
Fall 2019 Programming Languages Qualifying Exam

CODE_______________________________

This is a closed book test.

Correct, clear and precise answers receive full marks

Please start a new page for each question.

There 7 questions – 90pts total

1 | P a g e

Fall 2019 Programming Languages Qualifying Exam

1) (10pts) Define named constant. Describe how named constants are implemented with both

static and dynamic binding of values. How might a runtime system ensure that the semantics of

a named constant be enforced.

A named constant is a avariable that is bound to a value once and adds to the readability and

maintenance of the code. The value of the name constant is established either at load time

which would be static, or can be bound at runtime once (dynamically bound). For compiled

languages that are statically bound, the compiler can be enhanced to recognize multiple

assignments to that variable. When a named constant is allowed to have dynamic setting,

care must be made to eliminate the chance for updating twice like in a select statement or

itterative statement. One technique could be to add a secondary variable that states that the

variable has been set and then to check for the flag on assignment issuing a runtime error.

Additionally, where languages allow aliasing, problems may occur in implementing the named

constant correctly. (chapter 5.8 + synthesis)

2) (15pts) Consider the Chomsky Hierarchy.

a) What are the Chomsky grammar types?

b) What does BNF stand for?

c) Identify the Chomsky grammar type (language class) in which BNF would be mapped to.

d) Provide a specific syntactic programming language construct that naturally fits the

identified grammar type.

a) Chomsky Hierarchy: Regular, Context Free, Context Sensitive, Unrestricted

b) BNF : Backus Nauer Form

c) BNF is included in the Context Free type

d) Matching parenthesis, Matching curly braces, matching square braces, etc. Anything of the

for of ANBN

3) (15 pts) Write a recursive decent parser functions for <factor> and <expr> for the following

BNF fragment. You may assume next_token() and consume_token() are already implemented.

next_token() only reads the next token, while consume_token() consumes the token. Both

methods return a token.

<factor> → <exp> ** < factor>

 | <exp>

2 | P a g e

Fall 2019 Programming Languages Qualifying Exam

<exp> → ‘(‘ <expr> ‘)’

 | id

Where { id, **, (,) } are tokens

boolean factor() {

 if (expr())

 {

 if (next_token == ‘**’)

 { consume_token();

 return factor();

 }

 else

 return true;

 }

 else return false;

}

boolean expr() {

 if (next_token == id)

 return true;

 if (next_token() == ‘(‘

 { match_token();

 if (factor())

 { if (next_token() == ‘)’

 return true;

 else return false;

 }

 else return false;

 }

}

4) (10 pts) Using a functional language, like LISP, write a program which sums up the total

number of numbers in a list. You may assume the list only includes numbers. For example:

 (sum ‘()) = 0

 (sum ‘(1 2 3 4) =10

 (sum ((1 2) (3 (4 5)))) = 15

3 | P a g e

Fall 2019 Programming Languages Qualifying Exam

(define (sum L)

 (cond ((null? L) 0)

 ((not (pair? L)) L)

 (else (+ (sum (car L)) (sum (cdr L))))))

5) (15pts) Some Object Oriented (OO) languages use only Objects, while other OO languages

use mixed objects and non-object entities. Describe the differences in the approaches. Give

examples and explain how runtime systems handle these differences.

The Java language for example has primitives as well as objects. The use of primitives makes

Java code (potentially) run faster as it allows the compiler to directly map these elements to

the processor and select the appropriate op codes. By allowing primitives, it means that Java

must distinguish between the two when dealing with objects that only deal with reference

variables. For example, the use of generic classes (like a Stack) cannot push primitive types.

This means that Java implements mechanisms to have both a primitive type “int” as well as an

object type “Integer”. Which then makes the language less readable.

Alternatively, languages that use only Objects (like python) do not suffer from dealing with

elements that may not be a reference variable. The trade off for these languages it that all

types that map to a processor (like adding two integers) requires additional dereferencing to

determine the base values to send to the ALU on the CPU.

6) (10 pts) Provide the weakest Precondition for the following statement

 if (x > 4)

 x = x * 2 – 5

 else

 x = x + 4

{ x < -10 .or. x > 6 }

{ x < -14 .or. 4 >= x > 2 .or. x > 5}

7) (15pts) Dynamic Heap Memory Management

a) Describe and give examples of the difference between a dangling pointer (or reference)

variable and a lost heap-dynamic variable as it relates to the heap.

4 | P a g e

Fall 2019 Programming Languages Qualifying Exam

Dangling pointers and lost head variables deal with allocation of memory in the heap.

Dangling pointers

int *p = malloc(100);

int *q = p;

free (p);

At this point, q may point to freed memory in the heap. The heap management system can

keep a secondary incident memory cell on many references are there, or just reallocate the

space making the space “q” points to different (and causing unreliability to the code).

A lost variable comes from abandoning the allocated space. For examples

int *p = malloc(100);

p = malloc (200);

The original 100 bytes is no longer being referenced. The heap management system may need

to reclaim this. Techniques include keeping a link count or doing a “mark-sweep” process

marking all reaching memory cells.

b) Consider a runtime system which only allocates two different sizes from the heap. S1 and S2

where S1 is twice the size of S2. Describe a heap memory management algorithm which reduces

(eliminates) the need to perform total memory compaction.

There can be several straight forward solutions to this problem. A basic process is that to cut

the heap into S1 and put them onto a “Large” free list. The “Small” free list will either be

empty or one element. When a S2 is request, a free S1 element is cut in half and the one half

is allocated to the program and the other half is kept in reserve. A second request for S2

would then get the second half.

Reclamation would still require a mark-sweep or extra link count variable. Whenever there is

a need for an S1 segment and there is only a lot of S2 elements, then two S2 segments need to

be collocated by copying the data from its “buddy” to the other open segment making an S1

larger element. This requires that the memory management system knows which variables

are pointing to each of the S2 or by maintaining a front end virtual mapping between program

variable to actual heap segment.

5 | P a g e

