December 2019 Discrete Mathematics Qualifying Exam

Closed book, closed notes, no calculators.

1) (15 points) Prove using mathematical induction that $\sum_{i=2}^{n}(2 i-1)=n^{2}-1$ for all integers $n \geq 2$.
Note: You have to use mathematical induction; if you prove the statement using any other method, it will not count.

Solution:

Proof (by mathematical induction):
Base case:
The statement is true for $n=2$ because LHS $=2 \cdot 2-1=3$ and $R H S=2^{2}-1=3$.
Inductive step:
Suppose that for some integer $k \geq 2, \sum_{i=2}^{k}(2 i-1)=k^{2}-1$. This is the inductive hypothesis.
We must show that $\sum_{i=2}^{k+1}(2 i-1)=(k+1)^{2}-1$.
LHS $=\sum_{i=2}^{k+1}(2 i-1)$
$=\left(\sum_{i=2}^{k}(2 i-1)\right)+(2(k+1)-1)$ by separating the last term
$=k^{2}-1+(2(k+1)-1) \quad$ by inductive hypothesis
$=k^{2}+2 k \quad$ by algebra
RHS $=(k+1)^{2}-1=k^{2}+2 k+1-1=k^{2}+2 k$.
LHS $=$ RHS. Therefore, the statement is true for all integers $n \geq 2$.
2) (14 points) Let $X=\{a, b, c, d, e\}$ and $Y=\{0,1\}$.
a) Give an example of a function from X to Y.
b) How many different functions are there from X to Y .

Solution:

a) For example, function f defined as follows: $f(a)=1, f(b)=0, f(c)=0, f(d)=1, f(e)=1$.
b) There are 2^{5} different functions. There are 2 choices (0 or 1) for the value of $f(a), 2$ choices for the value of $f(b), 2$ choices for the value of $f(c), 2$ choices for the value of $f(d)$, and 2 choices for the value of $f(e)$.
3) (14 points) Evaluate the following summation: $\sum_{i=2}^{n+1} 4^{i}$.

Solution:

$$
\sum_{i=2}^{n+1} 4^{i}=\sum_{j=0}^{n-1} 4^{j+2}=4^{2} \sum_{j=0}^{n-1} 4^{j}=4^{2} \frac{4^{n}-1}{4-1}=\frac{4^{n+2}-16}{3}
$$

4) (14 points) Let $A=\{n \in Z \mid n=5 r$ for some integer $r\}$ and $B=\{m \in Z \mid m=20$ s for some integer s$\}$.
a) Is $A \subseteq B$? Explain.
b) Is $B \subseteq A$? Explain.

Solution:
a) No. A is not a subset of B. For example, $5 \in A$ (because $5=5 r$ for $r=1$) but $5 \notin B$ (because 5 is not divisible by 20).
b) Yes. $B \subseteq A$. Let $m \in B$. Then, by definition of $B, m=20 s$ for some integer s. We have: $m=20 s=5(4 s)=5 r$, where $r=4 s$. r is an integer because s and 4 are integers and the product of integers is an integer. By definition of $A, m \in A$.
5) (14 points) Write truth table for the following statement: $(q \rightarrow p) \vee \neg r$

Solution:

p	q	r	$(\mathrm{q} \rightarrow \mathrm{p}) \vee \neg \mathrm{r}$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	T	T	F
F	T	F	T
F	F	T	T
F	F	F	T

6) (14 points) Prove by contradiction that there is no largest integer.

Solution.
Assume the contrary. Assume, there is a largest integer. Let N be the largest integer. Then, $\mathrm{N}+1$ is also an integer and $\mathrm{N}+1>\mathrm{N}$. This contradicts the assumption that N is the largest integer. Therefore, there is no largest integer.
7) (14 points)
a) For each expression, give an equivalent expression that does not use the log function:

- $\log _{3} 1$
- $2^{\log _{2}(2 n)}$
- $4^{\log _{2} n}$
b) For each expression, give an equivalent expression that is of the form $\log _{3}(*)$, where * is an expression with numbers and possibly the variable k .
- $\log _{3} 3 k-\log _{3} 7+2 \log _{3} k$
- $\left(\log _{2} k\right) /\left(\log _{2} 3\right)$
- $\left(\log _{2}\left(k^{2}\right)\right) /\left(\log _{2} 9\right)$
- $\log _{9}\left(k^{2}\right)$

Solution.
a)

- $\log _{3} 1=0$
- $2^{\log _{2}(2 n)}=2 n$
- $4^{\log _{2} n}=n^{2}$
b)
- $\log _{3} 3 k-\log _{3} 7+2 \log _{3} k=\log _{3} \frac{3 k^{3}}{7}$
- $\left(\log _{2} k\right) /\left(\log _{2} 3\right)=\log _{3} k$
- $\left(\log _{2}\left(k^{2}\right)\right) /\left(\log _{2} 9\right)=\log _{3} k$
- $\log _{9}\left(k^{2}\right)=\log _{3} k$

