Qual Exam (Fall 2014) Algorithms
Answer all questions. Closed book exam.

Question 1 (Divide-and-Conquer Algorithm) (25%)

You are given two sorted lists of size m and n, where n < m. We want to
design an O(logm + logn)-time algorithm for computing the kth smallest
element in the union of the two lists. You are asked to complete the codes
given in the following template:

// Let the two sorted lists be A[1..n] and B[1..m].
// Without loss of generality, we assume that n <= m.
// Also, we assume 1 <= k <= n+m.

int kth_smallest(int[] A, int[] B, int k) {
if (k <= n && A[k] <= B[1]) return A[k]; // special case
if (k <= m && B[k] <= A[1]) return B[k]; // special case
i=1;
j = min(k-1,n); // j is the minimum of k-1 and n

// Loop invariant:
// The k smallest data are located in A[1l..p] and B[1..k-p],
// for some p where i <= p <= j
while (i <= j) {

mid = (i+j)/2;

// to be completed

Justify that the running time is O(logm + logn).

Answer:

The missing codes are:

if (A[mid] > B[k-mid+1]) j = mid-1; // A[mid] is not among the k smallest data
else if (B[k-mid] > A[mid+1]) i = mid+1; // Blk-mid] is not among the k smallest data
else return max(A[mid],B[k-mid]); // the k smallest data are in A[1..mid], BI[1

The algorithm runs in time O(lg min(k — 1,n)) = O(lgmin(k,n)) = O(lgn). Since it is assumed
that n < m, the algorithm runs in time O(min(lgn,lgm)) = O(lgn + lgm).

Question 2 (Minimum Spanning Tree and Dijkstra’s Algorithm) (25%)

The following statements may or may not be correct. In each case, either
prove it (if it is correct) or give a counterexample (if it isn’t correct). Always
assume that the graph G = (V, F) is undirected and connected. Do not
assume that edge weights are distinct.

(a) Let C be a cycle in a graph G. Suppose the cycle C has a unique lightest
edge e. Then e must be part of every minimum tree spanning the graph G.

Answer: Counterexample: {(v1,v2,1), (v1,vs,1), (v2,vs,2), (v2,v4, 3), (v3,v4,3)}. Edge
(v2,v3) is the lightest edge in the cycle (v2,v3),(v2,v4),(v3,v4), but MST consisting

(v1,v2), (v1,v3), (v2,v4) does not contain (v, vs).

(b) The shortest-path tree computed by Dijkstra’s algorithm is necessarily
a minimum spanning tree.

Answer: Counterexample: {(s,v1,2), (s,v2,2), (v1,v2,1)}. The tree computed by Dijkstra from

s consisting of edges (s,v1) and (s,v2) is not a MST as any MST must include (v1,v2).

(c¢) The shortest path between two nodes is necessarily part of some mini-
mum spanning tree.

Answer: Counterexample: {(v1,v2,1), (v2,vs3,1), (v3,v4, 1), (v1,v4,2)}. The shortest path from
v1 to vg is the single edge (vi,v4). But this edge (vi,v4) is not part of the unique MST

(’01,1)2), (U27 ’Ug), (U37 U4)-

. .k-mid]

Question 3 (Greedy Algorithm) (25%)

Give a linear-time algorithm that takes as input a tree and determines
whether it has a perfect matching: a set of edges that touches each node
exactly once. You can assume that the tree is represented hierachically with
r at the root. To access the children of a node n, you can write:

for each child = of n

Hint: Design a subprogram matching(n) that returns 1 if there is a perfect
matching for the subtree rooted at node n, returns 0 if every subtree rooted
at some child of n has a perfect matching while n is unmatched, and returns
-1 otherwise.

Answer

// determine if the subtree rooted at n has a perfect matching
// return 1 if there is a perfect matching
// return O each child subtree of n has a perfect matching; n is unmatched.
// return -1 otherwise
int matching(n)
if n is leaf then return 0O
n_is_matched = false
for each child x of n:
case matching(x):
-1: return -1
0: if n_is_matched then return -1
else n_is_matched = true
1: // do nothing
if n_is_matched then return 1
else return O

There is a perfect matching for the given tree if matching(r) returns 1.

Question 4 (Dynamic Programming) (25%)

Give an O(nt)-time algorithm for the following task.

Input: A set of n distinct positive integers {a1,as,...,an},
a positive integer t.

(The set is in fact presented as a list [a1, a9, ... ay].)
Question: Does some subset of the a;’s add up to t7

Important Note: the subset which sum is ¢ is allowed to be a
multiset in which the same a; can appear more than once with
no limit to how many times that the same number can be selected
in the multiset.

Argue that your algorithm runs in O(nt).

Answer:

Let Q(i,) be true if there is a subset of {a1, a2,...,a;} which sum is x, and false otherwise.
Base cases: Q(0,0) = true; Q(0,z) = false if = is not 0

Recursive formula:

Q) =Q(i —1,z) VQ(i,z — a;) ife>a;

Q(i,z) =Q(i— 1,z) ifx<a

The final answer is given in Q(n,t).

Each subproblem Q(, z) is computed in O(1) time. We need to compute Q(%,z) for 0 < i < n and

0 < z <t row-wise in order of increasing . Total time is O(nt) as there are O(nt) subproblems.

