
ReTRACe: Revocable and Traceable Blockchain Rewrites using
Attribute-based Cryptosystems

Gaurav Panwar
∗

New Mexico State University

Las Cruces, NM, USA

gpanwar@nmsu.edu

Roopa Vishwanathan
∗

New Mexico State University

Las Cruces, NM, USA

roopav@nmsu.edu

Satyajayant Misra

New Mexico State University

Las Cruces, NM, USA

misra@cs.nmsu.edu

ABSTRACT
In this paper, we study efficient and authorized rewriting of trans-

actions already written to a blockchain. Mutable transactions will

make a fraction of all blockchain transactions, but will be a necessity

to meet the needs of privacy regulations, such as the General Data

Protection Regulation (GDPR). The state-of-the-art rewriting ap-

proaches have several shortcomings, such as lack of user anonymity,

inefficiency, and absence of revocation mechanisms. We present

ReTRACe, an efficient framework for blockchain rewrites.ReTRACe
is designed by composing a novel revocable chameleon hash with

ephemeral trapdoor scheme, a novel revocable fast attribute based

encryption scheme, and a dynamic group signature scheme. We

discuss ReTRACe, and its constituent primitives in detail, along

with their security analyses, and present experimental results to

demonstrate the scalability of ReTRACe.

ACM Reference Format:
Gaurav Panwar, Roopa Vishwanathan, and Satyajayant Misra. 2021. Re-

TRACe: Revocable and Traceable Blockchain Rewrites using Attribute-based

Cryptosystems. In Proceedings of the 26th ACM Symposium on Access Control
Models and Technologies (SACMAT ’21), June 16–18, 2021, Virtual Event, Spain.
ACM,NewYork, NY, USA, 28 pages. https://doi.org/10.1145/3450569.3463565

1 INTRODUCTION AND RELATEDWORK
In access control techniques, revocation is a problem that is eas-

ily motivated from a practical standpoint. We present ReTRACe,
a system for performing access control including revocation for

transaction rewrites in blockchains. A blockchain is an append-only

ledger to which entities can post messages in a decentralized man-

ner. A message could be a financial transaction, a smart contract,

or any data that needs to be shared among several users, but whose

provenance needs to be verified. At a high level, a block is a collec-

tion of multiple messages (also called transactions), and their hash

digests. Usually, once a message has been written to the blockchain,

the message is considered immutable and cannot be edited.

While blockchain edits or rewrites are not required in all appli-

cations, there is an important class of applications where editing

messages written onto a blockchain is essential. For instance, in

∗
Authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SACMAT ’21, June 16–18, 2021, Virtual Event, Spain
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8365-3/21/06. . . $15.00

https://doi.org/10.1145/3450569.3463565

the European Union (EU), the general data protection regulation

(GDPR), Chapter 2, Article 17: Right to erasure and Article 19: Noti-
fication obligation regarding rectification or erasure of personal data
or restriction of processing, gives users or data subjects the right to
request that their personal data be erased/edited by the person or

entity collecting or publishing their data, per their request. The

U.S. state of California passed the California Consumer Privacy Act

(CCPA) in 2018 [17], which has codified similar privacy rights, as

described in Article 2. 999.308 (c) (2).

Blockchain technology has widespread applications in health-

care, regulatory compliance and audit, recordmanagement, Internet

of Things, and more [16]. It is easy to envisage examples where

a user’s sensitive data is part of the committed blockchain trans-

actions, and at a later point needs to be erased. For example, a

global consortium of banks is currently using a blockchain plat-

form (R3 [44]) to manage financial agreements, securities trading,

etc. These transaction records will include clients’ information and

could potentially contain personally identifiable information.

As per the individual’s “right to forget" (e.g., in GDPR), a user

can request a purge of their identification data from the blockchain,

(true evenwith encrypted data), and should be able to independently

verify the said purge. Also, when a blockchain is used for record

keeping and auditing the actions of a set of mutually untrusting

parties, there may be situations where a non-monetary record needs

to be expunged from the blockchain, e.g., offensive content, leaked

personal information/encryption keys, etc., and companies have

prototyped editable blockchains for addressing this [50]. The U.S.

Department of Homeland Security in a recent report on the use of

blockchains in government, has judged permissioned blockchains

to be useful for maintaining government records, supply chain

monitoring, and government approval chain processes [29], which

will encourage blockchain adoption. In all such applications, there

might arise need for correcting/updating transactions. Motivated
by this, we concentrate on a permissioned blockchain.

Recently, some solutions have been proposed to enable modifica-

tions on data posted to a blockchain [27]. One method is a hard fork,
which involves diverging the blockchain at the point where a mes-

sage needs to be changed, creating a new forked blockchain, and

invalidating all subsequent blocks in the old blockchain. Another

technique is to modify a messagem tom′, postm′ pointing tom
on the blockchain. In addition to being inefficient, these techniques

do not expunge the old message from the chain, and do not enable

fine-grained control over who can modify messages.

Ateniese et al. [2, 50] proposed a solution for blockchain edits

by rewriting entire blocks, using chameleon hash functions. Deuber
et al. [28] and Reparo [46] proposed mechanisms for block-level

rewrites where any user can propose a redaction or an edit of a

https://doi.org/10.1145/3450569.3463565
https://doi.org/10.1145/3450569.3463565

block, which is then voted upon by other users, and the edit is

accepted if it wins a majority vote. Coarse block-level solutions

result in needlessly rewriting an entire block, when only say, a

single transaction in a block needs to be expunged, nor do they

provide fine-grained transaction level control by helping us set

permissions about who can rewrite individual transactions. In this

paper, we focus on transaction-level rewriting. Our intent is to build
a system where a transaction can be updated, if needed, at which

point only the updated transaction will be visible on the blockchain.

1.1 Related Work
Recently, chameleon hash functions have been proposed to enable

blockchain rewrites. Chameleon hash functions [38] enable a user

to find collisions in the domain of a hash function, such that several

pre-images can be created that map to the same hash digest. The

process of finding a collision on a given message, termed adapting
the message, is done using a trapdoor associated with the digest.

For increased security and flexibility, Camenisch et al. [18] pro-
posed the idea of two trapdoors being associated with a digest, a

permanent long-term trapdoor, and an ephemeral trapdoor, which is

chosen per message; a message cannot be adapted without knowing

both trapdoors. Derler et al. [27] presented an application of [18]

to transaction-level blockchain rewrites, where the ephemeral trap-

door associated with a digest of a message posted on the blockchain

is encrypted using ciphertext-policy attribute-based encryption

(CPABE), and only users possessing enough attributes that satisfy

the policy can decrypt the ephemeral trapdoor and adapt a message.

The problemwith the above schemes is that access to the ephemeral

trapdoor, once issued, cannot be revoked, i.e., once given out, the

ephemeral trapdoor is accessible to users in perpetuity. Ideally, we

would like to revoke users, such that upon revocation of a user u
who possesses the ephemeral trapdoor, the ephemeral trapdoor is

swiftly updated to a value unknown tou. We use chameleon hashes,

attribute-based encryption (ABE) and a dynamic group signature

scheme (GSS) to achieve our goal.

1.2 Challenges in the State-of-the-art
Motivated by the problem of performing transaction rewrites on

a blockchain, we seek to answer the following questions: Who

gets to erase or overwrite transactions/messages? What if a user

is allowed to update a given message only for a short period of

time? Once a message has been modified, should the identity of

the modifier be revealed, and if yes, to whom? These questions

need to be addressed to make editable transactions usable, which

is our goal in this paper. We focus on three important challenges:

1) Revoking access to ephemeral trapdoors: a revoked user cannot

update a message even if she has a local copy of the long-term and

ephemeral trapdoors. 2) Revoking attributes from users: a user who
no longer has access to an attribute secret key cannot update a

message and/or trapdoor. 3) Traceability: a user who anonymously

rewrote a particular message, but violated the rewriting policy can

be identified. For addressing the first two challenges, we need to

design new cryptographic primitives, since existing ones do not

provide the properties we require.

1.3 Our Contributions
Our contributions in this paper include:

1) Design of a new revocable chameleon hash with ephemeral trap-
door scheme, RCHET, which guarantees that a revoked user cannot

adapt a blockchain message or trapdoor.

2) Design of a new, efficient revocable ABE scheme, RFAME, to con-

trol access to the ephemeral trapdoor.

3) Design of a revocable and traceable blockchain rewriting frame-
work, ReTRACe, using our novel RCHET and RFAME schemes,

and a dynamic group signature scheme as building primitives. In

ReTRACe, authorized users can adaptmessages, using the ephemeral

trapdoor of a message’s chameleon hash digest. Access to the

ephemeral trapdoor can be revoked instantly as needed. Authorized

users can anonymously post to and adapt messages on a blockchain,

but their identities can be unmasked by legitimate oversight au-

thorities if needed.

4) Implementation of RCHET, RFAME, and ReTRACe to demon-

strate scalability, and their security analyses.

We note that ReTRACe does not modify the way miners com-

municate with one another and how the blocks are mined in a

permissioned blockchain adapted with ReTRACe’s functionality
(except transaction verification). Both the ReTRACe messages and

non-ReTRACe messages can co-exist in the underlying permis-

sioned blockchain, i.e., after integrating ReTRACe into a permis-

sioned blockchain, the resultant chain can acceptmutable (messages

with trapdoors controlled with ABE policies) as well as regular im-

mutable messages such as financial transactions and records of

payments between different entities.

Organization: In Section 2, we discuss the constituents of our sys-

tem model, and cover preliminaries and assumptions. In Section 3,

we give a short technical overview of ReTRACe. In Sections 4 and 5,

we introduce RCHET and RFAME, their definitions, security anal-

yses, and constructions. In Section 6 we briefly discuss dynamic

GSS schemes, and in Section 7, we give the definition, security

analysis, and construction of ReTRACe. In Section 8 we present our

experimental analysis, and Section 9 concludes the paper.

Since ReTRACe has several building blocks, we need to make care-

ful choices on what is included in the main paper and the Appendix.

We present our new ideas, constructions, and experiments in the

main paper, and include formal definitions and proofs of our con-

structions in the Appendix.

2 SYSTEM MODEL AND THREAT MODEL
ReTRACe is constructed using three primitives: 1) a revocable

chameleon hash scheme, RCHET, which provides a dynamic and

mutable ephemeral trapdoor required for updating amessage posted

on theBC, 2) a revocable attribute-based encryption scheme,RFAME
used to control access to the ephemeral trapdoor, and 3) a dynamic

group signature scheme (DGSS), which helps legitimate users know-

ing the current ephemeral trapdoor, to sign message updates anony-

mously before posting them to the blockchain. Both, RFAME and

DGSS are associated with policies. In this section, we discuss the

parties involved in ReTRACe, and the policy structures that con-

trol their ability to update messages. Table 1 presents important

notations used.

NamingConventions: In our discussions, we refer to the blockchain
as BC, we use message to mean a pre-image of the chameleon hash

function, which is posted on the BC as a transaction, and when we

say “trapdoor”, we mean the ephemeral trapdoor of the chameleon

hash, unless otherwise specified. A chameleon hash function’s out-

put has mutable and immutable parts, the immutable part contains

the digest of the hash function, the mutable part includes the trap-

door needed for creating a message collision, among other things.

Table 1: Notations

Variable Definition

λ Security parameter

AIA Attribute-issuing authority

ϒABE Attribute Based Encryption (ABE) policy for

regular users

ϒGS Group Signature Scheme (DGSS) policy for

regular users

ϒ
info

Policy consisting of (ϒABE, ϒGS)

ϒABEadmin
ABE policy for administrators

ϒGSadmin
DGSS policy for administrators

ϒ
admin

Policy consisting of (ϒABEadmin
,ϒGSadmin

)

ξmsд Set of signatures over a message

ξΓ
info

Set of signatures over an ephemeral trap-

door

M Matrix representing a monotone span pro-

gram

ρ Mapping function from row numbers ofM
to attributes

mpkABE,mskABE Public, secret key pair of an AIA

U Universe of attributes

Γ
info

Ephemeral trapdoor for a chameleon hash

pkCH , skCH Public key and long term trapdoor of a

chameleon hash

DGSS Dynamic group signature scheme

GM , TM Group manager and tracing manager

RCHET Revocable chameleon hash with ephemeral

trapdoor scheme

RFAME Revocable fast attribute-based message en-

cryption scheme

BC Blockchain

2.1 Policies
ReTRACe has four kinds of policies, all represented as Boolean

predicates: 1) A trapdoor associated with the digest of a given

message is encrypted under an ABE policy, ϒABE. 2) The policy ϒGS,
spells out certain DGSS groups from which users can anonymously

sign a message update, and post it on the BC. 3) For revoking access
to the trapdoor, we define a policy, ϒABEadmin

, that sets forth who

can create an updated ephemeral trapdoor, and encrypt it under

a new policy, ϒ′ABE. 4) Finally, ϒGSadmin
governs who can change

ϒGS, and thus exclude users of certain DGSS groups from producing

valid signatures.

For simplicity of exposition, we assume that the ϒABEadmin
and

ϒGSadmin
policies, once set, cannot be changed (which can be re-

laxed on an as-needed basis by setting up a higher level of control).

We stress that it is the ϒABEadmin
and ϒGSadmin

policy clauses that
are immutable; our system allows for the set of people satisfying
them to be dynamic and ever-changing.

Unlike ABE schemes, DGSS do not have the concept of policies

built into them; we introduce this notion for ReTRACe. We define a

DGSS policy as a publicly-known Boolean predicate linked to a mes-

sagem that specifies which groups can produce valid signatures on

m, e.g., (m, ϒGS = “Admin” AND "Payroll"), indicates users belong-

ing to groups “Admin” and “Payroll” can produce valid signatures

onm. In case of Boolean predicates with conjunctive clauses, the sig-

natures (σ) and corresponding group public keys (gpk) are collected
into a set, ξm , where ξm = (σAdmin

, gpk
Admin

), (σ
Payroll

, gpk
Payroll

).

Any public verifier can check the validity of a set of signatures for

a message w.r.t. a given policy.

2.2 Parties
The parties involved in ReTRACe are categorized into:

1) Originator: The originator creates a message, its digest and trap-

door, and sets the four policies, ϒABE, ϒGS, ϒABEadmin
, and ϒGSadmin

that regulate future message updates.

2) Set of Authorized Users, AuthU: The set of users who can

create a collision on a message posted on the BC by the origina-

tor (AuthU could include the originator) as long as they possess

enough attributes that satisfy ϒABE, and are a member of a DGSS

group satisfying ϒGS.
3) Set ofAuthorizedUserAdministrators, AuthUAdmins: This
is the set of users who can modify the trapdoor, as well as create a

collision on the message (AuthUAdmins could include the origina-
tor), as long as they possess enough attributes to satisfy ϒABEadmin

and are a member of a DGSS group satisfying ϒGSadmin
.

4)Attribute-issuing authority andGroupManager: The attribute-
issuing authority (AIA) for the ABE scheme, and the GroupManager

(GM) for the DGSS issue keys to their respective users. For presen-

tation clarity, we use a single AIA and GM, but in practice, more

can be used easily in ReTRACe if design warrants.

2.3 Blockchain Operations
A ReTRACe transaction consists of a mutable part (plaintext mes-

sage, policies, trapdoor, ciphertexts, signatures, etc.) and an im-

mutable part (digest). When a ReTRACe transaction is included in

a block by the miners, only the immutable part of the ReTRACe
transaction is used in the Merkle tree of the given block instead of

the hash of the whole transaction. This makes it possible to update

a ReTRACe transaction in the future as long as the mutable part of

the updated transaction verifies with the immutable digest on the

BC.
ReTRACe is independent of the kind of underlying BC system in-

cluding the consensusmechanism, e.g., Proof ofWork/Stake, as long

as the security requirements for ReTRACe defined in Section 2.4

are met. For a user to be able to post any ReTRACe messages in the

BC, the user needs to be previously onboarded with a AIA and GM

in the given ReTRACe system.

