
Programming Languages
Qualifying Exam

Fall 2011
New Mexico State University

May 3, 2011

NOTE: this exam is open book and open notes.

Question 1 [.40 Points]

Consider the following program:

1 : {x ≥ 2 ∧ y ≥ 2}
2 : fl = 1;
3 : for (i = 2; i ≤ x ∧ i ≤ y; i + +)
4 : if (x mod i == 0 ∧ y mod i == 0)
5 : fl = 0;
6 : endif
7 : endfor
8 : {fl == 0⇒ ¬p ∧

: fl == 1⇒ p}

1. Formulate the post-condition p as a condition on the variables x, y ([10
Points]);

2. Convert this program into a while-program (as in the syntax used by
Gumb’s book); provide a loop invariant for the resulting while-loop ([10
Points]);

3. Prove partial correctness using Hoare’s method ([10 Points]);

1



4. The idea of Floydian expression can be generalized to the case of while
loops—as expressions associated to a loop invariant, that should satisfy
the same two conditions as in the case of Floydian Expressions. De-
velop a Floydian expression for the example program and prove that it
satisfies the two required conditions to prove termination ([10 Points]).

Question 2 [60 Points]

Let us consider the following syntax for an imperative language

<program> ::= <statement>

<statement> ::= <statement> ; <statement>

| <identifier> = <expression>

| if <expression> then <statement>

<expression> ::= <number>

| nil

| [ <expression> | <expression> ]

| (<unaryop> <expression>)

| (<binaryop> <expression> <expression>)

| (map <unaryop> <expression>)

<unaryop> ::= head

| tail

| square

| double

<binaryop> ::= add

| times

This language manipulates numbers and lists. A list can be either empty
(denoted by nil) or not empty (denoted by [exp1|exp2], where exp1 is the
head of the list and exp2 is the tail of the list). For example, [1|[2|nil]]
denotes the two-element list containing 1 followed by 2.

The expressions (〈unaryop〉 exp) denote the application of the unary
function 〈unaryop〉 to the argument exp. In a similar manner, the expres-
sion 〈binaryop〉 exp1 exp2) denotes the application of the binary function
〈binaryop〉 to the two arguments exp1, exp2.

The final case of expression, (map 〈unaryop〉 exp) is an iterative construct
that repeats the application of the function 〈unaryop〉 to each element of the
list represented by exp. For example, (map double [1|[2|[3|nil]]]) applies the

2



function double to each element of the list [1|[2|[3|nil]]], producing the list
[2|[4|[6|nil]]].

1. Provide the denotational semantics of the language. You can avoid
worrying about type checking ([30 Points]).

2. Discuss how the language features could be implemented; in particu-
lar, describe the memory representation of the lists and how the map
construct could be implemented taking advantage of concurrency ([15
Points]).

3. Describe how the map construct could be translated using traditional
iterative (e.g., while) and conditional (e.g., if) constructs ([15 Points]).

3


