
Department of Computer Science December 2019 New Mexico State University

Ph.D. �alifying Exam: Data Structures and Algorithms
�is is a closed book exam. �e total score is 100 points. Please answer all questions.

1. In the standard merge-sort algorithm, an input array is split into two (about) equal halves; the algo-
rithm is recursively called on each part; �nally the two sorted halves are merged into one sorted array
and returned. (DPV 2.3)

In a three-way merge-sort, the input array is cut into three (about) equal portions instead. Please
answer the following questions:

(a)(10 points) Write pseudocode to merge three sorted arrays. �is can be a revision or reuse of the two-way
merge algorithm given below.

function merge(x[1 . . . k], y[1 . . . l])
if k == 0: return y[1 . . . l]
if l == 0: return x[1 . . . k]
if x[1] < y[1]:
return x[1] ◦ merge(x[2 . . . k], y[1 . . . l])

else:
return y[1] ◦ merge(x[1 . . . k], y[2 . . . l])

Solution:

Option 1. By revision and reuse of the merge() function:

function three-part-merge(x[1 . . . k], y[1 . . . l], z[1 . . .m])
if m == 0: return merge(x, y)
if l == 0: return merge(x, z)
if k == 0: return merge(y, z)
if x[1] < y[1] and x[1] < z[1]:
return x[1] ◦ three-part-merge(x[2 . . . k], y, z)

else if y[1] < x[1] and y[1] < z[1]:
return y[1] ◦ three-part-merge(x, y[2 . . . l], z)

else
return z[1] ◦ three-part-merge(x, y, z[2 . . .m])

Option 2: By reuse of the merge() function:

function three-part-merge(x[1 . . . k], y[1 . . . l], z[1 . . .m])
u = merge(x, y)
return merge(u, z)

(b)(10 points) Integrating your three-part-merge function, give the pseudocode for an algorithm to do the three-
part merge-sort by divide-and-conquer. Make sure to include the base case.

Solution:

function three-part-merge-sort(a[1 . . . n])
Input: An array of numbers a[1 . . . n]
Output: A sorted version of this array

if n ≤ 1:
return a

else:
return three-part-merge(three-part-merge-sort(a[1 . . . bn/3c]),

three-part-merge-sort(a[bn/3c+ 1 . . . b2n/3c]),
three-part-merge-sort(a[b2n/3c+ 1 . . . n]))

(c)(10 points) What is a tight asymptotic runtime of your three-part merge-sort algorithm above? Please include
the recursive equation for runtime in your derivation.

Solution: �e three-way-merge algorithm reduces the problem size by one in constant time,
so we have

T1(n) = T1(n− 1) + 1 = Θ(n) (1)

�e three-way-merge-sort has the following recursive equation:

T (n) = 3T (n/3) + T1(n) = 3T (n/3) + n = Θ(n log n) (2)

based on the Master’s theorem.

2. Describe a strategy to check whether there is a cycle in a directed graph G = (V,E) in linear time in
the number of edges and the number of nodes in the graph. (DPV 3.2, 4.2)

(a)(10 points) Give the pseudocode of your strategy.

Solution:

function contain-cycle(G = (V,E))
Input: A graph G = (V,E)
Output: Whether the graph contains a cycle

Perform DFS on the graph
During the graph traversal, if a back edge exists (pointing from a current node to

an ancestor node of the DFS tree), return YES
return NO

Page 2

(b)(10 points) Explain why the algorithm takes linear time.

Solution: �e runtime is the same as DFS or BFS O(|V |+ |E|).

3. �e following code solves the shortest path problem on a directed acyclic graph G = (V,E). (DPV
6.1)

function shortest-path-1(G, s)
Input: A graph G = (V,E), a start node s
initialize all dist() values to∞
dist(s)=0
for each v ∈ V − {s}, in linearized order:

dist(v) = min
(u,v)∈E

dist(u) + l(u, v)

A student changes the code to the following

function shortest-path-2(G, s)
Input: A graph G = (V,E), a start node s
initialize all dist() values to∞
dist(s)=0
for each u ∈ V , in linearized order:

for each edge (u, v):
dist(v) = min{dist(v), dist(u) + l(u, v)}

(a)(10 points) Show how algorithm shortest-path-1 works on the following graph. �e source node is s. Please
show the distances of all nodes a�er processing each v.

A

C

s B

D

E

2

4

6

1

1

1

3

2

Page 3

Solution:

A C s B D E
2 4 6 1 1

1

3

2

s A B C D E
A 0 ∞ ∞ ∞ ∞ ∞
C 0 ∞ ∞ ∞ ∞ ∞
B 0 ∞ 6 ∞ ∞ ∞
D 0 ∞ 6 ∞ 7 ∞
E 0 ∞ 6 ∞ 7 8

(b)(10 points) Show how algorithm shortest-path-2 works on the above graph starting from s. Please show the
distances of all nodes a�er processing each u.

Solution: We �rst obtain the topological ordering by decreasing order of DFS post-number
(as the same shown in the solution above)

s A B C D E
A 0 ∞ ∞ ∞ ∞ ∞
C 0 ∞ ∞ ∞ ∞ ∞
s 0 ∞ 6 ∞ ∞ ∞
B 0 ∞ 6 ∞ 7 8
D 0 ∞ 6 ∞ 7 8
E 0 ∞ 6 ∞ 7 8

(c)(10 points) Does shortest-path-2 always work? If yes, prove it is correct; otherwise, give a counter example.

Solution: Yes. It always works. If there is a shorter path to a node v via (u, v), then the
algorithm would have updated dist(v) when u was explored. �is contradicts with how the
code works. �us there cannot be a lower distance to v from some path to from s to v.

4. Given a node s on a tree T , we would like to �nd the shortest paths from s to all other nodes on the
tree. �e tree could have negatively weighted edges. (DPV 4.4)

(a)(5 points) De�ne what is a tree in graph theory.

Solution: A tree is a connected, acyclic, and undirected graph.

(b)(7 points) Does Dijkstra’s algorithm guarantee correct shortest paths on the tree? Please justify your answer.

Page 4

Solution: Yes. Dijkstra’s algorithm will guarantee to �nd correct shortest paths on the tree,
as there is only one path from s to each node, which will also be the shortest.

(c)(8 points) Give a strategy to �nd the shortest paths from s in a runtime o((|V |+|E|) log |V |), asymptotically
faster than the runtime of Dijkstra’s algorithm using a binary heap.

Solution:

Yes. We can runDFS to �nd the paths from s to all other nodes and then calculate the distances
of each path, which are also the shortest paths.

�e runtime will be O(|V |+ |E|), faster than the best Dijkstra’s algorithm.

Page 5