To use ReTRACe with a given BC system, the hash verification

function of the BC needs to be modified to perform the ReTRACe
messages’ verification (miner verification, and public verification

of the ReTRACe messages). But ReTRACe does not leak sensitive

information to the miners hence the miners are not onboarded by

the AIA and GM. Adding or removing miners in the system using

ReTRACe works in the same as any other BC system. The miners

just have some extra steps when verifying updates to ReTRACe
transactions, but none of those steps involve the miners learning

privileged information about the messages posted on the BC.
Each block on a ReTRACe-modified BC could have mutable as

well as immutable transactions and the resultant hash of the block

will always be immutable as per the rules of traditional BCs. The
verification algorithm can verify mutable as well as immutable

transactions, thus ReTRACe can be implemented on a blockchain

which supports both, mutable and immutable transactions. Note

that once a transaction is written to the BC as immutable, it can-

not be modified, only transactions which were originally posted

as ReTRACe transactions with a trapdoor and access policy are

updatable. The AIA and GM are publicly available to all users to

sign up with, if any user needs to post mutable transactions on the

BC, user do not need to sign up with the AIA/GM if they do not

want to post immutable transactions.

2.4 Trust Assumptions and Threat Model
We make a few modest trust assumptions in ReTRACe. As in most

BC-enabled systems, we assume the consensus protocol being used

ensures honest operation by miners. We assume the AIA will hon-

estly generate attributes and secret keys; one could relax this as-

sumption by using multi-AIA techniques of [20, 39], where compo-

nents of users’ secret keys are generated by multiple AIAs. Similarly

for the DGSS scheme, we assume that the GM for a group will issue

signing keys properly, and trace users honestly. We could dilute this

assumption by using techniques of Bootle et al. [15], by introducing
a tracing manager, and separating the roles of group and tracing

managers. These relaxations could be applied on as as-needed basis,

we do not discuss them for narrative simplicity.

Threat Model and Security Goals: Our main goal is to protect

against adversaries that have no access to the long-term trapdoor

and/or current version of the ephemeral trapdoor for a given mes-

sage,m, posted on the BC, do not satisfy the policies associated

withm, yet who try to updatem or its trapdoors. A second goal is

to protect the privacy of, and provide anonymity to, the individu-

als who post a message or update a message and/or its trapdoor

on the BC. The only way for an adversary to violate our goals is

to break the security of our cryptographic constructs. We do not

consider network attacks (e.g., eclipse attacks, traffic analysis, etc.)

in this paper, prior works [9, 43] that focus on them can be used in

conjunction with ReTRACe.

2.5 Computational Assumptions
The security of ReTRACe is derived from time-tested, well-regarded

assumptions based on the Discrete Log problem, the Decision Linear

problem (DLIN), and the Decisional Diffie-Hellman (DDH) prob-

lem. We model ABE access control policies as Boolean formulas

with AND and OR gates, where each input is associated with an

attribute, and the Boolean formulas are represented as monotone

span programs, as is common in the literature.

3 ReTRACe SYSTEM OVERVIEW
In this section, we give a high-level, brief technical overview of

ReTRACe. Without loss of generality, let us consider a single AIA

and GM in the system. Let [1..n] represent a set of users, the AIA
issues sets of secret keys, SK1, . . . ,SKn , and the GM issues sets

of signing keys, sk1, . . . , skn to the n users. Let mpkABE and gpk
denote the public keys of the ABE and DGSS schemes respectively.

Let us consider a user,u who creates amessage,m, to be posted on

the BC. User u creates an adaptable (i.e., updatable) trapdoor τ , that
enables future modifications ofm (using our novel RCHET scheme),

sets a policy, ϒABE, which defines the set of authorized users,AuthU.
User u encrypts τ with mpkABE (using our novel revocable ABE

scheme, RFAME), E
mpkABE

(τ , ϒABE) → X . For controlling who can

update τ in the future, u picks an r ←$Zq (where G and q = |G| are
part of the public parameters, and will be used in the cryptographic

operations ofReTRACe). Useru then sets the ϒABEadmin
that defines

the set of authorized user administrator(s), AuthUAdmins, and
computes E

mpkABE
(r , ϒABEadmin

) → Xr . A user in AuthU updates

m during a message adaptation, a user in AuthUAdmins updates
m, X and Xr during a trapdoor update.

A user in AuthUAdmins that satisfies ϒABEadmin
can obtain r ,

prove knowledge of r to the miner(s), and update the trapdoor τ .
User u also sets the DGSS policies, ϒGS, and ϒGSadmin

that stipu-

late only members of AuthU and AuthUAdmins are authorized
to produce valid anonymous signatures on an updated message

and updated trapdoor, respectively, before posting to the BC. Fi-
nally u posts tuple t = (m,X ,Xr , ϒinfo = (ϒABE, ϒGS), ϒadmin

=

(ϒABEadmin
, ϒGSadmin

)), along with a signature on t to the BC. We

assume standard techniques such as nonces/timestamps to prevent

replay attacks are used.

Any user i ∈ [1..n], s.t. i ∈ AuthU whose secret key set SKi ∈
{SK1, . . . ,SKn } satisfies ϒABE, can decrypt X , obtain τ , and update
m tom′ (using RCHET). Note that being able to satisfy ϒABE only

allows i to decrypt the trapdoor, τ , and updatem, but not update

τ . User i will produce a signature onm′ using ski that satisfy ϒGS,
and postm′ and the signature on the BC.

The hash of a given transaction only corresponds to them con-

tained in it. The miner’s verification function in ReTRACe ensures
that only members of AuthU can updatem andC1, and only mem-

bers of AuthUAdmins have permission to updatem,C1 and C2.

The miner’s in ReTRACe do not need any extra or privileged in-

formation other than what is already available to the rest of the

system as part of the public parameters of ReTRACe, hence they do
not need to be onboarded with the AIA or GM in the system.

Revocation of users from AuthU is handled by either a mem-

ber of AuthUAdmins updating ϒABE to ϒ′ABE (RFAME), or by the

AIA/GM revoking individual users. Any user j ∈ [1..n], s.t. j ∈ Au-
thUAdmins whose secret key set SKj ∈ {SK1, . . . ,SKn } satisfies
ϒABEadmin

, can decrypt Xr , obtain r , update τ to τ ′ (using RCHET),
such that τ ′ will only be decryptable by non-revoked users (using

RFAME for access control). User j will compute E
mpkABE

(τ ′, ·) → C ′
1
,

j will prove knowledge of r to the miner, thus proving it can sat-

isfy ϒABEadmin
, and is a member of AuthUAdmins. Then j will

sign and postm′ and X ′ on the BC. The DGSS signature will be

produced using j’s set of signing keys, skj , that satisfy ϒGSadmin
.

We discuss the details and subtleties of ReTRACe in Section 7,

including some corner cases in Remark 7.1; in what follows, we

describe the building primitives. We also present two pertinent use

cases of ReTRACe in Appendix 10.2—smart contracts and financial

services.

4 REVOCABLE CHAMELEON HASHWITH
EPHEMERAL TRAPDOORS

We envisioned a revocable CHET scheme, where the long-term

trapdoor remains permanent, but access to the ephemeral trapdoor

can be revoked at will. Intuitively, for performing revocation, we

update the ephemeral trapdoor, and prevent the revoked user from

accessing the updated trapdoor.

Definition 4.1. (Revocable chameleon hash with ephemeral trap-
door (RCHET) scheme):
(1) RCHET.systemSetup(1λ) → (pubpar): This algorithm on input
a security parameter outputs the public parameters of the system. We
assume pubpar is implicitly passed as input to all other algorithms.
(2) RCHET.userKeySetup(1λ) → (skch , pkch): This algorithm on in-
put the public parameters returns a long-term trapdoor, skch , and a
public key.
(3) RCHET.cHash(skch ,pkch ,m) → {(digest, rand, Γpubinfo,
Γ
privinfo

), ⊥}: This algorithm takes as input the long-term trapdoor,
the public key, and a message m. If successful, it outputs a digest,
randomness, rand, which will be used in verifying the digest, and an
ephemeral trapdoor consisting of public/private parts, (Γ

pubinfo
, Γ

privinfo
).

(4)RCHET.verifyTransaction(pkch ,m, digest, rand, Γpubinfo) → {0, 1}:
This algorithm takes as input a public key (pkch), messagem, digest,
rand, public part of the ephemeral trapdoor, and returns 1 if the digest
is correct.
(5) RCHET.adaptMessage(skch ,m,m

′, digest, rand, Γ
pubinfo

,

Γ
privinfo

) → {rand′, ⊥}: This algorithm takes as input the long-term

trapdoor, a messagem that needs to be adapted tom′, the digest, rand,
and the ephemeral trapdoor (Γ

pubinfo
, Γ

privinfo
). If successful, it outputs

an updated rand′.
(6) RCHET.adaptTrapdoor(skch ,m,m′, digest, rand, Γpubinfo,

Γ
privinfo

)→ {(rand′, Γ′
pubinfo

, Γ′
privinfo

), ⊥}: This algorithm takes in

the long-term trapdoor, a message,m, a new messagem′, digest, rand
and Γ

pubinfo
, Γ

privinfo
. If successful, it outputs an updated rand′ and

updated public/private parts of the ephemeral trapdoor, Γ′
pubinfo

, Γ′
privinfo

.

We present our construction of an RCHET scheme in Figure 1.

The security of our RCHET construction is based on the discrete

log and DDH assumptions. At a high level, the idea is to hide

the long-term and ephemeral trapdoors in the exponent of pub-

lic parameters and use non-interactive zero knowledge proofs of

knowledge (NIZKPoKs) to prove knowledge of them. In the con-

struction, Π is an IND-CCA2 public key encryption scheme, which

is used to encrypt randomness associated with the trapdoors. We

overload the verification function for both, signatures and zero-

knowledge proofs as verify, which will be clear from context. Since

our construction uses an NIZKPoK, we require a common reference

string (crs); we discuss ideas on how to generate the crs securely
in Appendix 10.3.

4.1 RCHET Security Properties
The properties of indistinguishability, public and private collision

resistance were introduced by Camenisch et al. [18] for CHET
schemes. Derler et al. [27] retained the three properties, but strength-
ened their security definition by giving the adversary access to an

oracle for adapting messages in the private collision resistance

game, while [18] only gave adversary access to a hash oracle. We

further strengthen the security properties by: 1) introducing the

notion of revocation collision resistance, which any RCHET scheme

must provide, and 2) giving the adversary access to oracles for both,
adapting messages and adapting trapdoors.

Informally, indistinguishability requires that an outsider, given a

random string, rand, cannot tell if rand was obtained by hashing

the original message, a message update or a trapdoor update. Public
collision resistance requires that a user who possesses neither the
long-term nor ephemeral trapdoor, cannot find collisions by himself.

Private collision resistance requires that even the holder of the long-

term trapdoor cannot find collisions, as long as the ephemeral

trapdoor is unknown to them. Revocation collision resistance requires
that a user that knows both, the long-term trapdoor and ephemeral

trapdoor, cannot find collisions after the ephemeral trapdoor has

been updated, as long as the new ephemeral trapdoor is unknown

to them. We formalize these security properties, and give the proof

of the following theorem in Appendix 10.4.

Theorem 4.1. If the discrete log assumption and DDH assumption
hold in G, H is collision resistant, Π is IND-CCA2 secure, and the
NIZKPoKs satisfy completeness, simulation soundness, extractabil-
ity and zero knowledge, then our revocable chameleon hash with
ephemeral trapdoors scheme, RCHET shown in Figure 1 is secure.

5 REVOCABLE ATTRIBUTE-BASED
ENCRYPTION

In this section, we describe our revocable ciphertext policy attribute-

based encryption (CPABE) scheme, RFAME, and discuss its effi-

ciency and security properties. Most of the benchmark schemes in

the ABE literature do not consider attribute revocation [33, 47–49].

FAME [1] is a state-of-the-art efficient ABE scheme that performs

better in terms of qualitative and quantitative metrics, compared

to prior works, and provides full IND-CPA security, although it

does not discuss revocation. We use FAME as a starting point for

designing an efficient revocable CPABE scheme, RFAME.
Revocation model: In ABE, there are broadly speaking, two

possible kinds of revocation. One is policy-level revocation, where
revocation entails deleting a clause from an ABE policy, e.g., ϒ =
“CS students” and “EE staff” can be updated to a more restrictive pol-

icy, ϒ′ = “CS students”. The other is other is the more fine-grained

user-level revocationwhich calls for revoking decryption rights of in-
dividual users, e.g., if we do not wish to update ϒ, but revoke access
of a member of staff from EE. We consider user-level revocation in

this paper (although our scheme also supports modifiable policies,

if needed). In Table 2 we qualitatively compare our scheme, RFAME,
with previous revocable ABE schemes (identified by first author

RCHET Algorithms
a) RCHET.systemSetup(1λ) → (pubpar): This algorithm generates the public parameters of the system:

1. (G,д,q) ← GGen(1λ). GGen generates prime-order cyclic group G, д ∈ G, q = |G|.

2. Pick H ’s key, k ∈ K , and crs ← Gen(1λ), where K is the key-space of H . Set and return pubpar = (k,G,д,q, crs). We assume

pubpar is implicitly passed as input to all other algorithms.

b) RCHET.userKeySetup(1λ) → (skch ,pkch): This algorithm generates the long-term trapdoor and a public key:

1. Pick x ← Z∗q , h ← дx , πpk ← NIZKPoK{x : h = дx }, generate keys (SK , PK) ← Π.KeyGen(1λ).
2. Set pkch = (PK ,h,πpk) and skch = (SK ,x). Return (skch ,pkch).

c) RCHET.cHash(skch ,pkch ,m) → {(digest, rand, Γpubinfo, Γprivinfo),⊥}: Creates a chameleon hash for a messagem:

1. Check verify(πpk ,h)
?

= 1, if not, return ⊥. Pick r , etd,d,δ ← Z∗q .

2. Compute h′ ← дetd,D ← дd , and ∆ ← дδ . Do πt ← NIZKPoK{etd : h′ = дetd},πD ← NIZKPoK{d : D = дd },π∆ ←

NIZKPoK{δ : ∆ = дδ }.

3. Generate hash of message to be posted, a ← Hk (m) and create chameleon hash parameters: β ← (r + δ
x +

d
x),p ← hr ,b ← p · h′a .

Do πp ← NIZKPoK{r : p = hr }. Do C ← Π.Encrypt(PK , r), C ′ ← Π.Encrypt(PK ,a).
4. Return digest = (b,h′,πt ,C,C ′), rand = (β ,p,πp), Γpubinfo = (∆,π∆,D,πD), Γprivinfo = (δ ,d, etd).

d) RCHET.verifyTransaction(pkch ,m, digest, rand, Γpubinfo) → {0, 1}: This algorithm verifies the digest for a messagem.

1. Check verify(πpk ,h)
?

= 1, verify(πp ,p)
?

= 1, verify(πt ,h′)
?

= 1, verify(πD ,D)
?

= 1, and verify(π∆,∆)
?

= 1.

2. Check b
?

= hβ ·h′a
D ·∆ , where a ← Hk (m). If check passes, return 1, else return 0.

e) RCHET.adaptMessage(skch ,m,m
′, digest, rand, Γ

pubinfo
, Γ

privinfo
) → {rand′,⊥}: This algorithm updates a messagem:

1. Decrypt a ← Π.Decrypt(SK ,C ′), check a
?

← Hk (m). Check b
?

= hβ ·h′a
D ·∆ . If checks fail, return ⊥.

2. Check h
?

= дx , p
?

= дxr , h′
?

= дetd , D
?

= дd , and ∆
?

= дδ . If checks fail, return ⊥.
3. Decrypt r ← Π.Decrypt(SK ,C), if r = ⊥, return ⊥.
4. Compute a′ ← Hk (m

′). Compute r ′ ← (rx+a ·etd−a
′ ·etd+δ

x).

