
Qual Exam (Fall 2014) Algorithms
Answer all questions. Closed book exam.

Question 1 (Divide-and-Conquer Algorithm) (25%)

You are given two sorted lists of size m and n, where n ≤ m. We want to
design an O(logm + log n)-time algorithm for computing the kth smallest
element in the union of the two lists. You are asked to complete the codes
given in the following template:

// Let the two sorted lists be A[1..n] and B[1..m].

// Without loss of generality, we assume that n <= m.

// Also, we assume 1 <= k <= n+m.

int kth_smallest( int[] A, int[] B, int k ) {

if (k <= n && A[k] <= B[1]) return A[k]; // special case

if (k <= m && B[k] <= A[1]) return B[k]; // special case

i = 1;

j = min(k-1,n); // j is the minimum of k-1 and n

// Loop invariant:

// The k smallest data are located in A[1..p] and B[1..k-p],

// for some p where i <= p <= j

while (i <= j) {

mid = (i+j)/2;

// to be completed

}

}

Justify that the running time is O(logm+ log n).



Answer:

The missing codes are:

if (A[mid] > B[k-mid+1]) j = mid-1; // A[mid] is not among the k smallest data

else if (B[k-mid] > A[mid+1]) i = mid+1; // B[k-mid] is not among the k smallest data

else return max(A[mid],B[k-mid]); // the k smallest data are in A[1..mid], B[1..k-mid]

The algorithm runs in time O(lg min(k − 1, n)) = O(lg min(k, n)) = O(lgn). Since it is assumed

that n ≤ m, the algorithm runs in time O(min(lgn, lgm)) = O(lgn + lgm).

Question 2 (Minimum Spanning Tree and Dijkstra’s Algorithm) (25%)

The following statements may or may not be correct. In each case, either
prove it (if it is correct) or give a counterexample (if it isn’t correct). Always
assume that the graph G = (V,E) is undirected and connected. Do not
assume that edge weights are distinct.

(a) Let C be a cycle in a graph G. Suppose the cycle C has a unique lightest
edge e. Then e must be part of every minimum tree spanning the graph G.

Answer: Counterexample: {(v1, v2, 1), (v1, v3, 1), (v2, v3, 2), (v2, v4, 3), (v3, v4, 3)}. Edge

(v2, v3) is the lightest edge in the cycle (v2, v3), (v2, v4), (v3, v4), but MST consisting

(v1, v2), (v1, v3), (v2, v4) does not contain (v2, v3).

(b) The shortest-path tree computed by Dijkstra’s algorithm is necessarily
a minimum spanning tree.

Answer: Counterexample: {(s, v1, 2), (s, v2, 2), (v1, v2, 1)}. The tree computed by Dijkstra from

s consisting of edges (s, v1) and (s, v2) is not a MST as any MST must include (v1, v2).

(c) The shortest path between two nodes is necessarily part of some mini-
mum spanning tree.

Answer: Counterexample: {(v1, v2, 1), (v2, v3, 1), (v3, v4, 1), (v1, v4, 2)}. The shortest path from

v1 to v4 is the single edge (v1, v4). But this edge (v1, v4) is not part of the unique MST

(v1, v2), (v2, v3), (v3, v4).



Question 3 (Greedy Algorithm) (25%)

Give a linear-time algorithm that takes as input a tree and determines
whether it has a perfect matching: a set of edges that touches each node
exactly once. You can assume that the tree is represented hierachically with
r at the root. To access the children of a node n, you can write:

for each child x of n

Hint: Design a subprogram matching(n) that returns 1 if there is a perfect
matching for the subtree rooted at node n, returns 0 if every subtree rooted
at some child of n has a perfect matching while n is unmatched, and returns
-1 otherwise.

Answer:

// determine if the subtree rooted at n has a perfect matching

// return 1 if there is a perfect matching

// return 0 each child subtree of n has a perfect matching; n is unmatched.

// return -1 otherwise

int matching(n)

if n is leaf then return 0

n_is_matched = false

for each child x of n:

case matching(x):

-1: return -1

0: if n_is_matched then return -1

else n_is_matched = true

1: // do nothing

if n_is_matched then return 1

else return 0

There is a perfect matching for the given tree if matching(r) returns 1.



Question 4 (Dynamic Programming) (25%)

Give an O(nt)-time algorithm for the following task.

Input: A set of n distinct positive integers {a1, a2, . . . , an},
a positive integer t.

(The set is in fact presented as a list [a1, a2, . . . an].)

Question: Does some subset of the ai’s add up to t?

Important Note: the subset which sum is t is allowed to be a
multiset in which the same ai can appear more than once with
no limit to how many times that the same number can be selected
in the multiset.

Argue that your algorithm runs in O(nt).

Answer:

Let Q(i, x) be true if there is a subset of {a1, a2, . . . , ai} which sum is x, and false otherwise.

Base cases: Q(0, 0) = true; Q(0, x) = false if x is not 0

Recursive formula:
Q(i, x) = Q(i− 1, x) ∨Q(i, x− ai) if x ≥ ai
Q(i, x) = Q(i− 1, x) if x < ai

The final answer is given in Q(n, t).

Each subproblem Q(i, x) is computed in O(1) time. We need to compute Q(i, x) for 0 ≤ i ≤ n and

0 ≤ x ≤ t row-wise in order of increasing i. Total time is O(nt) as there are O(nt) subproblems.


