
Algorithms Qual Exam (Fall 2016)
(This is a closed-book exam)

Question 1

In an algorithm course, we prove a lower bound of the worst case running time for
comparison-based sorting. Specifically, a lower bound for the worst case number
of comparisons is derived.

In this question, you are asked to apply the same proof technique to derive a
lower bound for the worst case number of comparisons for merging of two sorted
sequences of n elements each.

(a) (10 points) Based on the usual merge algorithm that is given in textbooks,
draw a decision tree for merging two sorted sequences of 2 elements each. (Your
design of the decision tree should be clear. Specifically, it should be clear what the
nodes, edges and leaves in the tree represent.)

(b) (10 points) Consider the merging of two sorted sequences of 3 elements each.
You are asked to enumerate the leaves of a decision tree for merging the two
sequences. (Note: You are not required to draw the decision tree. Hint: there are
20 leaves.)

(c) (15 points) Develop a lower bound on the worst case number of comparisons
for merging two sorted sequences of n elements each. (In your analysis, you
cannot assume a particular algorithm of merging two sorted sequences as the result
should apply to all comparison-based merging algorithms. Your development of the
lower bound should mimic that for the lower bound of sorting given in textbooks.
Specifically, you are not supposed to give a trivial constant time lower bound. You
can make use of the Stirling’s approximation n! ≈

√
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(
n
e

)n
to simplify your

answer. Also, your answer should be as simple and as accurate as possible; that
is, do not suppress the multiplicative constant behind the big-Omega notation.)



Answers:
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(b) The 20 leaves are:
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(c) The number of leaves is
(2n
n

)
. The depth of the tree, which is the worst

case number of comparisons, is ≥ log2
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)
= log2
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22n = 2n− 0.5 log2 n− 0.5 log2 π.



Question 2 (30 points)

Matrix multiplication is associative. To compute a matrix to the power of k, we
can use the repeated squaring technique when k is a power of 2. For example,
A128 can be computed in 7 matrix multiplications as follows:

t = A

t = t * t // t = A^2

t = t * t // t = A^4

t = t * t // t = A^8

t = t * t // t = A^16

t = t * t // t = A^32

t = t * t // t = A^64

t = t * t // t = A^128

(a) (15 points) Extend the above idea to give a fast recursive algorithm for com-
puting Ak for a given matrix A and a positive integer k where k may not neces-
sarily be a power of 2.

(b) (15 points) Analyze using recurrence the running time of your algorithm in
terms of the number of matrix multiplications performed. You should analyze
both the lower bound and upper bound on the running time of your algorithm.

Answers:

(a)
matrix square( matrix A ) { return A * A; }

matrix power( matrix A, int k ) {

if (k == 1) return A;

if (k % 2 == 0)

return square( power( A, k/2 ) );

else

return A * square( power( A, (k-1)/2 ) );

}

(b) Let t(k) be the number of matrix multiplications performed by the algorithm.
Then t(k) = t(k/2)+1 when k is even, and t(k) = t(bk/2c)+2 when k is odd. The
best scenario is captued by t(k) = t(k/2)+1 = Ω(log2 k), which is the lower bound
of the running time. The upper bound is given by t(k) ≤ t(bk/2c)+2 = O(log2 k).
Therefore, running time is Θ(log2 k).



Question 3

Let
(n
k

)
(read “n choose k”) denote the number of k-combinations that can be

chosen from an n-element set. It is known that
(n
k

)
=

(n−1
k

)
+

(n−1
k−1

)
.

(a) (10 points) Write a recursive algorithm that computes
(n
k

)
where n ≥ 1 and

0 ≤ k ≤ n.

(b) (5 points) The algorithm given in part (a) is inefficient. The inefficiency can be
removed by employing dynamic programming technique. Explain the inefficiency
by computing

(6
3

)
using the algorithm from part (a).

(c) (10 points) Give the codes for the algorithm using dynamic programming.

(d) (10 points) Analyze the running time of your codes in part (c).

Answers:

(a)

int comb( int n, int k ) { // assume 0 <= k <= n

if (k == 0 || k == n) return 1;

return comb( n-1, k ) + comb( n-1, k-1 );

}

(b) To compute C(6, 3), we compute C(5, 3) and C(5, 2) once each. In turn, we
need to compute C(4, 3) once, C(4, 2) twice and C(4, 1) once. Next, we need to
compute C(3, 3) once, C(3, 2) three times, C(3, 1) three times and C(3, 0) once.
That is, many computations of the same parameters are repeated numerous times.

(c) Below is a memoized version of the dynamic programming solution. A non-
memoized verison is also acceptable.

int comb( int n, int k, c[][] ) { // assume 0 <= k <= n

if (c[n][k] != 0) return c[n][k];

if (k == 0 || k == n) return c[n][k] = 1;

return c[n][k] = comb( n-1, k, c ) + comb( n-1, k-1, c );

}

int combinations( int n, int k ) {

int c[n][k] = {0}; // initialize all array entries to 0

return comb( n, k, c );

}

(d) Initialization takes O(nk) time. Each subproblem instance comb(i,j), where
1 ≤ i ≤ n and 0 ≤ j ≤ k, takes O(1) time to compute. The total time is O(nk).