5. Set p′ = hr
′

and do πp′ ← NIZKPoK{r ′ : p′ = hr
′

}. Compute β ′ ← (r ′ + d
x). Set and output rand′ = (β ′,p′,πp′).

f) RCHET.adaptTrapdoor(skch ,m,m
′, digest, rand, Γ

pubinfo
, Γ

privinfo
) → {(rand′, Γ′

pubinfo
, Γ′

privinfo
),⊥}: This algorithm modifies the

trapdoor to an existing chameleon hash for a messagem as follows:

1. Decrypt a ← Π.Decrypt(SK ,C ′), check a
?

← Hk (m). Check b
?

= hβ ·h′a
D ·∆ . If checks fail, return ⊥.

2. Check h
?

= дx , p
?

= дxr , h′
?

= дetd , D
?

= дd , and ∆
?

= дδ . If checks fail, return ⊥.
3. Decrypt r ← Π.Decrypt(SK ,C), if r = ⊥, return ⊥. Compute a′ ← Hk (m

′).

4. Pick d ′,δ ′ ← Z∗q . Compute D ′ ← дd
′

,∆′ ← дδ
′

, do πD′ ← NIZKPoK{d ′ : D ′ = дd
′

}, π∆′ ← NIZKPoK{δ ′ :∆′ = дδ
′

}.

5. Set r ′ ← (rx+a ·etd−a
′ ·etd+δ ′

x),p′ ← hr
′

. Compute β ′ ← (r ′ + d ′
x), πp′ ← NIZKPoK{r ′ : p′ = hr

′

}.

6. Prove knowledge of DDH tuple (д,дδ ,дd ,дδd). Set and output rand′ = (β ′,p′,πp′), Γ′
pubinfo

= (∆′,π∆′ ,D
′,πD′), and Γ′

privinfo
=

(δ ′,d ′, etd).

Figure 1: Construction of Revocable Chameleon Hash with Ephemeral Trapdoors (RCHET)

names). The key difference between RFAME and [22] is RFAME’s
efficient rekeying.

Intuition tells us that for user-level revocation, non-revoked

users must be provided some information that the revoked user

is not privy to, which would entail transmitting some new key

material to non-revoked users, and some ciphertexts would need to

be re-encrypted, to prevent the revoked user from decrypting them

using their old keys. In RFAME, we achieve user-level revocation
with minimal rekeyings/re-encryptions.

5.1 Definitions and Construction
Definition 5.1. (Revocable ciphertext policy attribute-based en-

cryption (RFAME) scheme)
1) RFAME.Setup(1λ ,U) → (mpk,msk): This algorithm takes as in-
put the security parameter, the attributes in the universe, U, and
generates the master public and secret keys.
2) RFAME.KeyGen(msk,S) → (sk1, sk2, . . . , sk |S |): This algorithm
takes in the master secret key, a set of attributes S, and outputs secret
keys for each attribute in S.
3) RFAME.Encrypt(mpk,m, ϒ) → C : The encrypt algorithm takes in

Table 2: Comparison of different revocable CPABE schemes

Scheme Standard as-
sumptions

Security Application-
specific

Policy/user-
level revoca-
tion

Type-III
pairings

Revocation
list

Large uni-
verse

Bethencourt [10] No (Generic group

model)

Full No Poliy-level No No Yes

Boldyreva [12], Attra-

padung [3]

Yes (DBDH) Selective No User-level No Yes Yes

Yu [51] Yes (DBDH) Selective Yes User-level No Yes Yes

Sahai [45] No (Subgroups) Full No Policy-level No Yes Yes

Cui [23] No (q-type) Selective Yes User-level No Yes No

Datta [26] Yes (DLIN) Full No User-level No Yes Yes

Chow [22] Yes (XDH) Full No User-level Yes No No

RFAME Yes (DLIN) Full No User-level Yes No No

the master public key, a message to be encrypted, and an access policy,
ϒ. It outputs a ciphertext C .
4) RFAME.Decrypt(sk1, . . . , sk |S | ,C, ϒ) → {m,⊥}: The decryption
algorithm takes in the set of signing keys, a ciphertext tagged with a
policy ϒ, and outputs the messagem if decryption is successful, else
outputs ⊥.
5) RFAME.Revoke(mpk,msk,uid,ν) → (mpk ′,msk ′, skν): This al-
gorithm takes in the master public and secret keys, a user uid with
attribute ν , who needs to be revoked. It returns the new master public
and secret keys to AIA, and the new secret key, skν , for the non-revoked
users possessing ν .

We give our construction of RFAME in Figure 2, whose security

is based on the DLIN assumption. We walk the reader through a few

initial steps of the decryption algorithm that will help in verifying

correctness in Appendix 10.5. We now describe our intuitive ideas

behind RFAME and its efficiency.

Efficient Rekeying in RFAME: Let us consider an AIA of an or-

ganization that issues four kinds of attributes, “Admin”, “Payroll”,

“Benefits”, and “Accounts”. Let us assume there are y unique users

possessing each attribute–a total of 4y users in the system, and that

there are three messages in the system encrypted under different

policies: i) Msg
1
is encrypted under ϒMsg

1

= (“Admin” OR “Pay-

roll”); ii)Msg
2
is encrypted under ϒMsg

2

= (“Payroll” OR “Benefits”);

iii)Msg
3
is encrypted under ϒMsg

3

= (“Benefits” OR “Accounts”).

Using current revocable CPABE schemes (e.g., [22]), if one user

possessing the Admin attribute terminates employment, their secret

key is revoked by the AIA, and the other y − 1 Admin users get

rekeyed.Msg
1
needs to be re-encrypted to prevent the revoked user

from decrypting it. Since Payroll is part of the ϒMsg
1

policy, all y
users holding Payroll get rekeyed, asMsg

1
got re-encrypted. Payroll

users getting rekeyed results inMsg
2
needing to be re-encrypted.

Consequently, users holding Benefits and Accounts attributes need
to be rekeyed, and Msg

3
needs to get re-encrypted. In total, we

need to perform three re-encryptions and rekey 4y − 1 users, for a
single user revocation. Our goal is to avoid such a domino effect.

At a high level, our idea is to associate each attribute, attr with
some unique randomness, r , and embed r into the secret keys of

all users who possess attr. When a user possessing attr needs to be

revoked, we update the randomness to r ′ and reissue new secret

keys with r ′ embedded in them only to the non-revoked users

holding attr, and re-encrypt all ciphertexts whose policies involve

attr. For facilitating this, the AIA can maintain a compact local table

identifying which users possess a given attribute—a small storage

cost in exchange for avoiding system-wide rekeying of users.

Furthermore, non-revoked users possessing attributes other than

attr can still use their current keys to decrypt re-encrypted cipher-

texts, which significantly reduces the number of users that need to

be rekeyed, and the ciphertexts that need to be re-encrypted. Note

that in [45], the authors propose a scheme that does not require

re-encryptions, for policy-level revocation, with the restriction that

a ciphertext can only be re-encrypted to a more restrictive policy.
Our work is significantly more flexible, in that we perform user-
level revocation, and do not impose any restrictions on policies.

Also, [45] is proven only CPA-secure; ReTRACe requires a CCA-
secure scheme.

1

Thus, RFAME handles revocation more efficiently; when a user

possessing Admin gets revoked, only the other y − 1 users in Admin
are rekeyed, and only Msg

1
needs to be re-encrypted to prevent

the revoked user from decrypting it. The price we pay for this is

that RFAME is a small-universe revocable CPABE scheme.

In summary, in the worst case, if x is the number of unique

attributes in a system, y the number of users per attribute, then

the overhead, using state-of-the-art revocation methods is O(x) re-
encryptions and O(xy) rekeyings. In RFAME, the overhead is Θ(1)
re-encryptions and Θ(y) rekeyings. We first prove RFAME CPA-

secure, we later turn this into a CCA-secure scheme for ReTRACe.
We give the IND-CPA game for RFAME and the proof of the follow-

ing theorem in Appendix 10.6.

Theorem 5.1. RFAME is fully IND-CPA secure under the DLIN
assumption on Type III pairings in the random oracle model.

6 DYNAMIC GROUP SIGNATURE SCHEMES
Weuse a group signature scheme for providing privacy and anonymity

to users posting messages on the BC, yet retaining the ability to

trace them if necessary. The group signature scheme can be easily

1
CCA security in their scheme is essentially unachievable; since their scheme re-

randomizes the ciphertext, an adversary can just submit the re-randomized challenge

ciphertext back to the decryption oracle, thus trivially winning the CCA game.

RFAME Algorithms
a) RFAME.SetupABE(1λ ,U) → (mpkABE,mskABE): The algorithm first generates the group parameters (q,G,H, GT ,
e,д,h), picks a1,a2,b1,b2,p1,p2 ←$Z∗q , d1,d2,d3 ←$Zq . It picks αy ←$Z∗q , and computes hαy for each y ∈ U . It sets

mpkABE = (h,H1 = ha1 ,H2 = ha2 ,T1 = e(д,h)p1d1a1+d3 ,T2 = e(д,h)p2d2a2+d3 ,hαy1 , . . . ,h
αy |U |), and sets mskABE =

(д,h,a1,a2,b1,b2,p1,p2,д
d1 ,дd2 ,дd3 ,αy1 . . . αy |U |).

b) RFAME.KeyGenABE(mpkABE,mskABE,y1, . . . ,y |U |) → SK : The algorithm generates the secret keys for all attributes y ∈ U . Pick

r1, r2 ←$Zq . Compute sk0 = (hb1r1 ,hb2r2 ,hr1+r2).
For all y ∈ U and t ∈ {1, 2}, pick σy ,σ

′←$Zq , and compute:

sky,t = H(y1t)
b
1
r
1

at +αy · H(y2t)
b
2
r
2

at +αy · H(y3t)
r
1
+r

2

at +αy · д
σy

at +αy · д
αy

at +αy ; sky,3 = (д−αy · д−σy)

sk′t = H(011t)
b
1
r
1

at · H(012t)
b
2
r
2

at · H(013t)
r
1
+r

2

at · д
σ ′
at ; sk′

3
= (дd3 · д−σ

′

), sk′′ = дdtpt

Set and return SK = (sk0, sky,1, sky,2, sky,3, sk′1, sk
′
2
, sk′

3
, sk′′)

c) RFAME.Encrypt(mpkABE,msд, (M, ρ)) → C . Pick s1, s2 ←$Zq . Let ρ(i) denote a mapping to the attributes i ∈ I that satisfy a given

policy. Compute:

ctρ(i),1 = H s1
1
· (hαρ (i))s1 = hs1(a1+αρ (i)) and similarly ctρ(i),2 = h

s2(a2+αρ (i)), and set

ct0 = (ct0,1 = H s1
1
, ct0,2 = H s2

2
, ctρ(i),1, ctρ(i),2, ct0,3 = h

s1+s2)

AssumeM has n1 rows and n2 columns. Then, for each row, i ∈ [1..n1] and l = 1, 2, 3, compute:

cti,l = H(ρ(i)l1)
s1 · H(ρ(i)l2)s2 ·

n2∏
j=1
[H(0jl1)s1 · H(0jl2)s2](M)i, j ; Set ct′ = (T s1

1
·T s2

2
·msд)

Set and outputC = (ct0, cti,l ∀ i ∈ [1..n1], l ∈ {1, 2, 3}, ct′)
d) RFAME.Decrypt(SK ,C, (M, ρ)) → {msд,⊥}: Parse C as (ct0, cti,l ∀ i ∈ [1..n1], l ∈ {1, 2, 3}, ct′). For each row cti,l ∈ M, pick

coefficients γi ∈ {0, 1} such that

∑
i ∈I

γi (M)i = [1, 0, . . . , 0].

num = ct′ · e(
∏
i ∈I

ctγii,1, sk0,1) · e(
∏
i ∈I

ctγii,2, sk0,2) · e(
∏
i ∈I

ctγii,3, sk0,3)

den =
∏
i ∈I

e(skγiρ(i),1, ctρ(i),1) ·
∏
i ∈I

e(skγiρ(i),2, ctρ(i),2) · e(sk
′
3
·
∏
i ∈I

skγiρ(i),3, ct0,3) ·
∏

t ∈{1,2}

e(sk′t · sk
′′
t , ct0,t)

e) RFAME.Revoke(mpkABE,mskABE,ν) → (mpkABE
′,mskABE

′, SK ′): Let a user holding attribute ν ∈ U be revoked by the AIA. This
algorithm is run by the AIA which generates new parameters for the non-revoked users of attribute group ν , and updates its mpkABE

and mskABE. It picks βν ← Z
∗
q , and computes hβν . It updates mpkABE

′ = (h,H1,H2,T1,T2,h
αy

1 , . . . ,h
αy |U |−1 ,hβν). The mskABE

remains the same except the αν gets replaced with βν . It then generates (a component of) the secret key for all non-revoked users

possessing attribute ν as follows:

skν,t = H(ν1t)
b
1
r
1

at +βν · H(ν2t)
b
2
r
2

at +βν · H(ν3t)
r
1
+r

2

at +βν · д
σν

at +βν · д
βν

at +βν ; skν,3 = (д−βν · д−σν)
where t ∈ {1, 2}, and all other variables are as defined in the SetupABE and KeyGenABE algorithms. Set SK ′ =
(sk0, skν,t , skν,3, sk′

1
, sk′

2
, sk′

3
, sk′′). SK ′ is distributed only to the non-revoked users who possess attribute ν .

Figure 2: Construction of Revocable Fast Attribute Based Encryption (RFAME)

replaced with a regular signature scheme in ReTRACe if anonymity

is not required in the system. Group signature schemes are based

on three kinds of groups: static, semi-dynamic, and dynamic groups.

Static groups do not support user addition or revocation [6], semi-

dynamic groups support addition but not revocation [7], and dy-

namic groups allow addition and revocation [15]. We use a dynamic

group signature scheme (DGSS) in ReTRACe, we do not construct

a DGSS, as existing constructions [15, 40] provide the properties

we need. ReTRACe is independent of the specifics of any DGSS

construction.

We define a DGSS in Appendix 10.7. At a high level, there is a

groupmanager (GM), who administers groupmembership, and a set

of users who get their signing keys from the GM. There are eight al-

gorithms: the probabilisticGSetup,GKGen,UpdateGroup, Sign,UserTrace
are used for setting up group parameters, GM’s keys, users’ keys,

signing a message, and tracing the signer of a message, respec-

tively. The deterministic IsActive, VerifySignature, Judge are used

to check if a user is an active group member, to verify signatures,

and to judge if the tracing procedure has been run correctly by the

GM. Additonally, a DGSS also has an interactive Join protocol run

between the GM and users.

Security of DGSS: A DGSS is said to be secure if it is: 1) mathemat-

ically correct, 2) provides anonymity (does not reveal the identity of

a group member who produced signatures), 3) provides traceability
(a group manager can trace all valid signatures to corresponding ac-

tive members of the group), and 4) provides non-frameability (even

if the rest of the group collude, they cannot generate a signature

that is falsely attributed to a honest user who did not produce it).

7 THE ReTRACe FRAMEWORK
We first present the definition of ReTRACe, which describes, at an

abstract level, the purpose of each constituent algorithm.

