Ph.D. Qualifying Exam: Data Structures and Algorithms

This is a closed book exam. The total score is 100 points. Please answer all questions.

1. In the standard merge-sort algorithm, an input array is split into two (about) equal halves; the algorithm is recursively called on each part; finally the two sorted halves are merged into one sorted array and returned. (DPV 2.3)

In a three-way merge-sort, the input array is cut into three (about) equal portions instead. Please answer the following questions:
(10 points) (a) Write pseudocode to merge three sorted arrays. This can be a revision or reuse of the two-way merge algorithm given below.

```
function merge \((x[1 \ldots k], y[1 \ldots l])\)
if \(k==0\) : return \(y[1 \ldots l]\)
if \(l==0\) : return \(x[1 \ldots k]\)
if \(x[1]<y[1]\) :
    return \(x[1] \circ \operatorname{merge}(x[2 \ldots k], y[1 \ldots l])\)
else:
    return \(y[1] \circ \operatorname{merge}(x[1 \ldots k], y[2 \ldots l])\)
```


Solution:

Option 1. By revision and reuse of the merge() function:

```
function three-part-merge(x[1\ldotsk],y[1\ldotsl],z[1\ldotsm])
if m==0: return merge(x,y)
if l== 0: return merge (x,z)
if }k==0\mathrm{ : return merge( }y,z
if x[1]<y[1] and x[1]<z[1]:
    return x[1] ○ three-part-merge(x[2\ldotsk],y,z)
else if }y[1]<x[1] and y[1]<z[1]
    return }y[1]\circ\mathrm{ three-part-merge( }x,y[2\ldotsl],z
else
    return z[1] ○ three-part-merge(x,y,z[2\ldotsm])
```

Option 2: By reuse of the merge() function:

```
function three-part-merge \((x[1 \ldots k], y[1 \ldots l], z[1 \ldots m])\)
\(u=\operatorname{merge}(x, y)\)
return merge \((u, z)\)
```

(10 points) (b) Integrating your three-part-merge function, give the pseudocode for an algorithm to do the threepart merge-sort by divide-and-conquer. Make sure to include the base case.

Solution:

```
function three-part-merge-sort \((a[1 \ldots n])\)
Input: An array of numbers \(a[1 \ldots n]\)
Output: A sorted version of this array
if \(n \leq 1\) :
    return \(a\)
else:
    return three-part-merge(three-part-merge-sort \((a[1 \ldots\lfloor n / 3\rfloor])\),
                                    three-part-merge-sort \((a[\lfloor n / 3\rfloor+1 \ldots\lfloor 2 n / 3\rfloor])\),
    three-part-merge-sort \((a[\lfloor 2 n / 3\rfloor+1 \ldots n]))\)
```

(10 points)
(c) What is a tight asymptotic runtime of your three-part merge-sort algorithm above? Please include the recursive equation for runtime in your derivation.

Solution: The three-way-merge algorithm reduces the problem size by one in constant time, so we have

$$
\begin{equation*}
T_{1}(n)=T_{1}(n-1)+1=\Theta(n) \tag{1}
\end{equation*}
$$

The three-way-merge-sort has the following recursive equation:

$$
\begin{equation*}
T(n)=3 T(n / 3)+T_{1}(n)=3 T(n / 3)+n=\Theta(n \log n) \tag{2}
\end{equation*}
$$

based on the Master's theorem.
2. Describe a strategy to check whether there is a cycle in a directed graph $G=(V, E)$ in linear time in the number of edges and the number of nodes in the graph. (DPV 3.2, 4.2)
(10 points) (a) Give the pseudocode of your strategy.

Solution:

function contain-cycle $(G=(V, E))$
Input: A graph $G=(V, E)$
Output: Whether the graph contains a cycle

Perform DFS on the graph
During the graph traversal, if a back edge exists (pointing from a current node to an ancestor node of the DFS tree), return YES
return NO
(10 points) (b) Explain why the algorithm takes linear time.
Solution: The runtime is the same as DFS or BFS $O(|V|+|E|)$.
3. The following code solves the shortest path problem on a directed acyclic graph $G=(V, E)$. (DPV 6.1)
function shortest-path-1 (G, s)
Input: A graph $G=(V, E)$, a start node s
initialize all dist() values to ∞
$\operatorname{dist}(s)=0$
for each $v \in V-\{s\}$, in linearized order:

$$
\operatorname{dist}(v)=\min _{(u, v) \in E} \operatorname{dist}(u)+l(u, v)
$$

A student changes the code to the following

$$
\begin{aligned}
& \text { function shortest-path-2 }(G, s) \\
& \text { Input: A graph } G=(V, E) \text {, a start node } s \\
& \text { initialize all dist() values to } \infty \\
& \operatorname{dist}(s)=0 \\
& \text { for each } u \in V \text {, in linearized order: } \\
& \quad \text { for each edge }(u, v) \text { : } \\
& \quad \operatorname{dist}(v)=\min \{\operatorname{dist}(v), \operatorname{dist}(u)+l(u, v)\}
\end{aligned}
$$

(10 points) (a) Show how algorithm shortest-path-1 works on the following graph. The source node is s. Please show the distances of all nodes after processing each v.

Solution:

	s	A	B	C	D	E
A	0	∞	∞	∞	∞	∞
C	0	∞	∞	∞	∞	∞
B	0	∞	6	∞	∞	∞
D	0	∞	6	∞	7	∞
E	0	∞	6	∞	7	8

(10 points) (b) Show how algorithm shortest-path-2 works on the above graph starting from s. Please show the distances of all nodes after processing each u.

Solution: We first obtain the topological ordering by decreasing order of DFS post-number (as the same shown in the solution above)

	s	A	B	C	D	E
A	0	∞	∞	∞	∞	∞
C	0	∞	∞	∞	∞	∞
s	0	∞	6	∞	∞	∞
B	0	∞	6	∞	7	8
D	0	∞	6	∞	7	8
E	0	∞	6	∞	7	8

(10 points)
(c) Does shortest-path-2 always work? If yes, prove it is correct; otherwise, give a counter example.

Solution: Yes. It always works. If there is a shorter path to a node v via (u, v), then the algorithm would have updated $\operatorname{dist}(v)$ when u was explored. This contradicts with how the code works. Thus there cannot be a lower distance to v from some path to from s to v.
4. Given a node s on a tree T, we would like to find the shortest paths from s to all other nodes on the tree. The tree could have negatively weighted edges. (DPV 4.4)
(5 points) (a) Define what is a tree in graph theory.

Solution: A tree is a connected, acyclic, and undirected graph.
(7 points) (b) Does Dijkstra's algorithm guarantee correct shortest paths on the tree? Please justify your answer.

Solution: Yes. Dijkstra's algorithm will guarantee to find correct shortest paths on the tree, as there is only one path from s to each node, which will also be the shortest.
(c) Give a strategy to find the shortest paths from s in a runtime $o((|V|+|E|) \log |V|)$, asymptotically faster than the runtime of Dijkstra's algorithm using a binary heap.

Solution:

Yes. We can run DFS to find the paths from s to all other nodes and then calculate the distances of each path, which are also the shortest paths.
The runtime will be $O(|V|+|E|)$, faster than the best Dijkstra's algorithm.

