1. (i) Give an $O(k^2 \lg k)$ algorithm to merge k sorted lists, each having k elements, into a single sorted list with k^2 elements.

(ii) Assume that you have an $O(k^2 \lg k)$ algorithm M to merge k sorted lists, each having k elements, into a single sorted list with k^2 elements. Consider the following idea to sort a list of n elements: Split the n elements into \sqrt{n} lists of \sqrt{n} elements each, sort each group recursively and then merge the \sqrt{n} sorted lists into one sorted list of size n using the algorithm M.

Give pseudocode for an algorithm that uses the above idea to sort an array of n elements. Derive a recurrence relation for the running time of your algorithm and solve this recurrence relation to obtain its worst-case running time.

(iii) Is it possible to devise a merge procedure that merges k sorted lists, each having k elements, into a single sorted list of size k^2 in time $O(k^2)$. Provide a proof for your answer.

2. Consider the following “change-making” problem: Given a set of n denominations of coins $a_1 = 1 < a_2 < a_3 \ldots < a_n$, an infinite supply of coins of each denomination and a value A, determine how to make the value exactly A using the minimum number of coins. For example, if we have four coin values 1 (penny), 5 (nickel), 10 (dime) and 25 (quarter) and we have to make a value 82, the best way to do it is to use 3 quarters, 1 nickel and 2 pennies which uses six coins.

A natural greedy algorithm for making exact change A is the following (here S is a multiset or “bag” which is assumed to be empty in the beginning):
algorithm MAKE-CHANGE(A, S)
if ($A = 0$) return S;
else
 pick a coin with the largest denomination a_i such that $a_i \leq A$
 and add it to the bag S;
 MAKE-CHANGE($A - a_i$, S);

(i) Suppose we have the coin denominations which satisfy the following conditions: $a_1 = 1$ and for $i = 1, 2, \ldots, n - 1$ [$a_{i+1} = 3 \cdot a_i$].
Does the algorithm MAKE-CHANGE always work correctly in this case. Provide a proof for your answer.

25 pts

(ii) Suppose we have the coin denominations which satisfy the following conditions: $a_1 = 1$ and for $i = 1, 2, \ldots, n - 1$ [$a_{i+1} \geq 3 \cdot a_i$].
Does the algorithm MAKE-CHANGE always work correctly in this case. Provide a proof for your answer.

10 pts