Definition 7.1. (ReTRACe scheme)
(1) ReTRACe.Keygen(1λ) → (SecPar, PubPar): This algorithm takes
in a security parameter, and outputs the secret and public parameters
of the ReTRACe system.
(2) ReTRACe.UserSetup(SecPar, PubPar) → key: This algorithm
takes as input the secret/public parameters, and initializes each user
with a tuple, key, consisting of their group signing keys, RFAME keys,
and RCHET long-term trapdoor.
(3) ReTRACe.Sign(GSK,m, ϒ) → ξm : This algorithm takes in a set
of signing keys, GSK, a message, a DGSS policy, ϒ, and outputs a set
of signatures, ξm satisfying ϒ.
(4) ReTRACe.CreateMessage(key, PubPar, m) → (msд, ξmsд): Is
run by the originator, takes in a tuple, key, public parameters, a
message, and outputs a tuple,msд, consisting of RCHET, RFAME and
DGSS parameters form, and a set of signatures onmsд, ξmsд .
(5)ReTRACe.AdaptMessage(key, PubPar,m′,msд, ξmsд)→ (msд′,
ξmsд′): This algorithm, run by members of AuthU takes as input a
tuple, key, the public parameters, a message, a tuple,msд, and a set of
signatures onmsд, ξmsд . If the RCHET, RFAME, DGSS parameters
contained inmsд pass verification, it updates them contained inmsд
to m′, returns an updated message tuple, msд′ with new RCHET,
RFAME and DGSS parameters, and a set of signatures, ξmsд′ on
msд′.
(6) ReTRACe.Verify(PubPar, msд, ξmsд) → {0, 1}: This algorithm
takes in PubPar, a tuple,msд, and and set of signatures onmsд, ξmsд .
If the RCHET,RFAME, and DGSS parameters contained inmsд pass
verification, it returns 1.
(7) ReTRACe.VerifyMiner(PubPar,msд, ξmsд , ς) → {0, 1}: This al-
gorithm is run by the miners, and takes in the public parameters, a
msд tuple, a set of signatures onmsд, ξmsд , and a variable ς , which
conveys whether the person that submitted msд was a member of
AuthU or AuthUAdmins. If the RCHET, RFAME and DGSS pa-
rameters inmsд pass verification, the algorithm returns 1, and the
msд will be posted on the BC .
(8) ReTRACe.RevokeUser(key, PubPar, m′, msд, ξmsд) → (msд′,
ξmsд′): This algorithm is run by members of AuthUAdmins who
want to revoke users either by updating the Boolean policies associated
with RFAME/DGSS contained inmsд, or in response to the AIA/GM
revoking users. It outputs an updated tuple, msд′ containing new
RCHET,RFAME,DGSS parameters and set of signatures, ξmsд′ on
msд′.

ReTRACe.Keygen(1λ)

1 : GSetup(1λ) → pubpar

2 : GKGen(pubpar) → (outGM , stGM),

whereoutGM = (mpk, info0)

3 : Set gpk = (pubpar, mpk), stGM is GM’s state

4 : RFAME.SetupABE(1λ, U) → (mpkABE, mskABE)

5 : RCHET.cSetup(1λ) → param

6 : RCHET.userKeySetup(param) → (skch, pkch)

7 : PubPar = (G, д, q, pkch, mpkABE, gpk)

8 : SecPar = (mskABE, stGM)

9 : return (SecPar, PubPar, skch)

(a) ReTRACe: AIA/GM setup

ReTRACe.UserSetup(SecPar,PubPar)

1 : GetL, the list of all groups in DGSS

that current user needs to join, set GSK = ∅
2 : For each group in L, RunDGSS.Join get

gsk, GSK = GSK ∪ gsk

3 : RFAME.KeyGenABE(mpkABE, mskABE, y1, . . . ,

y |U |) → SK

4 : Retrieve skch
5 : return key = (GSK, SK, skch)

(b) ReTRACe: System setup for user

ReTRACe.Sign(GSK,m, ϒGS)

1 : Pick K s .t ., K ⊆ GSK, ϒGS(K) = 1

2 : for gski ∈ K, where i ∈ 1 · · · | GSK | do

3 : DGSS.Sign(gski , i .info,m) → {σi , ⊥}

4 : ξ = (σi , i .gpk) ∪ ξ

5 : return ξ

(c) ReTRACe: Signing a message

ReTRACe.Verify(PubPar,msд, ξmsд)

1 : for (σl , l .gpk) ∈ ξmsд do

2 : if DGSS.VerifySignature(l .gpk, l .info,msд,

σl)
?

= 0, return 0

3 : for (σl , l .gpk) ∈ ξϒ
info

do

4 : if DGSS.VerifySignature(l .gpk, l .info, ϒ
info

,

σl)
?

= 0, return 0

5 : if RCHET.verifyTransaction(pkch,m, digest,

rand, Γ
pubinfo

)
?

= 1

6 : return 1.

(d) ReTRACe: Verifying a message

Figure 3: ReTRACe algorithms for system setup and sign-
ing/verifying messages

Remark 7.1. An originator of a message could possibly create
malformed policies, e.g., policies containing bogus or non-existent
attributes. We assume the miner has knowledge of all the (public)
attributes in the universe and in this case would reject malformed
policies. An originator of a message,m, could create a bogus trapdoor,
which would not be discovered until someone attempts to updatem.
Note that the miner cannot check if the encrypted trapdoor is cor-
rect or not, since the miner likely will not be part of the AuthU, or
AuthUAdmins sets. Solutions to this problem include having the
originator do a verifiable encryption of the trapdoor, while submit-
ting m to the miner, or have the originator include an NIZK proof
along with the message. We leave the construction of a scheme that
incorporates these ideas as future work.

ReTRACe.CreateMessage(key,PubPar,m)

1 : RCHET.cHash(skch, pkch,m) →

(digest, rand, Γ
pubinfo

, Γ
privinfo

)

2 : RFAME.Encrypt(mpkABE, Γprivinfo, (MϒABE,

ρϒABE)) → X

3 : Create ϒGS . Set ϒinfo = (ϒABE, ϒGS)

4 : r ←$Z∗q, ω = д
r , πω ← NIZKPoK{r : ω = дr }

5 : RFAME.Encrypt(mpkABE, r, (MϒABEadmin
,

ρϒABEadmin
)) → Xr

6 : Create ϒGSadmin

7 : Setϒ
admin

= (ϒABEadmin
, ϒGSadmin

, Xr , ω, πω)

8 : ReTRACe.Sign(GSK, ϒ
info

, ϒGSadmin
) → ξϒ

info

9 : msд = (m, digest, rand, Γ
pubinfo

, X , ϒ
info

,

ϒ
admin

, ξϒ
info
)

10 : ReTRACe.Sign(GSK,msд, ϒGS) → ξmsд

11 : CallReTRACe.VerifyMiner(PubPar,msд, ξmsд, πω)

12 : return (msд, ξmsд)

(a) ReTRACe: Creating a message

ReTRACe.AdaptMessage(key,PubPar,m′,msд, ξmsд)

1 : if ReTRACe.Verify(PubPar,msд, ξmsд)
?

= 0

return ⊥

2 : RFAME.Decrypt(SK, X , (MϒABE, ρϒABE)) → Γ
privinfo

3 : RCHET.adaptMessage(skch,m,m′, digest, rand,

Γ
pubinfo

, Γ
privinfo

) → rand′

4 : msд′ = (m′, digest, rand′, Γ
pubinfo

, X , ϒ
info

,

ϒ
admin

, ξϒ
info
)

5 : ReTRACe.Sign(GSK,msд′, ϒGS) → ξmsд′

6 : if ReTRACe.VerifyMiner(PubPar,msд′,

ξmsд′, ⊥)
?

= 0

return ⊥

7 : return (msд′, ξmsд′)

(b) ReTRACe: Updating a message

Figure 4: ReTRACe algorithms for creating and updating a message

7.1 ReTRACe Construction
We now give the detailed construction of the ReTRACe framework

comprising of eight algorithms in Figure 3, Figure 4, Figure 5, and

Figure 6. In the algorithms,M denotes the monotone span program

representing an ABE policy, and ρ represents a mapping function

that maps rows of M onto attributes. We use BC.write to denote

a blockchain write operation. The Keygen,UserSetup, Sign,Verify,
AdaptMessage algorithms are fairly self-explanatory. We now de-

scribe some of the salient features of theCreateMessage,VerifyMiner,
and RevokeUser algorithms, which are more involved. We assume

a given implementation will use standard techniques like nonces

and timestamps to prevent against replay attacks.

ReTRACe.CreateMessage: This algorithm (Figure 4a), is run by the

originator who first runs RCHET to create a digest and trapdoors

for a message m. The originator sets ϒABE, ϒGS (for members of

AuthU), and ϒABEadmin
and ϒGSadmin

(for members of AuthUAd-
mins). The ephemeral trapdoor is encrypted under ϒABE to obtain

X . The originator then picks an r ←$Z∗q and encrypts it under

ϒABEadmin
to obtain Xr . This ensures that only members of Au-

thUAdmins can decrypt r , and modify ϒABE and ϒGS. The origina-
tor creates a tuple,msд, withX andAuthU,AuthUAdmins policy
information, signsmsд using her signing key(s) that satisfy ϒGS,
and creates a set of signatures, ξϒ

info
, with each signature bundled

with its corresponding verification key. Finally, the originator signs

ϒ
info

and sends the signature, along with msд, ξmsд , ξϒ
info

to the

miner.

ReTRACe.VerifyMiner: This algorithm (Figure 5) is run only by

miners to verify a message before posting it on the BC. If a message

is being adapted (ς = ⊥), the miner does not do NIZK verifications.

If a trapdoor is being adapted (ς = πω), the tuple submitted to the

miner is an update to a pre-existingmsд on the BC, and the ω used

to verify the NIZK πω is obtained from the currentmsд on the BC.
If a new messagemsд is being created (ς = πω), then the ω used to

verify the NIZK πω is obtained from themsд tuple itself. In all cases,

the miner checks if all signatures in ξmsд pass verification w.r.t.

ϒGS contained in the tuple msд, checks if all signatures in ξϒ
info

pass verification w.r.t. ϒGSadmin
, and the digest of m is checked.

If all checks pass, themsд tuple, along with the list of signatures

on it is written to the BC. Note that if ReTRACe is deployed in a

BC that hosts both mutable and immutable transactions, then for

immutable transactions, the miner verification process is the same

as in current BC systems.

ReTRACe.RevokeUser: This algorithm (Figure 6a, Figure 6b) is called

by a member of AuthUAdmins either when they want to revoke

clauses from the ABE policy, ϒABE, or when the ephemeral trapdoor,

Γ
privinfo

, needs to be re-encrypted in response to the AIA revoking

a user. Both cases are handled differently:

Case 1: Revoking a clause from ϒABE: This algorithm (Figure 6a) is

run by an user v ∈ AuthUAdmins who wants to modify an ϒABE
associated withmsд. The AIA/GM are not involved, and no algo-

rithm from RFAME is called. User v first decrypts the trapdoor,

Γ
privinfo

, using her RFAME secret keys, v picks an r ′, and encrypts

r ′ under ϒABEadmin
. This is to ensure that only non-revoked mem-

bers of AuthUAdmins can decrypt r ′ and adapt the ephemeral

trapdoor in the future. Next, v adapts the ephemeral trapdoor. The

new message and trapdoor are encrypted under a new policy, ϒ′ABE,

which is a low cost operation and involves no re-keying operations.

We have not depicted the ϒGS getting updated, for clarity of presen-
tation. There are four cases:

1) If ϒABE changes to a more inclusive ϒ′ABE, the new user groups

need to be present in the ϒGS as well.
2) If ϒABE changes to a more restrictive ϒ′ABE, the revoked users

cannot decrypt the trapdoor and successfully adapt the message,

so ϒGS does not need to change.

3) If ϒGS changes to a more restrictive ϒ′GS, such that the users

satisfying ϒGS were also part of ϒABE, ϒABE needs to change too,

revoking the said users from the ABE scheme.

4) If ϒGS changes to a more inclusive ϒ′GS, such that the users satis-

fying ϒ′GS are not part of ϒABE, the new users cannot decrypt the

trapdoor and successfully adapt the message, so ϒABE does not need
to change. User v then signs the new ϒ′

info
using their signing keys

that satisfy ϒGSadmin
; the signature set is denoted as ξϒ′

info

. A new

msд′ is created and signed using a set of keys that satisfy ϒGS, and
the resulting signature set is denoted by ξmsд′ . Finally,msд′ and
ξmsд′ are given to the miner who verifies it before posting on the

BC.
Case 2: AIA revoking a user : This algorithm (Figure 6b) is run by a

userv ∈ AuthUAdmins as soon as the AIA revokes a user holding

attribute y (which appears in either ϒABE or ϒABEadmin
). First, the

AIA updates its own public key from mpkABE to mpkABE
′
(which

results in PubPar getting updated to PubPar′), and then issues new

signing keys, SK ′, only to the non-revoked users holding attribute

y. User v then proceeds to adapt the ephemeral trapdoor, Γ
privinfo

,

to prevent the revoked user from being able to perform any future

message adaptations. User v then generates a new r ′, encrypts it,
etc., the rest of the steps are similar to Case 1.

ReTRACe.VerifyMiner(PubPar,msд, ξmsд , ς)

1 : for (σl , l .gpk) ∈ ξmsд do

2 : if DGSS.VerifySignature(l .gpk, l .info,msд, σl)
?

= 0

3 : return 0

4 : for (σl , l .gpk) ∈ ξϒ
info

do

5 : if DGSS.VerifySignature(l .gpk, l .info, ϒ
info

, σl)
?

= 0

return 0

6 : if ς = πω
7 : if verify(ω, πω) , 1, return 0

8 : if RCHET.verifyTransaction(pkch,m, digest, rand,

Γ
pubinfo

)
?

= 1

9 : BC.write(msд, ξmsд,) return 1

10 : return 0

Figure 5: ReTRACe: Miner verifying a message

7.2 ReTRACe Security Properties
We now informally discuss the security properties of ReTRACe:
indistinguishability, public, private, and revocation collision resis-

tance. The first three properties were first introduced by Derler

ReTRACe.RevokeUser(key,PubPar,m′,msд, ξmsд)

1 : if ReTRACe.Verify(PubPar,msд, ξmsд)
?

= 0

return ⊥

2 : RFAME.Decrypt(SK, Xr , (MϒABEadmin
,

ρϒABEadmin
)) → r

3 : r ′ ←$Z∗q, ω
′ = дr

′
.Set πω′ ← NIZKPoK{r ′ : ω′ = дr

′
}

4 : RFAME.Encrypt(mpkABE, r ′, (MϒABEadmin
,

ρϒABEadmin
)) → Xr ′

5 : ϒ′
admin

= (ϒABEadmin
, ϒGSadmin

, Xr ′, ω′, πω′)

6 : RFAME.Decrypt(SK, X , (MϒABE, ρϒABE)) → Γ
privinfo

7 : RCHET.adaptTrapdoor(skch,m,m′, digest, rand,

Γ
pubinfo

, Γ
privinfo

) → (rand′, Γ′
pubinfo

, Γ′
privinfo

)

8 : RFAME.Encrypt(mpkABE, Γ
′
privinfo

, (Mϒ′ABE
,

ρϒ′ABE)) → X ′

9 : ϒ′
info
= (ϒ′ABE, ϒGS)

10 : ReTRACe.Sign(GSK, ϒ′
info

, ϒGSadmin
) → ξϒ′

info

11 : msд′ = (m′, digest, rand′, Γ′
pubinfo

, X ′,

ϒ′
info

, ϒ′
admin

, ξϒ′
info

)

12 : ReTRACe.Sign(GSK,msд′, ϒGS) → ξmsд′

13 : CallVerifyMiner(PubPar,msд′, ξmsд′, πω′)

14 : return (msд′, ξmsд′)

(a) ReTRACe: Revoke Case 1: Revoke users by updating policies

ReTRACe.RevokeUser(key,PubPar′,m′,msд, ξmsд)

1 : if ReTRACe.Verify(PubPar′,msд, ξmsд)
?

