Question 1. (30%)
Consider a rectangular array. Sort the elements in each row into increasing or-
der. Next sort the elements in each column into increasing order. Argue that the
elements in each row remain sorted.

Question 2. (35%)
Let $T(n) = T(an) + T(bn) + T(cn) + \Theta(n)$, where $0 < a$, $0 < b$, $0 < c$ and
$a + b + c < 1$. Show that $T(n) = \Theta(n)$. That is, you have to show that $T(n) = O(n)$
and $T(n) = \Omega(n)$.

Question 3. (35%)
Design a data structure that supports the following set operations on integers.

1. NewSet(),
 which returns a pointer to an empty set of integers.

2. Insert(S, x),
 which inserts into the set S a new element of the integer value x.
 Example: Insert(\{ 5, 9, 30 \}, 9) = \{ 5, 9, 9, 30 \}.

3. Delete(S, x),
 which deletes from S an element of the integer value x.
 If x does not exist, then S is not changed.
 Examples:
 Delete(\{ 5, 9, 9, 30 \}, 5) = \{ 9, 9, 30 \}.
 Delete(\{ 5, 9, 9, 30 \}, 9) = \{ 5, 9, 30 \}.
 Delete(\{ 5, 9, 9, 30 \}, 7) = \{ 5, 9, 9, 30 \}.

4. Print_k_Smallest(S, k),
 which prints in ascending order the k smallest elements in S.
 Examples:
 Print_k_Smallest(\{ 9, 20, 7, 4, 9, 3, 8, 12 \}, 5) prints 3, 4, 7, 8, 9.
 Print_k_Smallest(\{ 9, 20, 7, 4, 9, 3, 8, 12 \}, 7) prints 3, 4, 7, 8, 9, 9, 12.
 Print_k_Smallest(\{ 9, 20, 7 \}, 5) prints 7, 9, 20.

The running time for NewSet(), Insert(S, x), Delete(S, x) and Print_k_Smallest(S, k)
should be $O(1)$, $O(\lg \#S)$, $O(\lg \#S)$ and $O(k)$ respectively.
Sketch of answers:

Question 1.
Let $A(i,j)$ be the elements of the rectangular array after the elements are sorted in each row into increasing order. Next, we sort the elements in each column. Suppose the element $A(i,j)$ is ranked k in the j-th column during the column sorting phase. Let $A(i_1,j), A(i_2,j), \ldots, A(i_{k-1},j)$ be the $k-1$ elements in the j-th column that are ranked higher than $A(i,j)$. Then $A(i_1,j-1), A(i_2,j-1), \ldots, A(i_{k-1},j-1)$ and $A(i,j-1)$ are k elements in the $(j-1)$-th column that are of values at most $A(i,j)$. That is, the k-th ranked element in the $(j-1)$-th column is not larger than the corresponding k-th ranked element $A(i,j)$ in the j-th column.

Question 2.
The proof is similar to that of Select, which proves that $T(n) = O(n)$ where $T(n) = T(n/5) + T(7n/10) + O(n)$. In addition, one has to show that $T(n) = \Omega(n)$. This is immediate since by definition $T(n) = T(an) + T(bn) + T(cn) + \Theta(n)$ which is $\Omega(n)$.

Question 3.
Use a red-black tree. In addition, maintain a linear doubly-linked list of all the elements in ascending order. Thus, an element in a set is represented in both structures. The same element in both structures are linked by pointers.

Implementation details for Insert(S, x):
After inserting x into the red-black tree, we search for the predecessor y of x in S in the red-black tree which takes logarithmic time. Next, follow the link from the element y to the same element in the linear doubly-linked list. Then insert a new element for x into the linear list. Finally, set up the link between the element x in the red-black tree and the element x in the linear list. (If the predecessor does not exist, then x is the new smallest element. The treatment is easy.)