Question 1.
We consider the expression tree for a boolean expression with operators \(\lor \) (or), \(\land \) (and) and \(\neg \) (not). An example is given below:

An evaluation of the expression gives the value 1. A preorder traversal of the tree returns the string \(\lor \land \neg \lor \land \). Let \(L \) be the set of strings returned by the preorder traversals of all (boolean) expression trees that are evaluated to 1.

(a) (25%) Show that \(L \) is not regular.

(b) (25%) Give a context-free grammar for \(L \).

(c) (25%) Give a deterministic pushdown automaton for \(L \). Besides giving a formal presentation of a deterministic PDA, you are encouraged (though not required) to provide an informal discussion of the design of the automaton.

Question 2. (25%)
Let \(\Sigma = \{0, 1, +, =\} \) and
\[ADD = \{x = y + z \mid x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}. \]
For example, \(10100 = 1001 + 1011 \in ADD \) and \(110 = 10 + 1 \notin ADD \).
Show that \(ADD \) is not context-free. (Hint: consider strings \(x = 0 + x \in ADD \).)
Answers:

1. (a)
Suppose the contrary that \(L \) is regular and there exists a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) for \(L \). Consider the strings \(w_k = \lambda^k \), for \(k \geq 1 \). We claim for \(1 \leq i < j \), \(\delta(q_0, w_i) \neq \delta(q_0, w_j) \). If \(\delta(q_0, w_i) = \delta(q_0, w_j) \), then \(\delta(q_0, w_i \lambda^{i+1}) = \delta(q_0, w_i, 1^{i+1}) = \delta\left(\delta(q_0, w_i), 1^{i+1}\right) = \delta(q_0, \lambda^i 1^{i+1}) = \delta(q_0, \lambda^i \lambda^{i+1}) \in F \) which contradicts with the fact that \(\lambda^i \lambda^{i+1} \notin L \) when \(i \neq j \). Thus, \(M \) has infinite states, a contradiction.

1. (b)
\[
\begin{align*}
S_1 & \rightarrow \land S_1 S_1 | \lor S_0 S_1 | \lor S_1 S_0 | \lor S_1 S_1 | \neg S_0 | 1 \\
S_0 & \rightarrow \lor S_0 S_0 | \land S_0 S_0 | \land S_0 S_1 | \land S_1 S_0 | \neg S_1 | 0
\end{align*}
\]

1. (c)
Let \(q \) be the starting state and \(q_a \) be the accepting state. The transitions are:
- if (state \(q \), empty stack, input 1) then (state = \(q_1 \))
- if (state \(q \), input \(x \) is an operator) then (push \(x \))
- if (state \(q \), stack top = operator, input 0) then (state = \(q_0 \))
- if (state \(q \), stack top = operator, input 1) then (state = \(q_1 \))
- if (state \(q_0 \), stack top = \(\neg \)) then (state = \(q_1 \), pop stack)
- if (state \(q_1 \), stack top = \(\neg \)) then (state = \(q_0 \), pop stack)
- if (state \(q_0 \), stack top = 0) then (state = \(q_{0,0} \), pop stack)
- if (state \(q_0 \), stack top = 1) then (state = \(q_{0,1} \), pop stack)
- if (state \(q_1 \), stack top = 0) then (state = \(q_{0,1} \), pop stack)
- if (state \(q_1 \), stack top = 1) then (state = \(q_{1,0} \), pop stack)
- if (state \(q_0 \), stack top = operator, input \(x \) is an operator) then (state = \(q \), push 0, push \(x \))
- if (state \(q_1 \), stack top = operator, input \(x \) is an operator) then (state = \(q \), push 1, push \(x \))
- if (state \(q_{0,0} \), top stack = \(\land \) or \(\lor \)) then (state = \(q_0 \), pop stack)
- if (state \(q_{0,1} \), top stack = \(\land \)) then (state = \(q_0 \), pop stack)
- if (state \(q_{0,1} \), top stack = \(\lor \)) then (state = \(q_1 \), pop stack)
- if (state \(q_{1,1} \), top stack = \(\land \) or \(\lor \)) then (state = \(q_1 \), pop stack)
- if (state \(q_{1,1} \), stack empty, end-of-input) then (state = \(q_a \))

2. (The solution is similar to that of Example 2.22 in Sipser’s book.) (Sketch)
Choose \(s \) to be \(1^p 0^p = 0 + 1^p 0^p \) where \(p \) is the pumping constant. Note that we assume that \(x, y \) and \(z \) cannot be empty strings. That is, empty string is not a binary integer. When pumping, always pump down by taking \(i = 0 \). One case of the pumping is when \(u = 0^p 1^p =, v = 0, x = \epsilon, y = \epsilon \) and \(z = +1^p 0^p \). Another case of the pumping is when \(u = 0^p 1^p =, v = \epsilon, x = \epsilon, y = 0 \) and \(z = +1^p 0^p \). Of course, there are still many other cases.