= 0

return ⊥

2 : RFAME.Decrypt(SK, Xr , (MϒABEadmin
,

ρϒABEadmin
)) → r

3 : r ′ ←$Z∗q, ω
′ = дr

′
.Set πω′ ← NIZKPoK{r ′ : ω′ = дr

′
}

4 : RFAME.Encrypt(mpkABE
′, r ′, (MϒABEadmin

,

ρϒABEadmin
)) → Xr ′

5 : ϒ′
admin

= (ϒABEadmin
, ϒGSadmin

, Xr ′, ω′, πω′)

6 : RFAME.Decrypt(SK, X , (MϒABE, ρϒABE)) → Γ
privinfo

7 : RCHET.adaptTrapdoor(skch,m,m′, digest,

rand, Γ
pubinfo

, Γ
privinfo

) → (rand′, Γ′
pubinfo

, Γ′
privinfo

)

8 : RFAME.Encrypt(mpkABE
′, Γ′

privinfo
, (MϒABE,

ρϒABE)) → X ′

9 : msд′ = (m′, digest, rand′, Γ′
pubinfo

, X ′, ϒ
info

,

ϒ′
admin

, ξϒ
info
)

10 : ReTRACe.Sign(GSK,msд′, ϒGS) → ξmsд′

11 : CallVerifyMiner(PubPar′,msд′, ξmsд′, πω′)

return (msд′, ξmsд′)

(b) ReTRACe: Revoke Case 2: AIA revoking a single user

Figure 6: ReTRACe algorithms for revoking users

et al. [27] for any policy-based chameleon hash scheme. We de-

fine revocation collision resistance, and strengthen the first three

properties, by giving the adversary the ability to adapt messages

and revoke messages. Indistinguishability requires that it should be

computationally infeasible for an adversary to distinguish whether

the randomness associated with a given message was generated as

a result of a CreateMessage, AdaptMessage or RevokeUser. Public
collision resistance requires that an adversary who knows neither

the long-term nor the ephemeral trapdoor cannot produce valid

collisions even after seeing past adaptations of messages and trap-

doors, even with access to some attributes, but not the complete

attribute set that can decrypt the ephemeral trapdoor.

(a) Key generation and Setup

(b) Encryption and Decryption

Figure 7: Timings for RFAME vs. FAME [1] (80 users per attribute)

Private collision resistance requires that an adversary that knows

the long-term trapdoor, but not ephemeral trapdoor of the RCHET
scheme, cannot produce valid collisions, even with knowledge of

past message and trapdoor adaptations. This property should hold

even if she has access to a subset of attributes, but not the complete

set of attributes, needed to decrypt the current trapdoor. Revocation

collision resistance requires that an adversary, who knows the long-

term and ephemeral trapdoors, and has valid attributes to decrypt

the ephemeral trapdoor, cannot produce valid collisions, if, either

the RFAME policy changed to exclude her, or the AIA revoked

some or all of her attributes necessary to decrypt the trapdoor.

We have proven the IND-CPA security of RFAME; we apply the

Fujisaki-Okamoto transform [30] to convert RFAME to an IND-

CCA2 secure scheme to accomplish the proof. The formalization

of the security properties and the proof of the pertinent theorem

(next) are in Appendix 10.8.

Theorem 7.1. If RCHET is secure, RFAME is fully IND-CCA2
secure, and DGSS is a secure dynamic group signature scheme then
ReTRACe is secure.

8 IMPLEMENTATION AND RESULTS
We implemented RFAME, RCHET, and ReTRACe in Python 3, and

used Charm [19] for cryptographic modules. All the experiments

were carried out on a machine with 64 GB RAM and an Intel(R)

Core(TM) i7-6700K CPU clocked at 4.00 GHz. We implemented

RCHET and RFAME to compare their performance against CHET

and FAME, respectively, to quantify the price of adding revocation.

We do not compare RFAME quantitatively with other revocable

ABE schemes, since they do not provide the properties that RFAME
provides (see Table 2 comparison). Using RCHET and RFAME we

implement ReTRACe. Note that ReTRACe is the first system that

provides transaction-level revocable blockchain rewrites, there is

no equivalent state-of-the-art scheme to compare with.

RFAME Results:We set our ABE policies to contain a total of 8,

16, 32 and 64 attributes, and all our policies have two equisized

conjunctive clauses separated by a single disjunction. In each run,

10, 20, 40, or 80 users signed up with the AIA for each attribute. The

computation time increases linearly with the number of users, so

for brevity, in Figure 7 we show results for RFAME and FAME for 80

users per attribute only. The setup times for RFAME are higher than
for FAME because of the extra operations involved in computing

the master public key (mpkABE) and master secret key (mskABE)

during setup; and the growth of the public key size in RFAME is

linear in the number of attributes (small-universe property).

In FAME, the size of one of the components of the ciphertext

increases linearly in the number of attributes satisfying the given

policy, whereas for RFAME there are two components whose size

increases linearly, which accounts for the difference in the timings

of the encryption and decryption operations. For decryption, the

number of pairing operations is 6+ 2×(number of attributes satisfy-

ing a given policy) for RFAME, as compared to 6 pairing operations

for FAME.

Table 3: Timing for the RFAME.Revoke (time in secs)

10 Users per attribute 0.115

20 Users per attribute 0.2

40 Users per attribute 0.364

80 Users per attribute 0.714

Table 3 shows the time taken when revoking one user from each

attribute group with 10, 20, 40, and 80 users each, which results

in the rekeying of the remaining users. The results are linear as

expected because in each case 9, 19, 39, and 79 users got new keys,

respectively. We expect this trend to continue as the number of

users per attribute increases.

As mentioned before in Section 5, previous schemes do not pro-

vide efficient revocation. To carry out a user revocation under pre-

vious schemes, the entire system would have to be rekeyed using

the Setup and Keygen functions, and all ciphertext re-encrypted

regardless of whether the revoked user had access to the message

or not. Thus, the cost in rekeying the users would be significantly

lower in RFAME, especially if a user is in a single attribute group

and is revoked.

RCHET Results: Table 4 compares the running times for CHET

and RCHET. In RCHET, when compared to CHET, we have added

one extra encryption and decryption, twoNIZKPoK generation and

verifications, and three modular exponentiations to all functions,

except systemSetup and userKeySetup. Despite this, RCHET does

not display a significant increase in latency, at the same time, pro-

viding the ability to adapt the trapdoor of a message digest. The

time difference between RCHET and CHET algorithms is in the

order of milliseconds and this is a minimal trade-off for the added

functionality that RCHET provides.

ReTRACe Results: ReTRACe was implemented with the DGSS

policies being the same as the ABE policies, and containing 20 users

per attribute for 8 and 16 attributes. Except for the RFAME revoca-

tion component, whose running time is proportional to the number

of users, the rest of the cryptographic primitives, i.e.,DGSS,RCHET,
and other RFAME algorithms, are independent of the number of

users in the system. The running time for operations in ReTRACe
would increase linearly with the number of users per attribute, as

is evident from the RFAME results.

Table 4: Comparison of RCHET vs. CHET [18] (time in secs)

Algorithm CHET RCHET
Setup 0.537 0.5369

Chash 0.0216 0.0234

Verify 0.000697 0.000967

Adapt Message 0.0414 0.0415

Adapt Trapdoor - 0.04305

Table 5 shows the timings of ReTRACe, with 20 users/attribute

and messages with policies containing 8 and 16 attributes respec-

tively. UserSetup and Keygen take significantly more time than the

other functions as expected; both these functions involve all users

in the system and are run only once at the beginning during sys-

tem and users’ setup.CreateMessage, Sign,Verify, andVerifyMiner
would be run more frequently, and all have sub-second timings.

For implementing Case 1 of ReTRACe.RevokeUser, we eliminate

one attribute from ϒABE, and in Case 2 we revoke one user from

the AIA that held an attribute in ϒABE. Case 2 takes longer because
it includes the AIA’s operations for revoking a user from a single

attribute group and rekeying of the rest of the users in the same

group, whereas Case 1 just changes the message policy and updates

the message trapdoor.

Table 5: ReTRACe running time, 20 users/attribute (secs)

ReTRACe Algorithms 8 Attr 16 Attr

UserSetup and Keygen (for 20 users) 2.997 4.694

CreateMessage 0.473 0.963

Sign 0.0904 0.180

Verify 0.114 0.232

VerifyMiner 0.225 0.460

AdaptMessage 0.0928 0.152

RevokeUser (Case 1) 0.545 1.015

RevokeUser (Case 2) (for 19 users) 0.676 1.049

Implementation in Ethereum: ReTRACe can be plugged into an

existing blockchain (e.g., Ethereum) by updating relevant crypto-

graphic operations with equivalent ones in ReTRACe. For instance,
in Ethereum the signature algorithm in themodule “crypto/crypto.go”

needs to be modified to use ReTRACe.Sign; “trie/trie.go” to use the

digest of rewritable transactions at the leaves of the blocks’ Merkle

trees; ReTRACe.AdaptMessage and ReTRACe.RevokeUser need to

be added to the "ethclient" module and ReTRACe.VerifyMiner to
the "miner/miner.go" module. We are porting these modifications

to Ethereum.

With ReTRACe-adapted Ethereum, an authorized user updates

a transaction using the chameleon hash and then submits it to

the transaction pool. In our design, the transactions will be up-

dated with a binary flag (‘0’ ← new; ‘1’ ← updated). A miner

that picks up an updated transaction verifies the transaction using

ReTRACe.Verify, updates the transaction in the block–the remain-

ing transactions are untouched– and propagates the block for con-

sensus. At each node storing the BC, the block with the updated

transaction replaces the old block post transaction-verification.

The cost of ReTRACe operations in Ethereum (in gas) would be

proportional to their computational cost shown in this section. We

can calculate exact gas costs of our operations, but the exact cost

is dynamic, varying based on many factors (number of pending

transactions, minimum cost, etc.). At the base computation level,

ReTRACe scales linearly with increasing number of attributes and

users—highly desirable.

9 CONCLUSION
We present ReTRACe, a blockchain transaction rewriting frame-

work building on a novel revocable chameleon hash with ephemeral

trapdoor scheme and a novel revocable CP-ABE scheme. We discuss

ReTRACe’s contributions and functionalities that provide efficient

and authorized transaction rewrites in blockchains, in addition

to revocability and traceability of the users updating the transac-

tions(s). We have performed rigorous security and experimental

analyses to demonstrate ReTRACe’s scalability.

ACKNOWLEDGMENTS
Research supported by NSF awards #1800088, #2028797, #1914635,

Intel Labs, and the Federal Aviation Administration (FAA). Any

opinions, findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily

reflect the views of the NSF, FAA, and Intel Inc.

REFERENCES
[1] Shashank Agrawal and Melissa Chase. 2017. FAME: Fast Attribute-based Message

Encryption. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS. 665–682.

[2] Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton Andrade. 2017.

Redactable blockchain–or–rewriting history in bitcoin and friends. In 2017 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 111–126.

[3] Nuttapong Attrapadung and Hideki Imai. 2009. Attribute-Based Encryption Sup-

porting Direct/Indirect Revocation Modes. In 12th IMA International Conference,
Cryptography and Coding, Proceedings. 278–300.

[4] Amos Beimel and Benny Chor. 1995. Secret Sharing with Public Reconstruction

(Extended Abstract). In Advances in Cryptology - CRYPTO, roceedings. 353–366.
[5] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. 2016. NIZKs with an

Untrusted CRS: Security in the Face of Parameter Subversion. In Advances in
Cryptology - ASIACRYPT, Proceedings, Part II. 777–804.

[6] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. 2003. Foundations of

Group Signatures: Formal Definitions, Simplified Requirements, and a Construc-

tion Based on General Assumptions. In Advances in Cryptology - EUROCRYPT,
Proceedings. 614–629.

[7] Mihir Bellare, Haixia Shi, and Chong Zhang. 2005. Foundations of Group Signa-

tures: The Case of Dynamic Groups. In Topics in Cryptology - CT-RSA, Proceedings.
136–153.

[8] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP.
459–474.

[9] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.

2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted Hardware. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS. 1521–1538.

[10] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-Policy

Attribute-Based Encryption. In 2007 IEEE Symposium on Security and Privacy
(S&P 2007). 321–334.

[11] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-Policy

Attribute-Based Encryption. In IEEE Symposium on Security and Privacy (S&P
2007). 321–334.

[12] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. 2008. Identity-based

encryption with efficient revocation. In Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS. 417–426.

[13] Dan Boneh. 1998. The Decision Diffie-Hellman Problem. In Algorithmic Number
Theory, Third International Symposium, ANTS, Proceedings. 48–63.

[14] Dan Boneh, Xavier Boyen, and Hovav Shacham. 2004. Short Group Signatures. In

Advances in Cryptology - CRYPTO, Proceedings, Matthew K. Franklin (Ed.). 41–55.

[15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth.

2016. Foundations of Fully Dynamic Group Signatures. IACR Cryptol. ePrint Arch.
2016 (2016), 368. http://eprint.iacr.org/2016/368

[16] business [n.d.]. The growing list of applications and use cases of blockchain

technology in business and life. https://www.businessinsider.com/blockchain-

technology-applications-use-cases.

[17] ca18 [n.d.]. California Consumer Privacy Act. https://oag.ca.gov/privacy/ccpa.

[18] Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls, Kai Samelin, and

Daniel Slamanig. 2017. Chameleon-Hashes with Ephemeral Trapdoors - And

Applications to Invisible Sanitizable Signatures. In Public-Key Cryptography -
PKC, Proceedings, Part II. 152–182.

[19] charm [n.d.]. Charm: A tool for rapid cryptographic prototyping. http://charm-

crypto.io.

[20] Melissa Chase. 2007. Multi-authority Attribute Based Encryption. In Theory of
Cryptography, 4th Theory of Cryptography Conference, TCC, Proceedings, Salil P.
Vadhan (Ed.). 515–534.

[21] Jie Chen, Romain Gay, and Hoeteck Wee. 2015. Improved Dual System ABE

in Prime-Order Groups via Predicate Encodings. In Advances in Cryptology -
EUROCRYPT, Proceedings, Part II. 595–624.

[22] Sherman S. M. Chow. 2016. A Framework of Multi-Authority Attribute-Based

Encryption with Outsourcing and Revocation. In Proceedings of the 21st ACM on
Symposium on Access Control Models and Technologies, SACMAT. 215–226.

[23] Hui Cui, Robert H. Deng, Yingjiu Li, and Baodong Qin. 2016. Server-Aided Revo-

cable Attribute-Based Encryption. In Computer Security - ESORICS, Proceedings,
Part II. 570–587.

[24] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková,

Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. Fastkitten:

Practical smart contracts on bitcoin. In 28th {USENIX} Security Symposium
({USENIX} Security 19). 801–818.

[25] Sourav Das, Vinay Joseph Ribeiro, and Abhijeet Anand. 2018. Yoda: Enabling

computationally intensive contracts on blockchains with byzantine and selfish

nodes. arXiv preprint arXiv:1811.03265 (2018).
[26] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. 2015. Fully Secure

Unbounded Revocable Attribute-Based Encryption in Prime Order Bilinear

Groups via Subset Difference Method. IACR Cryptology ePrint Archive (2015).
http://eprint.iacr.org/2015/293

[27] David Derler, Kai Samelin, Daniel Slamanig, and Christoph Striecks. 2019. Fine-

Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone

Attribute-Based. In 26th Annual Network and Distributed System Security Sympo-
sium, NDSS.

[28] Dominic Deuber, Bernardo Magri, and Sri Aravinda Krishnan Thyagarajan. 2019.

Redactable Blockchain in the Permissionless Setting. In 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. 124–138.

[29] dhs [n.d.]. Department of Homeland Security: Blockchain and Suitability for Gov-

ernment Applciations. https://www.dhs.gov/sites/default/files/publications2018_

AEP_Blockchain_and_Suitability_for_Government_Applications.pdf.

[30] Eiichiro Fujisaki and Tatsuaki Okamoto. 1999. Secure Integration of Asymmet-

ric and Symmetric Encryption Schemes. In Advances in Cryptology - CRYPTO,
Proceedings. 537–554.

[31] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. 2013.

Attribute-Based Encryption for Circuits from Multilinear Maps. In Advances in
Cryptology - CRYPTO. Proceedings, Part II. 479–499.

[32] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. 2013. Attribute-

based encryption for circuits. In Symposium on Theory of Computing Conference
STOC. 545–554.

