3

}

1. What is the return value of fork()?
The function fork returns an integer equal to 0 to the child process and one different from 0O
to the parent process.

2. How many processes are created, including the parent process? Draw a simple tree diagram to show the
parent-child hierarchy of the spawned processes.

6 processes

3. How many times will this program print the following?

?type 17 2
?type 2” 4
?type 3” 3
”type 4” 6
Ytype 5” 1

Textbook source: Chapter 3.3 from page 116 to 119

Qn4. Consider the following snapshot of a system:

Allocation‘ Mazx ‘Available
ABCD|ABCD|ABCD
Py 0012 0022 1520
Pl 1000 1750
Pl 1354 2356
P;| 06 3 2 065 2
P, 001 4 0656

1. What is the content of the Need matrix?
2. Is the system in a safe state? If the state is safe, illustrate the order in which the processes may complete.

3. If a request from process P; arrives for (0,4,2,0), can the request be granted immediately, why?

Need

o~=oo
coo~wNoW
BN O UR A
N O WO O

0
2. The system is in a safe state. Safe order is < Py, P», P;, P3, Py >.

3. The request cannot be granted immediately, because the resulting state is not safe.

Textbook source: Chapter 7.5 from page 331 to 333

Qnb5. Consider a simple paging system with the following parameters

: 232 bytes of physical memory; page size of

210 bytes; 216 pages of virtual address space.

1.

2.

How many bits are in a virtual address?
How many bytes in a frame?

How many bits in the physical address specify the frame?

. How many entries in the page table?

How many bits in each page table entry? Assume each page entry includes a valid/invalid bit and padding
bits to make its size a power of 2.

. What is the effect on the page table if the physical memory space is reduced by half?

104+16=26 bits

210 bytes

22 bits

216 entries

32 bits including 22 bits to specify physical frame, 1 valid/invalid bit, 9 padding bits

32 bits including 21 bits to specify physical frame, 1 valid/invalid bit, 10 padding bits

Textbook source: Chapter 8.5 from page 367 to371

Qn6. Consider the following program executed by two different processes P1 and P2. x is the shared variable
between two processes. Initially it is set to 10.

while (1)
{
x=x—1;
x=x-+1;
if (x!=10)
printf("x is %d,x”);
}

Consider that the processes P1 and P2 are executed on a uniprocessor system. Note that the scheduler in a
uniprocessor system would implement pseudoparallel execution of these two concurrent processes by interleaving
their instructions, without restriction on the order of the interleaving.

1. What is a race condition? Is this situation an example of a race condition?
2. If there is a race condition, show a sequence (i.e., trace the sequence of interleavings of statements) such
that the statement ”x is 10” is printed.

Suggested format: Pi: <instruction> <relevant new value>

3. If there is a race condition, show a sequence that leads to the statement ”x is 8” be printed.

Hint: Remember that the increment/decrements at the source language level are not done atomically, e.g.,
the assembly language code below implements the single C increment instruction (x = x + 1).

registerl = x /% load registerl from memory location x x/
registerl = registerl + 1 /* increment RO x/
x = registerl /* store the incremented value back in x %/

1. A race condition is a situation, where several processes access and manipulate the same data
concurrently and the outcome of the execution depends on the particular order in which the
access takes place.

2. P1: <x=x—-1> <x=9>
P2: <x=x-1> <x=8>
Pl: <x=x+1> <x=9>
P1: <if (x!=10)> <x=9, true>
P2: <x=x+1> <x=10>
Pl: <printf(”x is 10”)>

3. Pl: <x=x—-1> <x=9>
P2: <register2=x> <x=9>
P2: <register2=register2 —-1)> <x=9, register2=8>
Pl: <x=x+1> <x=10>
P2: <x=register2> <x=8>
P1: <if (x!=10)> <x=8, true>
Pl: <printf(”x is 8”)>

Textbook source: Chapter 5.1 from page 204 to 206

