December 2018 Discrete Mathematics Qualifying Exam

Closed book closed notes

1. (25 points) Given the following compound proposition (expression in propositional logic), find a logically equivalent expression that uses only \wedge and \neg and that has no more than one occurrence of p, no more than one occurrence of q, and no more than one occurrence of r):

$$
(r \longrightarrow(q \leftrightarrow r)) \longrightarrow p
$$

Solution:
It could be done using truth tables or using logical equivalences. The following solution uses logical equivalences. (Note: you do not have to name the laws you are using as long as they are used correctly)
$(r \longrightarrow(q \leftrightarrow r)) \longrightarrow p$
(eliminate biconditional using Conditional identities)
$\equiv(r \longrightarrow((q \longrightarrow r) \wedge(r \longrightarrow q))) \longrightarrow p$
(eliminate implications using Conditional identities)
$\equiv(\neg(\neg r \vee((\neg q \vee r) \wedge(\neg r \vee q)))) \vee p$
(move negation inward using De Morgan's laws)
$\equiv(\neg \neg r \wedge \neg((\neg q \vee r) \wedge(\neg r \vee q))) \vee p$
(use Double negation law)
$\equiv(r \wedge \neg((\neg q \vee r) \wedge(\neg r \vee q))) \vee p$
(move negation inward using De Morgan's laws)
$\equiv(r \wedge(\neg(\neg q \vee r) \vee \neg(\neg r \vee q))) \vee p$
(move negation inward using De Morgan's laws)
$\equiv(r \wedge((\neg \neg q \wedge \neg r) \vee(\neg \neg r \wedge \neg q))) \vee p$
(use Double negation law)
$\equiv(r \wedge((q \wedge \neg r) \vee(r \wedge \neg q))) \vee p$
(use Distributive law)
$\equiv((r \wedge(q \wedge \neg r)) \vee(r \wedge(r \wedge \neg q))) \vee p$
(use Commutative and Associative laws)
$\equiv(((r \wedge \neg r) \wedge q) \vee((r \wedge r) \wedge \neg q)) \vee p$
(use Complement and Idempotent laws)
$\equiv((F \wedge q) \vee(r \wedge \neg q)) \vee p$
(use Commutative and Domination laws)
$\equiv(F \vee(r \wedge \neg q)) \vee p$
(use Commutative and Identity laws)
$\equiv(r \wedge \neg q) \vee p$
(use De Morgan and Double negation laws to remove v)
$\equiv \neg(\neg(r \wedge \neg q) \wedge \neg p)$
2. (25 points) Determine whether the following statement is true or false. Justify your answer with a proof or a counterexample, as appropriate.

For all real numbers x and y, if $-y^{3}+x^{2} y+2 y+1 \leq x^{3}+x y^{2}+2 x$, then $y \leq x$.

Solution: The statement is false. Counterexample: Take $x=0$ and $y=2$. Then,

$$
\begin{aligned}
& \mathrm{LHS}=-y^{3}+x^{2} y+2 y+1=-8+0+4+1=-3 . \\
& \mathrm{RHS}=x^{3}+x y^{2}+2 x=0 . \\
& -3 \leq 0 \text { However, } y \not \leq x .
\end{aligned}
$$

3. (25 points) Consider $\left\{b_{n}\right\}$ defined by $b_{1}=1, b_{2}=5$, and $b_{n}=b_{n-1}+2 b_{n-2}$ for all integers $n \geq 3$. Prove that for all integers $n \geq 1, b_{n}=2^{n}+(-1)^{n}$.