[33] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-

based encryption for fine-grained access control of encrypted data. In Proceedings
of the 13th ACM Conference on Computer and Communications Security, CCS.
89–98.

[34] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers.

2018. Updatable and Universal Common Reference Strings with Applications to

zk-SNARKs. In Advances in Cryptology - CRYPTO Proceedings, Part III. 698–728.
[35] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:

Analyzing Safety of Smart Contracts.. In Ndss. 1–12.
[36] Mauricio Karchmer and Avi Wigderson. 1993. On Span Programs. In Proceedings

of the Eigth Annual Structure in Complexity Theory Conference. 102–111.
[37] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Pa-

pamanthou. 2016. Hawk: The Blockchain Model of Cryptography and Privacy-

Preserving Smart Contracts. In IEEE Symposium on Security and Privacy, SP.
839–858.

[38] Hugo Krawczyk and Tal Rabin. 2000. Chameleon Signatures. In Proceedings of
the Network and Distributed System Security Symposium, NDSS.

[39] Allison B. Lewko and BrentWaters. 2011. Decentralizing Attribute-Based Encryp-

tion. In Advances in Cryptology - EUROCRYPT, Proceedings, Kenneth G. Paterson

(Ed.). 568–588.

[40] Benoît Libert, Thomas Peters, and Moti Yung. 2012. Scalable Group Signatures

with Revocation. In Advances in Cryptology - EUROCRYPT, Proceedings. 609–627.
[41] Medium. [n.d.]. Hundreds of Millions of Dollars Locked at Ethereum 0x0 Address

and Smart ContractsâĂŹ Addresses. https://medium.com/@maltabba/hundreds-

of-millions-of-dollars-locked-at-ethereum-0x0-address-and-smart-contracts-

addresses-how-4144dbe3458a.

[42] Rafail Ostrovsky, Amit Sahai, and Brent Waters. 2007. Attribute-based encryption

with non-monotonic access structures. In Proceedings of the 2007 ACM Conference
on Computer and Communications Security, CCS. 195–203.

[43] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George

Danezis. 2017. The Loopix Anonymity System. In 26th USENIX Security Sympo-
sium, USENIX Security. 1199–1216.

[44] r3 [n.d.]. Banks complete 25 million euros securities transaction on blockchain

platform. https://uk.reuters.com/article/uk-blockchain-securities/banks-

complete-25-million-euros-securities-\transaction-on-blockchain-platform-

\idUKKCN1GD4DW.

[45] Amit Sahai, Hakan Seyalioglu, and Brent Waters. 2012. Dynamic Credentials and

Ciphertext Delegation for Attribute-Based Encryption. In Advances in Cryptology
- CRYPTO. Proceedings. 199–217.

[46] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Bernardo Magri, Daniel

Tschudi, and Aniket Kate. 2020. Reparo: Publicly Verifiable Layer to Repair

Blockchains. CoRR abs/2001.00486 (2020). http://arxiv.org/abs/2001.00486

[47] Junichi Tomida, Yuto Kawahara, and Ryo Nishimaki. 2020. Fast, compact, and

expressive attribute-based encryption. In IACR International Conference on Public-
Key Cryptography. Springer, 3–33.

[48] ZhedongWang, Xiong Fan, and Feng-Hao Liu. 2019. FE for Inner Products and Its

Application to Decentralized ABE. In Public-Key Cryptography - PKC, Proceedings,
Part II, Dongdai Lin and Kazue Sako (Eds.). 97–127.

[49] BrentWaters. 2011. Ciphertext-Policy Attribute-Based Encryption: An Expressive,

Efficient, and Provably Secure Realization. In Public Key Cryptography - PKC,
Proceedings. 53–70.

[50] Business Wire. 2016. Accenture Editable Blockchain. https://www.businesswire.

com/news/home/20160920005551/en/Accenture-Debuts-Prototype-of-

%E2%80%98Editable%E2%80%99-Blockchain-for-Enterprise-and-Permissioned-

Systems.

http://eprint.iacr.org/2016/368
https://www.businessinsider.com/blockchain-technology-applications-use-cases
https://www.businessinsider.com/blockchain-technology-applications-use-cases
https://oag.ca.gov/privacy/ccpa
http://charm-crypto.io
http://charm-crypto.io
http://eprint.iacr.org/2015/293
https://www.dhs.gov/sites/default/files/publications 2018_AEP_Blockchain_and_Suitability_for_Government_Applications.pdf
https://www.dhs.gov/sites/default/files/publications 2018_AEP_Blockchain_and_Suitability_for_Government_Applications.pdf
https://medium.com/@maltabba/hundreds-of-millions-of-dollars-locked-at-ethereum-0x0-address-and-smart-contracts-addresses-how-4144dbe3458a
https://medium.com/@maltabba/hundreds-of-millions-of-dollars-locked-at-ethereum-0x0-address-and-smart-contracts-addresses-how-4144dbe3458a
https://medium.com/@maltabba/hundreds-of-millions-of-dollars-locked-at-ethereum-0x0-address-and-smart-contracts-addresses-how-4144dbe3458a
https://uk.reuters.com/article/uk-blockchain-securities/banks-complete-25-million-euros-securities-\ transaction-on-blockchain-platform-\ idUKKCN1GD4DW
https://uk.reuters.com/article/uk-blockchain-securities/banks-complete-25-million-euros-securities-\ transaction-on-blockchain-platform-\ idUKKCN1GD4DW
https://uk.reuters.com/article/uk-blockchain-securities/banks-complete-25-million-euros-securities-\ transaction-on-blockchain-platform-\ idUKKCN1GD4DW
http://arxiv.org/abs/2001.00486
https://www.businesswire.com/news/home/20160920005551/en/Accenture-Debuts-Prototype-of-%E2%80%98Editable%E2%80%99-Blockchain-for-Enterprise-and-Permissioned-Systems
https://www.businesswire.com/news/home/20160920005551/en/Accenture-Debuts-Prototype-of-%E2%80%98Editable%E2%80%99-Blockchain-for-Enterprise-and-Permissioned-Systems
https://www.businesswire.com/news/home/20160920005551/en/Accenture-Debuts-Prototype-of-%E2%80%98Editable%E2%80%99-Blockchain-for-Enterprise-and-Permissioned-Systems
https://www.businesswire.com/news/home/20160920005551/en/Accenture-Debuts-Prototype-of-%E2%80%98Editable%E2%80%99-Blockchain-for-Enterprise-and-Permissioned-Systems

[51] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. 2010. Attribute based data

sharing with attribute revocation. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, ASIACCS. 261–270.

10 APPENDIX
10.1 Computational Assumptions

Definition 10.1. (Decision Linear Assumption (DLIN) [14]) Let
GroupGen(1λ) → (G,H,GT) be a group generating algorithm, where
|G| = |H| = |GT | = p. Let д ∈ G, h ∈ H, and e : G ×H→ GT . Then
GroupGen satisfies the decisional linear assumption (DLIN) if, for all
probabilistic polynomial time A,

AdvADLIN (λ) = |Pr [A(1
λ ,pub,D,T0) = 1]−

Pr [A(1λ ,par ,D,T1) = 1]|

is negligible in λ, wherepub = (G,H,GT , e,д,h),a1,a2
R
← Z∗p , s1,s2,

R
←

Z,D = (дa1 ,дa2 ,ha1 ,ha2 ,дa1s1 ,дa2s2 ,ha1s1 ,ha2s2),T0 = (дs1+s2 ,hs1+s2),
T1 = (д

s ,hs).

Definition 10.2. (DDH Problem [13]) We say that the DDH prob-
lem is hard relative toG if for all PPT algorithmsA, there is a negligible
function negl such that

|Pr [A(G,q,д,дx ,дy ,дz) = 1]

−Pr [A(G,q,д,дx ,дy ,дxy) = 1]| ≤ negl(λ)

where in each case the probabilities are taken over the experiment
in which G(1λ) outputs (G,q,д), and then uniform x ,y, z ∈ Zq are
chosen.

Definition 10.3. (Monotone Access Structure [1]) If U denotes
the universe of attributes, then an access structure A is a collection of
non-empty subsets of U , i.e., A ⊆ 2

U \ 0. It is called monotone if for
every B,C ⊆ U such that B ⊆ C , B ∈ A =⇒ C ∈ A.

Monotone access structures are encoded by monotone span pro-

grams [36], or linear secret sharing schemes [4], which we define

below.

Definition 10.4. (Monotone Span Program [36]) Let ϒ : {0, 1}n →

{0, 1} be a monotone Boolean function. A monotone span program

for ϒ over a field F is an l × t matrix M with entries in F, along with
a labeling function a : [l] → [n] that associates each row ofM with
an input variable of ϒ, that, for every (x1, . . . ,xn) ∈ {0, 1}n satisfies
the following:

ϒ(x1, . . . ,xn) = 1⇐⇒ ∃®v ∈ F1×l : ®vM = [1, 0, 0, . . . , 0]
and(∀ i xa(i) = 0→ vi = 0)

The Boolean function ϒ evaluates to 1, i.e., ϒ(x1, . . . ,xn) = 1 if
and only if the rows of M indexed by {i |xa(i) = 1} span the vec-
tor [1, 0, 0, . . . , 0].

Alternatively, if S is a set of attributes and I = {i |i ∈ {1, . . . ,n1},
π (i) ∈ S} be a set of rows inM that belong to S . We say that (M,π)
accepts S if there exist coefficients {γi }i ∈ I such that

∑
i ∈I

γi (M)i =

(1, 0, 0, . . . , 0), where (M)i is the ith row ofM.

A set S of attributes satisfies a Boolean formula if it causes the

formula to evaluate to true on setting all inputs that map to some

attributes in S to be true. The vast majority of practical ABE schemes

in the cryptographic literature support access policies expressed as

monotone span programs with AND and OR gates. There are a few

inefficient schemes for supporting other kinds of gates [11, 33, 42],

and ones based on lattices [31, 32] but we do not use them here.

10.2 Practical Applicability of ReTRACe
In this section we discuss two practical use cases of ReTRACe.

10.2.1 Smart Contracts. Smart contracts are high-level computer

programs submitted to a BC by users in the system. Once written

to the BC, a smart contract can be interacted with by users in the

system who submit input transactions calling functions defined

within the smart contract. Miners of the system execute the code

of smart contracts on receiving input transactions. Smart contracts

enforce agreements between two or more parties, and can be used

in situations where otherwise a trusted third party or arbiter might

be required, e.g., to enforce fair exchange of goods and services.

There has been an extensive amount of research on smart contracts

that address various interesting facets of smart contract deployment

such as off-chain execution of smart contracts [24, 25], addressing

and mitigating software bugs [35], and more. One of the problems

of smart contracts is the amount of money locked up in them, e.g.,

due to errors in the smart contract code or due to user error while

submitting a transaction. There are roughly more than $174million

dollars locked up at the 0x0 address due to user error in submitting

the transactions, about $1.2million are locked up in the ENG Smart
Contract, just to name a few. One could potentially use ReTRACe to
solve this problem and reclaim the lost tokens and cryptocurrencies

to the original senders [41].

The smart contract can be posted with as a ReTRACe message,

allowing it to be modified or updated. The miners in the system

are the only ones allowed to decrypt the trapdoor and update the

smart contract through a specific process which validates the need

for the update.

10.2.2 Financial Services Consortium. R3 [44] is a company that

leads a global consortium of over two hundred members consist-

ing of banks, trade associations and fintech companies, including

U.S.-based members such as Bank of America, Goldman Sachs,

Morgan Stanley, Wells Fargo, and international members such as

Credit Suisse, Nomura, Deutsche Bank, Danske Bank, and several

more. R3 has developed Corda, an open-source permissioned dis-

tributed ledger platform, designed to operate and execute financial

transactions, while restricting access to transaction data. Corda has

already been deployed to manage financial agreements, securities

trading, inter-bank transactions, etc. between the members of the

consortium.

Contracts between multiple banks involving trade instruments

and securities, such as debts, bonds, money market instruments,

equity warrants, convertibles, etc. are posted on the BC (i.e., Corda).

This could be for reasons such as rogue employee posting sensitive

information and/or offensive content and/or leaked encryption

keys, error in the contract that needs to be expunged, etc. We

envision ReTRACe could be very useful for such purposes, and fits

the existing Corda ledger perfectly.

In this scenario, R3, in its capacity as leader of the consortium,

can act as the AIA, and issue attributes to the members of the con-

sortium. Although the members of the consortium include varied

entities, let us consider banks as an example. A bank may have

various internal departments, e.g., retail banking, credit operations,

loan operations, private (high net-worth individuals) banking, etc.,

which are further divided into sub-departments, e.g., the loan op-

erations departments could be have auto-loan, mortgage, student

loan sub-departments. Each department or sub-department could

be visualized as a group being headed by a group manager, GM,

who issues signing keys to the group’s members.

In this situation, a bank can post a contract to the BC, and create
a trapdoor τ that enables specific banks’ departments (after mu-

tual consultations) to update the contract.
2
The trapdoor could

be encrypted using the R3 public key, mpkABE, under an ABE

policy, e.g., ϒABE = “Corporate Bonds Dept., Wells Fargo” ∨ “Eq-

uity Warrants Dept., Credit Suisse” ∨ “Money Market Instruments

Dept., Deutsche Bank”. The ϒGS could be similarly constructed, e.g.,

ϒGS = “Securities Dept., Wells Fargo” ∨ “Securities Dept., Credit

Suisse" ∨ “Securities Dept., Deutsche Bank”.

The advantage of keeping records on a BC is that any member of

the consortium can, in the future, can verify a peer member’s past

records and thus creditworthiness, besides this platform is already
being deployed by a multitude of banks and other fintech entities.

Another advantage of using ReTRACe in this ledger is that any

changes in contracts and parties can be seamlessly integrated, with

minimal effort. Say, the bank that originally created a contract, τ
and ϒABE now has sold some of its assets or transferred its liabilities

and contracts to another member bank. All that needs to be done

to enforce this change, is the banks need to update τ and ϒABE, and
the old bank will no longer be able to update the contract. Finally,

members of the general public should not be able to read the internal

bank records, and certainly should not be able to write to them,

which necessitates and justifies the use of a private permissioned

blockchain such as Corda.

10.3 RCHET Construction
Our RCHET construction involves a non-interactive zero knowl-

edge proof (NIZK), and hence requires a common reference string

(crs), which is a random string produced by a trusted party, or group

of parties, that is available to everyone in the system. The crs is
generated by the two honest parties in our system: the AIA and the

GM. We note that the crs is specific to our construction, and not

integral to the idea of an RCHET scheme.

All NIZK proofs require a crs and the use of a crs has precedent:
Camenisch et al. [18] used a crs in their CHET constructions and

applications to sanitizable signatures. Hawk [37], a robust system for

building privacy-preserving smart contracts uses a crs in pursuit of

its goals. Succinct non-interactive arguments of knowledge which

are used in various systems, the most prominent being ZCash [8],

require and use a crs. Since, in our system, the AIA and GM are

trusted, generating a crs should not be a problem; even if one relaxes

2
If a contract is unilaterally changed, the party that made the change can be traced

and made to face consequences.

these trust assumptions as outlined in Section 2 by using multi-

AIA techniques, etc., the crs could be chosen using multi-party

computations.

One could also use the methods of Groth et al. [34], where the
crs is updatable and all parties contribute secret randomness to

it. Another idea is to choose the crs using the methods of Bellare

et al. [5] that guarantee security even when the crs is maliciously

chosen.

