Fall 2016 Programming Languages Qualifying Exam

This is a closed book test.

Correct, clear and precise answers receive full marks

Please start a new page for each question.

1. Static/Dynamic memory (25 pts)

Consider the following Java program. Provide the output of the code and explain why the output is created as such. Explain where the variables **X,Y**, and **i** and their values are stored in memory (which memory segment), and how memory is (re)allocated for the assignment statements in the lines marked **A. B, C,** and **D**

```
class example {
   static StringBuffer Y = new StringBuffer(40); // A
  public static void printme(int k) {
      String X="a";
                                              //B
      X=X+k;
                                             //C
      Y.append(X);
                                             //D
      System.out.println(X + "," + Y);
   }
  public static void main(String args[]) {
      for (int i=0; i<4; i++)
         printme(i);
  }
}
a0,a0
a1,a0a1
a2,a0a1a2
a3,a0a1a2a3
Y - Static, Data segment
X - dynamic, stack segment
i - dynamic, stack segment
A - Y is in the data segment pointing to Buffer in the heap
B - X is on the stack referencing "a" is in the data segment
C - X is on the stack referencing a new location on the heap
D - Y is on data segment, pointing to a new location on the heap
```

2. Inheritance - What is the output of the following Java code (20 pts)

```
class Cass {
  public void method1() {
     System.out.print("cass 1 ");
  public void method2() {
     System.out.print("cass 2 ");
  public String toString() {
     return "cass";
} // of Cass
class John extends Cass {
  public void method2() {
     method1();
     System.out.print("john 2 ");
  public String toString() {
     return "john";
} // of John
class Denny extends John {
  public void method1() {
     System.out.print("denny 1");
  public String toString() {
     return "denny " + super.toString();
} // of Denny
class tester {
public static void main(String args[]) {
   Cass[] elements = {new Cass(),
                new John(),
                new JDenny()};
       for (int i = 0; i < elements.length; <math>i++) {
          elements[i].method1();
          System.out.println();
          elements[i].method2();
          System.out.println();
          System.out.println(elements[i]);
          System.out.println();
        } }
} // of tester
```

Fall 2016 Programming Languages Qualifying Exam

```
cass 1
cass 2
cass

cass 1
cass 1
john 2
john

denny 1
denny 1 john 2
denny john
```

Fall 2016 Programming Languages Qualifying Exam

3. Grammars (20pts)

Rewrite the following arithmetic grammar in (E)BNF so that the new grammar implements the correct associativity and precedence rules of arithmetic (note that E**E is exponentiation which is right to left).

4. Parameter Passing: Consider the following program (15 pts)

```
begin
    integer n;

procedure p(j: integer)
    begin
    j := j+n;
    n := 2*n+j;
    print(n);
    print(j);
    end; // of procedure p

n := 10;
    p(n);
    print(n);
end;

(a) What is the output when j is passed by value?

40 20 40
```

(b) What is the output when j is passed by value result?

40 20 20

(c) What is the output when j is passed by reference?

60 60 60

5. PYTHON - Consider the following python code. What is the output. Define the function "mystery()" (20pts)

```
def suc (x):
    return x + 1

def mystery(k):
    | = list(range(2,k))
    for i in range(2,k):
    | = filter(lambda x: ( x==i ) or ( x%i !=0 ), l)
    return l

foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]

print map(lambda x: suc (x), foo)
print filter(lambda x: x % 3 == 0, foo)

print mystery(50)

[3, 19, 10, 23, 18, 25, 9, 13, 28]
[18, 9, 24, 12, 27]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
```

mystery(k) returns a list of prime numbers upto and including k.