Proof by strong induction.
Base cases.
When $n=1$, we have $b_{1}=1$ and $2^{1}+(-1)^{1}=2-1=1$.
When $n=2$, we have $b_{2}=5$ and $2^{2}+(-1)^{2}=4+1=5$.
Inductive step.
Assume that $b_{n}=2^{n}+(-1)^{n}$ for all integers n from 1 to k for some integer $k \geq 2$ (strong inductive hypothesis). We need to show that $b_{k+1}=2^{k+1}+(-1)^{k+1}$.
Since $k \geq 2$, we have that $k+1 \geq 3$ and $(k+1)-2 \geq 1$.
By definition,

$$
\begin{aligned}
b_{k+1} & =b_{k}+2 b_{k-1} \\
& =2^{k}+(-1)^{k}+2\left(2^{k-1}+(-1)^{k-1}\right) \\
& =2^{k}+(-1)^{k}+2^{k}+2(-1)^{k-1} \\
& =2 \cdot 2^{k}+(-1)(-1)^{k-1}+2(-1)^{k-1} \\
& =2^{k+1}+(-1)^{k-1} \\
& =2^{k+1}+(-1)^{k+1}
\end{aligned}
$$

$$
=2^{k}+(-1)^{k}+2\left(2^{k-1}+(-1)^{k-1}\right) \quad \text { by strong inductive hypothesis }
$$

This is what we needed to show.
3. Consider a set of strings of length n with alphabet $\{a, b, c, d\}$. This is a set of strings of length n, where each of the n symbols is one of $\{a, b, c, d\}$. n is a positive integer.
a) (3 points) How many strings of length n with alphabet $\{a, b, c, d\}$ are there?
b) (3 points) How many of strings of length n do not contain a ?
c) (3 points) How many of strings of length n contain at least one a?
d) (3 points) How many of strings of length n do not contain a and do not contain b ?
e) (13 points) Calculate the number of strings of length n with alphabet $\{a, b, c, d\}$ such that each of a, b, and c occurs at least once.
For instance, if $n=3$, then the number of strings of length 3 with alphabet $\{a, b, c, d\}$ such that each of a, b, and c occurs at least once is 6 (which is the number of permutations of $a, b, a n d c$).
If $n=1$ or $n=2$, then the number of such strings is 0 .
You need to derive a general formula for the number of strings of length n with alphabet $\{a, b, c, d\}$ that contain each of a, b, and c at least once.

Solution:

a) Total number of n-strings of 4 symbols is 4^{n}.
b) The number of n-strings that do not contain a is 3^{n}.
c) The number of n-strings that contain at least one a is $4^{n}-3^{n}$.
d) The number of n-strings that do not contain a and do not contain b is 2^{n}.
e) Let A be a set of n-strings that contain a. Let B be a set of n-strings that contain b. Let C be a set of n -strings that contain c . Then, \bar{A} is a set of n -strings that do not contain a. \bar{B} is a set of n -strings that do not contain $b . \bar{C}$ is a set of n-strings that do not contain c.
The question is asking for $|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|$.
$\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}=\overline{\bar{A}} \cup \bar{B} \cup \bar{C}$. Therefore, $|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|=4^{n}-|\bar{A} \cup \bar{B} \cup \bar{C}|$.
By the inclusion-exclusion principle, $|\bar{A} \cup \bar{B} \cup \bar{C}|=|\bar{A}|+|\bar{B}|+|\bar{C}|-|\bar{A} \cap \bar{B}|-|\bar{A} \cap \bar{C}|-|\bar{B} \cap \bar{C}|+\mid$ $\bar{A} \cap \bar{B} \cap \bar{C} \mid$.
$|\bar{A}|=|\bar{B}|=|\bar{C}|=3^{n}$.
$|\bar{A} \cap \bar{B}|=|\bar{A} \cap \bar{C}|=|\bar{B} \cap \bar{C}|=2^{n}$.
$|\bar{A} \cap \bar{B} \cap \bar{C}|=1$.
Therefore,
$|\bar{A} \cup \bar{B} \cup \bar{C}|=3^{n}+3^{n}+3^{n}-2^{n}-2^{n}-2^{n}+1=3^{n+1}-3 \cdot 2^{n}+1$.
The number of n-strings with alphabet $\{a, b, c, d\}$ such that each of a, b, and c occurs at least once is $|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|=4^{n}-|\bar{A} \cup \bar{B} \cup \bar{C}|=4^{n}-3^{n+1}+3 \cdot 2^{n}-1$.