10.4 RCHET Security Properties and Proof
Definition 10.5. (Security of RCHET) An RCHET scheme is said

to be secure if it possesses the following properties:

1) Correctness: We require that for all λ ∈ N, for all RCHET.
systemSetup (1λ) → (pubpar), for all RCHET.userKeySetup
(pubpar) → (skch ,pkch), for all RCHET.cHash(skch , pkch ,m) →
(digest, rand, Γ

pubinfo
, Γ

privinfo
), we have that RCHET.

verifyTransaction(pkch ,m, digest, rand, Γpubinfo) → 1. We also re-
quire that for all RCHET. adaptMessage(skch ,m,m

′, digest, rand,
Γ
pubinfo

, Γ
privinfo

)→ rand′, we have that RCHET.verifyTransaction(
pkch ,m, digest, rand

′, Γ′
pubinfo

) → 1. Furthermore, we require that
for all RCHET.adaptTrapdoor(skch , m, m′, digest, rand, Γpubinfo,
Γ
privinfo

) → (rand′, Γ′
pubinfo

, Γ′
privinfo

), we have that RCHET.
verifyTransaction(pkch ,m, digest, rand

′, Γ′
pubinfo

)→ 1. Herem,m′ ∈
M,M is a message space.
2) Indistinguishability: Let the advantage of an adversary, A, in
the indistinguishability game given in Figure 8 be defined as:

AdvARCHET.Indistinguishability(λ) =

Pr
[
IndistinguishabilityARCHET(λ) = 1

]
.

An RCHET scheme provides indistinguishability, if
AdvARCHET.Indistinguishability(λ) is a negligible function in λ for all PPT
adversaries, A.
3) Public collision-resistance: Let the advantage of an adversary,
A, in the public collision resistance game given in Figure 9 be defined
as: AdvARCHET.PublicCollRes(λ) = Pr

[
PublicCollResARCHET(λ) = 1

]
.

An RCHET scheme provides public collision resistance, if
AdvARCHET.PublicCollRes(λ) is a negligible function in λ for all PPT
adversaries, A.
4) Private collision-resistance: Let the advantage of an adversary,
A, in the private collision resistance game given in Figure 10 be defined
as: AdvARCHET.PrivateCollRes(λ) = Pr

[
PrivateCollResARCHET(λ) = 1

]
.

An RCHET scheme provides private collision resistance, if
AdvARCHET.PrivateCollRes(λ) is a negligible function in λ for all PPT
adversaries, A.
5) Revocation collision resistance: Let the advantage of an adver-
sary,A, in the revocation collision resistance game given in Figure 11
be defined as:

AdvARCHET.RevocationCollRes(λ)

= Pr
[
RevocationCollResARCHET(λ) = 1

]
.

An RCHET scheme provides revocation collision resistance, if
AdvARCHET.RevocationCollRes(λ) is a negligible function in λ for all PPT
adversaries, A.

10.4.1 High-level Description of Games. Indistinguishability: We

recall that the indistinguishability property requires that given an

output, the adversary, A, cannot tell if the output was a result

of a cHash or adaptMessage or adaptTrapdoor. In our indistin-

guishability game in Figure 8, the adversary is given access to a

HashOrAdapt oracle which takes as input a message m from A,

picks an integer i ∈ {0, 1, 2}, and returns the output of cHash or

adaptMessage or adaptTrapdoor, respectively, depending on the

value of i .A wins the game if it can guess i with probability greater

than random guessing.

Public collision resistance: The public collision resistance property

requires that an adversary who has neither the long-term trapdoor

nor ephemeral trapdoor cannot successfully create collisions. In

Figure 9, we need to give the adversary oracle access to both, the

adaptMessage and adaptTrapdoor functionalities. We provide A

access to a MsgOrTrap oracle, which takes an input bit b chosen

by A, and passes them on to an Adapt oracle, which either does

an adaptMessage or adaptTrapdoor, depending on the value of

b. The output of cHash and adaptMessage or adaptTrapdoor is
returned toA.A wins if it can successfully either adapt a message

or adapt a trapdoor, where “successful” means that the output passes

verification.

Private collision resistance: The private collision resistance property

requires that even the holder of the long term trapdoor cannot find

collisions, as long as the ephemeral trapdoor is unknown to them.

In Figure 10, A picks the long term trapdoor and public key, the

Adapt oracle creates digests, and either adapts a message or adapts

the ephemeral trapdoor, per A’s choice (governed by bit b). A is

deemed to have won if A can successfully either adapt a message

or adapt the trapdoor, and in both cases, produce a pre-image that

maps on to one of the digests returned by the oracle.

Revocation collision resistance: Revocation collision resistance re-

quires that someone who knows both, the long term and ephemeral

trapdoors cannot successfully create collisions, after the ephemeral

trapdoor has been updated, as long as the new trapdoor is unknown

to them. In Figure 11, A creates a digest of a message, can adapt

it and can also adapt the ephemeral trapdoor. The oracle Adapt
is then invoked for updating the ephemeral trapdoor. After the

update, A is tasked with either correctly updating the message

or trapdoor. A wins if can successfully either adapt a message or

adapt the trapdoor, and in both cases, produce a pre-image that

maps on to one of the digests returned by the oracle.

10.4.2 RCHET Proof.

Proof. We need to prove our RCHET scheme provides indistin-

guishability, public collision resistance, private collision resistance

and revocation collision resistance. We prove each property sepa-

rately, and assume all communication between parties takes place

via secure and authenticated channels. We need two additional

games from [18], the zero knowledge game and simulation-sound

extractability game, given in Figure 12a, and Figure 12b, respec-

tively.

Indistinguishability: Trivial as an adversary will either see a hash
or its adapted version (either as a result of an adaptTrapdoor or
an adaptMessage), but will never see both, a hash and its adapted

version at the same time.

PublicCollisionResistance: Let us consider a sequence of games:

Game 0 (G0): The original public collision-resistance game.

Game 1 (G1): Same as G0 but upon setup we obtain (crs,τ) ←

S1(1
λ), store τ and henceforth simulate all proofs using S2(crs,τ , ·).

Transition - Game 0→ Game 1: A distinguisher betweenG0 andG1
zero-knowledge distinguisher, i.e., | Pr [G0] − Pr [G1] |≤ νzk (λ).
Game 2 (G2): As G1, but upon setup we obtain (crs,τ , χ) ← S1(λ),
and additionally store χ .
Transition - Game 1→ Game 2: Under simulation sound extractabil-

ity, this change is conceptual, i.e., Pr [G1] = Pr [G2].
Game 3 (G3): As G2, but we simulate the Adapt oracle thus: to
find a collision w.r.t. m,m′, digest (b,h′,πt ,C,C ′), randomness

(β,p,πp), and trapdoor information Γ
pubinfo

= (∆,π∆,D,πD), Γprivinfo
= (δ ,d, etd), and skch = (SK ,x), if rand = (β,p, ·) corresponds to a

previous Adapt query, set AD = ⊤ and AD = ⊥ otherwise. If only

p corresponds to a previous query, return ⊥.

Transition - Game 2 → Game 3: This change is conceptual, i.e.,

Pr [G2] = Pr [G3] (observe that p is unconditionally binding, and,

thus, modifying β implies that the check b
?

= hβ ·h′a
D ·∆ which is per-

formed within Adapt fails, and the oracle would abort anyway).

Game 4 (G4): As G3 but we further change the Adapt oracle
thus: to find a collision w.r.t.m,m′, digest (b,h′,πt ,C,C ′), random-

ness (β,p,πp), and trapdoor information Γ
pubinfo

= (∆,π∆,D,πD),
Γ
privinfo

= (δ ,d, etd), and skch = (SK ,x) do:
(1) If rand = (β,p, ·) corresponds to a previous Adapt query, set
AD = ⊤ andAD = ⊥ otherwise. If only p corresponds to a previous

query, return ⊥.

(2) Decrypta ← Π.Decrypt(SK ,C ′), check ifa
?

← Hk (m). If AD = ⊥,

check if b
?

= hβ ·h′a
D ·∆ . If checks fail, return ⊥.

· · ·

If A chose b = 0:

(4) If AD = ⊥, Decrypt r ← Π.Decrypt(SK ,C) and if r = ⊥, return
⊥.

else

(4) If AD = ⊥, Decrypt r ← Π.Decrypt(SK ,C) and if r = ⊥, return
⊥. Compute a′ ← Hk (m

′).

Transition - Game 3 → Game 4: This change is conceptual, i.e.,

Pr [G3] = Pr [G4] (the checks are only omitted if we know that they

would not yield to an abort).

Game 5 (G5): As G4, but we further change the Adapt oracle as
follows:

(1) If rand = (β,p, ·) corresponds to a previous Adapt query, set
AD = ⊤ andAD = ⊥ otherwise. If only p corresponds to a previous

query, return ⊥.

(2) Decrypt a ← Π.Decrypt(SK ,C ′), check if a
?

← Hk (m).

If AD = ⊥, check if b
?

= hβ ·h′a
D ·∆ . If checks fail, return ⊥.

· · ·

If A chose b = 0:

(4) If AD = ⊥, Decrypt r ← Π.Decrypt(SK ,C) and if r = ⊥, return
⊥.

(5) Compute a′ ← Hk (m
′). Compute r ′ = дarbaдe .

Game IndistinguishabilityARCHET(λ)
1. systemSetup(1λ) → (pubpar)
2. userKeySetup(pubpar) → (skch ,pkch)
3. i ← {0, 1, 2}

4. AHashOrAdapt(skch, ·, ·, ·, ·, ·, ·)(pkch) → i ′

where oracle HashOrAdapt on input (skch ,m,m
′) does:

4.1. Do cHash(skch ,pkch ,m) → (digest, rand0, Γpubinfo, Γprivinfo)
4.2. If i = 0, Set t0 = (digest, rand0, Γpubinfo, Γprivinfo)
4.3. If i = 1, do adaptMessage(skch ,m,m

′, digest, rand0, Γpubinfo, Γprivinfo) → rand1
Set t1 = (digest, rand1, Γpubinfo, Γprivinfo)

4.4. If i = 2, do adaptTrapdoor(skch ,m,m
′, digest, rand0, Γpubinfo, Γprivinfo) → (rand2, Γ′

pubinfo
, Γ′

privinfo
)

Set t2 = (digest, rand2, Γ′
pubinfo

, Γ′
privinfo

)

4.5. Verify output values, if any are ⊥, return ⊥

4.6. Return ti
5. Return 1 if (i ′ = i), else return 0.

Figure 8: RCHET indistinguishability game

Game PublicCollResARCHET(λ)
1. systemSetup(1λ) → (pubpar)
2. userKeySetup(pubpar) → (skch ,pkch)
3. Q ← ∅, A picks b ← {0, 1}

4. AcHash(skch, ·, ·)(pkch)
where oracle cHash on input (skch ,pkch ,m) does
4.1. cHash(skch ,pkch ,m) → (digest, rand, Γpubinfo, Γprivinfo)
4.2. return (digest, rand, Γ

pubinfo
)

5. AAdapt(skch, ·, ·, ·, ·, ·, ·),MsgOrTrap(·)(pkch) → (m
∗, rand∗, Γ∗

pubinfo
,m∗′, rand∗′, Γ∗′

pubinfo
, digest∗)

where oracle Adapt on input (skch ,m,m
′), and oracle MsgOrTrap on input b do:

5.1. If b = 0, do adaptMessage(skch ,m,m
′, digest, rand, Γ

pubinfo
, Γ

privinfo
) → rand0

Set t0 = (rand0, Γpubinfo)
5.2. If b = 1, do adaptTrapdoor(skch ,m,m

′, digest, rand, Γ
pubinfo

, Γ
privinfo

) → (rand1, Γ′
pubinfo

, Γ′
privinfo

)

Set t1 = (rand1, Γ′
pubinfo

)

5.3. Verify output values, if any are ⊥, return ⊥

5.4. Q ← Q ∪ {m,m′}
5.5. Return rand, tb

6. Return 1 if ((verifyTransaction(pkch ,m
∗, digest∗, rand∗, Γ∗

pubinfo
) → 1)

∧(verifyTransaction(pkch ,m
∗′, digest∗, rand∗′, Γ∗

pubinfo
) → 1)∨

(verifyTransaction(pkch ,m
∗, digest∗, rand∗, Γ∗

pubinfo
) → 1)∧

(verifyTransaction(pkch ,m
∗′, digest∗, rand∗′, Γ∗′

pubinfo
) → 1))∧

(m∗′ < Q) ∧ (m∗ ,m∗′) ∧ (Γ∗
pubinfo

, Γ∗′
pubinfo

). Else return 0.

Figure 9: RCHET public collision resistance game

(6) Set p′ = hr
′

and πp′ ← NIZKPoK{r ′ : p′ = hr
′

}.

Compute β ′ ← (r + a .etd
x − a′ .etd

x + δ
x +

d
x).

else

(4) If AD = ⊥, Decrypt r ← Π.Decrypt(SK ,C) and if r = ⊥, return
⊥. Compute a′ ← Hk (m

′).

(6) Set r ′ = ⊥, p′ ← hr
′

, β ′ ← (r + a .etd
x − a′ .etd

x + δ
x +

d ′
x),πp′ ← NIZKPoK{r ′ : p′ = hr

′

}

Transition - Game 4→ Game 5:A distinguisher between G4 and G5

is an IND-CCA2 distinguisher forΠ, i.e., | Pr [G4]−Pr [G5] |≤ νc (λ).
Game6 (G6): AsG5 but for every query toAdapt, we store (β ,p,πp)
ifπp was not previously simulatedwithinAdapt inR[(b,h′,πt ,C,C ′)] ←
(β,p,πp). Now, for every forgery either both rand∗ or rand∗′ are
fresh, or one of them contains a proof πp (resp. π ′p) which we pre-

viously simulated in the Adapt oracle. If one of them contains such

a proof, we replace the respective randomness tuple (β,p,πp) by
R[digest∗].
Transition - Game 5 → Game 6: This change is conceptual, i.e.,

Game PrivateCollResARCHET(λ)
1. systemSetup(1λ) → (pubpar)
2. A(pubpar) → (sk∗ch ,pk

∗
ch)

3. Q ← ∅, A picks b ← {0, 1}

4. AcHash(·, ·, ·)(pkch)
where oracle cHash on input (sk∗ch ,pk

∗
ch ,m) does

4.1. cHash(sk∗ch ,pk
∗
ch ,m) → (digest, rand, Γpubinfo, Γprivinfo)

4.2. Return (digest, rand, Γ
pubinfo

)

5. AAdapt(·, ·, ·, ·, ·, ·, ·),MsgOrTrap(·)(pk∗ch) → (m
∗, rand∗, Γ∗

pubinfo
,m∗′, rand∗′, Γ∗′

pubinfo
, digest∗)

where oracle Adapt on input (sk∗ch ,m,m
′), and oracle MsgOrTrap on input b do:

5.1. If b = 0, do adaptMessage(sk∗ch ,m,m
′, digest, rand, Γ

pubinfo
, Γ

privinfo
) → rand0

Set t0 = (rand0, Γpubinfo)
5.2. If b = 1, do adaptTrapdoor(sk∗ch ,m,m

′, digest, rand, Γ
pubinfo

, Γ
privinfo

) → (rand1, Γ′
pubinfo

, Γ′
privinfo

)

Set t1 = (rand1, Γ′
pubinfo

).

5.3. Verify output values, if any are ⊥, return ⊥

5.4. Q ← Q ∪ {digest,m}
5.5. Return (digest, rand, tb)

6. Return 1 if ((verifyTransaction(pk∗ch ,m
∗, digest∗, rand∗, Γ∗

pubinfo
) → 1)∧

(verifyTransaction(pk∗ch ,m
∗′, digest∗, rand∗′, Γ∗

pubinfo
) → 1)∨

(verifyTransaction(pk∗ch ,m
∗, digest∗, rand∗, Γ∗

pubinfo
) → 1)∧

(verifyTransaction(pk∗ch ,m
∗′, digest∗, rand∗′, Γ∗′

pubinfo
) → 1))∧

(digest∗,m∗′ < Q) ∧ (digest∗, ·) ∈ Q ∧ (Γ∗
pubinfo

, Γ∗′
pubinfo

))) else return 0.

Figure 10: RCHET private collision resistance game

Game RevocationCollResARCHET(λ)
1. systemSetup(1λ) → pubpar
2. A(pubpar) → (sk∗ch ,pk

∗
ch)

3. A does cHash(sk∗ch ,pk
∗
ch ,m

∗) → (digest∗, rand∗, Γ∗
pubinfo

, Γ∗
privinfo

)

4. AAdapt(·, ·, ·, ·, ·, ·, ·)(pk∗ch) → (m
∗′′, rand∗′′, {Γ∗′′

pubinfo
,⊥}, digest∗)

where oracle Adapt on input (sk∗ch ,m
∗,m∗′, digest∗, rand∗, Γ∗

pubinfo
, Γ∗

privinfo
) does:

4.1. If verifyTransaction(pk∗ch ,m
∗, digest∗, rand∗, Γ∗

pubinfo
) → 0 return ⊥

4.2. Do adaptTrapdoor(sk∗ch ,m
∗,m∗′, digest∗, rand∗, Γ∗

pubinfo
, Γ∗

privinfo
) → (rand∗′, Γ∗′

pubinfo
, Γ∗′

privinfo
)

4.3. Verify output values, if any are ⊥, return ⊥

4.4. Return (m∗′, rand∗′, Γ∗′
pubinfo

)

5. Return 1 if ((verifyTransaction(pk∗ch ,m
∗, digest∗, rand∗, Γ∗

pubinfo
) → 1)∧

(verifyTransaction(pk∗ch ,m
∗′′, digest∗, rand∗′′, Γ∗′

pubinfo
) → 1)∨

(verifyTransaction(pk∗ch ,m
∗, digest∗, rand∗, Γ∗

pubinfo
) → 1)∧

(verifyTransaction(pk∗ch ,m
∗′′, digest∗, rand∗′′, Γ∗′′

pubinfo
) → 1)). Else return 0.

Figure 11: RCHET revocation collision resistance game

Pr [G5] = Pr [G6]. Observe that the fact that a proof stems from a

tuple returned by Adapt implies that a query with a tuple (β ,p,πp)
where πp was not simulated must once have happened. Further,

the modified forgery is still a valid public collision freeness forgery.

Game 7 (G7): As G6 but for the modified forgery we extract both

rand and rand′ from πp and π ′p contained in rand∗ = (β,p,πp) and
rand∗′ = (β ′,p′,π ′p) If the extraction fails, we abort.

Transition - Game 6→ Game 7 : Both games proceed identically,

unless we have to abort, i.e., | Pr [G6] − Pr [G7] |≤ 2νe (λ).
Game 8 (G8): As G7 but for πt contained in digest∗ we extract the
etd and abort if the extraction fails.

Transition - Game 7→ Game 8: Both games proceed identically,

unless we have to abort, i.e., | Pr [G7] − Pr [G8] |≤ νe (λ).
Game 9 (G9): As G8 but we obtain a DL-challenge (G,д,q,дx),
perform the setup with respect to (G,д,q) and embed дx into pkch .
Transition - Game 8 → Game 9: This change is conceptual, i.e.,

Game Zero − KnowledgeNIZKPoK
A

(λ)

b ← {0, 1}

(crs, τ) ← S1(1λ)

a ← APb (·, ·)(crs)

where oracle P0 on input (x, w) :

return π ← {(w) : R(x, w) = 1}, if (x, w) ∈ L

return ⊥

and oracle P1 on input (x, w) :

return π ← S2(crs, τ , x), if (x, w) ∈ L

return ⊥

return 1, if a = b

return 0

(a) Zero knowledge game

Game SimSoundExtNIZKPoK
A,E (λ)

(crs, τ , ξ) ← S (1λ)

(x, π) ← ASim(·)(crs)

where oracle Sim on input x :

obtain π ← S2(crs, τ , x)

set QSim ← QSim ∪ {(x, π)}

w ← E(crs, ξ , x, π)

return 1, if verify(x, π) = true ∧

(x, w) < R ∧ (x, π) < QSim

return 0

(b) Simulation sound extractability game

Figure 12: Additional games for RCHET proof

| Pr [G8] = Pr [G9] |.

Private Collision Resistance:
Game 0 (G0): The original private collision-resistance game.

Game 1 (G1): Same as G0, but upon setup we obtain (crs,τ) ←

S1(1
λ) upon setup, store τ and henceforth simulate all proofs using

S2(crs,τ , ·).
Transition - Game 0→ Game 1: A distinguisher betweenG0 andG1
is a zero-knowledge distinguisher, i.e., | Pr [G0]−Pr [G1] |≤ νzk (λ).
Game 2 (G2): As G1 but upon setup we obtain (crs,τ , χ) ← S1(λ),
and additionally store χ .
Transition - Game 1→ Game 2: Under simulation sound extractabil-

ity, this change is conceptual, i.e., Pr [G1] = Pr [G2].
Game 3 (G3): As G2 but we modify the Adapt oracle so that it

no longer draws etd uniformly at random but directly draws h′

uniformly at random fromG∗. To hashm w.r.t. pkch = (PK ,h,πpk)

do h′ ← G∗ , D ← дd , and · · ·
Game 4 (G4): AsG3 but for every πp returned by cHashwe record

the value β so that β = r in R[β] ← r :
Transition - Game 3 → Game 4: This change is conceptual, i.e.,

Pr [G3] = Pr [G4]
Game 5 (G5): As G4 but pk∗ output by the adversary. We extract

x so that дx = h. If the extraction fails, we abort.

Transition - Game 4→ Game 5: Both games proceed identically,

unless we have to abort, i.e., | Pr [G4] − Pr [G5] |≤ νe (λ).
Game 6: As G5, but we obtain a DL instance (G,д,q,дt), perform
the setup with respect to (G,д,q) and further modify cHash thus:

to hash m w.r.t. pkch = (PK ,h,πpk), do Set s ← Z∗q ,h
′ ← (дt)s ,

D ← дd , and · · · . Furthermore, we record S[h′] ← s .
Transition - Game 5 → Game 6: This change is conceptual, i.e.,

Pr [G5] = Pr [G6].
Game 7: As G6, but if πp or π ′p contained in rand∗ = (β ,p,πp)
and rand′∗ = (β ′,p′,π ′p) do not correspond to a cHash answer

we algebraically obtain r from β ← (r + δ
x +

d
x) and r ′ from

r ′ ← (rx+a ·etd−a
′ ·etd+δ

x), set R[β] ← r or R[β ′] ← r ′.
Transition - Game 6→ Game 7 : Both games proceed identically, i.e.,

| Pr [G6] = Pr [G7].

Revocation Collision Resistance:
Game 0 (G0): The original revocation collision-resistance game.

Game 1 (G1): As Game 0, but after the Adapt oracle returns (m∗′

, rand∗′ , Γ∗′
pubinfo

) and A runs RCHET.adaptTrapdoor and would

fail in Step (6).

If the adversary is successful in Step (6) RCHET.adaptTrapdoor, it
proved knowledge of дδd , and it was able to extract δ and d values

from ∆ and D, respectively, thus breaking the DL assumption.

The advantage of the adversary is given by the following equa-

tion:

AdvARCHET(λ) ≤
[
AdvANIZKPoK(λ)+

AdvA
Hk
Z∗q

.CollisionResistance
(λ) + AdvADL(λ)+

AdvADDH (λ) + Adv
A
Π.CCA(λ)

]
□

10.5 RFAME Correctness
We need to verify that when (M,π) accepts S , decryption recovers

the correct message with probability 1. For l = 1, 2, 3,

∏
i ∈I

ct
γi
i,l =

∏
i ∈I

(
H(π (i)l1)γi s1 · H(π (i)l2)γi s2 ·

n2∏
j=1

[
H(0jl1)s1 · H(0jl2)s2

]γi (M)i, j)
=
(n2∏
j=1

[
H(0jl1)s1 · H(0jl2)s2

]∑
i∈I γi (M)i, j

)
·(∏

i ∈I
H(π (i)l1)γi s1 · H(π (i)l2)γi s2

)
= H(01l1)s1 · H(01l2)s2 ·∏

i ∈I
H(π (i)l1)γi s1 · H(π (i)l2)γi s2

Now, the product of all but the first term in the numerator, num,

is given by:∏
t ∈{1,2}

[
e(H(011t),h)b1r1st · e(H(012t),h)b2r2st

·e(H(013t),h)(r1+r2)st ·
∏
i ∈I

(
e(H(π (i)1t)γi ,h)b1r1st

· e(H(π (i)2t)γi ,h)b2r2st · e(H(π (i)3t)γi ,h)(r1+r2)st
)]

The denominator, den, is given as:

den =
∏
i ∈I

e(skγiρ(i),1, ctρ(i),1) ·
∏
i ∈I

e(skγiρ(i),2, ctρ(i),2)·∏
i ∈I

e(sk′
3
· skγiρ(i),3, ct0,3) ·

∏
t ∈{1,2}

e(sk′t · sk
′′
t , ct0,t)

We expand the first term of den as follows:∏
i ∈I

e(skγiρ(i),1, ctρ(i),1) = e(H(ρ(i)11),h)γib1r1s1 ·

e(H(ρ(i)21),h)γib2r2s1 ·

e(H(ρ(i)31),h)γi (r1+r2)s1 ·

e(q,h)γiσy s1 · e(q,h)γiαy s1

The expansion of the second and third terms of den are similar to

the first term. We show the expansion of the fourth term below:∏
t ∈{1,2}

e(sk′t · sk
′′
t , ct0,t) = e(H(0111),h)b1r1s1 ·

e(H(0121),h)b2r2s1 ·

e(H(0131),h)(r1+r2)s1 · e(д,h)σ
′s1 ·

e(H(0112),h)b1r1s2 ·

e(H(0122),h)b2r2s2 ·

e(H(0132),h)(r1+r2)s2 · e(д,h)σ
′s2 ·

e(д,h)d1p1a1s1 · e(д,h)d2p2a2s2

After all the terms of num and den are expanded, all terms cancel

out, leaving onlymsд.

10.6 RFAME Security Analysis
We give the full IND-CPA security game for CPABE schemes in

Definition 10.6.

Definition 10.6. (CPABE Full IND-CPA Game)

(1) Setup phase: Challenger runs Setup(1λ) → (mpk,msk) and
obtains a master public and secret key pair. Thempk is given
to A.

(2) Query phase: A generates an attribute set S and sends S to
challenger. Challenger generates secret keys for attributes in
S by running KeyGen(msk,S) → (sk1, sk2, . . . , sk |S |) for all
attributes in S. The secret keys are given to A. A can query
the challenger a polynomially-bounded number of times.

(3) Challenge phase:A submits two messages,m0,m1, as well as
a challenge access policy ϒ to the challenger.A cannot submit
a policy for which ϒ(S) = 1. That is, no combination of A’s

attributes should satisfy ϒ. Challenger does Encrypt(mpk,mb ,
ϒ) → C , where b ∈ {0, 1}, and gives C to A.

(4) Query phase repeat: A can again query for secret keys for
attribute sets, except attribute sets that satisfy ϒ.

(5) Response phase: A outputs b ′.

The advantage of an adversary in this game is defined as Pr [b ′−
b] − 1

2
.

Definition 10.7. A ciphertext policy attribute-based encryption
scheme is fully IND-CPA secure if all probabilistic polynomial time
A have at most a negligible advantage in the game in Definition 10.6.

We now give the full IND-CPA game for RFAME in Defini-

tion 10.8.We follow the representations of [1, 21]where the group el-

ements are compactly represented as matrices, e.g., [x]1 denotes д
x
,

[y]2 denotesh
y
and [z]T denotes e(д,h)z ∈ GT , whereд ∈ G,h ∈ H,

x ,y
R
← Z∗q , and |G| = |H| = q. Vector (д

v1 ,дv2 , . . . ,дvn) is denoted

as [v]1, and correspondingly for [v]2. Similarly, [M]1 denotes a ma-

trix of elements fro groupG, and [M]2 denotes a matrix of elements

from group H, while e([A]1, [B]2) is defined as [A⊤B]T .

Definition 10.8. (Full IND-CPA game for RFAME)
Setup phase: The challenger runs the Setup algorithm to generate
mpkABE,mskABE. It generates the group parameters (q,G,H, GT ,
e(д,h). It picks (A,a⊥), (B,b⊥), (Z ,α⊥), (P ,p⊥), picks d1, d2, d3, p1,

p2, p3
R
← Zq . It sets the vectors d = (d1,d2,d3)⊤, p = (p1,p2,p3)⊤. It

sets mpkABE = ([A]2, [Pd⊤A]T , [Z]2) and mskABE = (д, h, A, B, P ,
[d]1, Z).
Query phase: Adversary,A, will create a set of attributes, S and will
query the challenger for secret keys for all attributes in S. Let us
assume challenger maintains two lists, L,Q for simulating the two
kinds of inputs/outputs of the random oracleH . L has entries of the
form (y,Wy) or (j,Uj) where y is a binary string, j ∈ Z+, andWy ,Uj
are 3 × 3 matrices whose elements are drawn from Zq . List Q has
entries of the form (f , r) where r ∈ G, and f is either xlt or 0jlt for
l ∈ {1, 2, 3} and t ∈ {1, 2}.
A needs to request keys for attributes y ∈ S. A will create at-

tributes strings y1t , y2t , y3t where t ∈ {1, 2}. This is used by the
challenger in the creation of the sky,t .A will also construct bit strings
of the form 01lt for l ∈ {1, 2, 3} and t ∈ {1, 2}. When A queries on
an attribute y ∈ S, the challenger retrieves matricesWy andUj from
L. We recall that these matrices store attribute representations of the
form ylt and 0jlt . A can make one of three kinds of queries:
1) ylt : The challenger checks if (ylt) ∈ Q for some r . If yes, it re-
turns r , else it checks if (y,Wy) ∈ L for someWy . If yes, it computes

r = [(W ⊤y A)l,1]1, add (ylt , r) toQ , and returns r . Else pickWy
R
← Zq ,

add (y,Wy) to L, compute and return r = [(W ⊤y A)l,t]1, and add
(ylt , r) to Q .
2) 0jlt : The challenger checks if (0jlt , r) ∈ Qfor some r . If yes, return r .
Else check if (j,Uj) ∈ L for someUj . If yes, compute r = [(U⊤j A)l,t]1,

add (0jlt , r) to Q an return r . Else pick Uj
R
← Zq , add (y,Uj) to L,

compute r = [(U⊤j A)l,t]1, add (0jlt , r) to Q an return r .
3) Any other query, q: Challenger checks if (q, r) ∈ Q for some r . If

yes, return r . Else pick r ′
R
← G, add (q, r ′) to Q , and return r ′.

Next, the challenger picks r1, r2,σy ,σ ′
R
← Zq . Let r = (r1, r2)⊤.

The challenger needs to set up sk0, sky , sk′, sk′′, which it computes
as follows:

sk0 = [Br]2 sky = [WyBr + σya
⊥ + σyα

⊥ + αy]1

sk′ = [d +U1Br + σ
′a⊥]1 sk′′ = [Pd]1

The challenger then returns (sk0, {sky }y∈S, sk′, sk′′) as the sign-
ing key for attributes in y ∈ S.
Challenge phase: In the challenge phase,A will ask for an encryption
of one of (m0,m1), and will send a policy (M,π), whereM is a mono-
tone span program representation of a policy, and π is a mapping
of row numbers to attributes. The usual restriction holds that any
combination of attributes in S that A has queried in the query phase
should not satisfy (M,π), else challenger returns ⊥. Let us assumeM
has n1 rows and n2 columns. The challenger picks b ∈ {0, 1}, retrieves
[(W ⊤π (i)A)l,t]1, and [(U

⊤
j A)l,t]1 for all i ∈ [1..n1] and all j ∈ [1..n2],

l , t ∈ Q . The challenger picks s1, s2
R
← Zq . It computes:

ct0 = [As · αρ(i)]2 cti =

W ⊤π (i)As +
n2∑
j=1
(M)i, jU

⊤
j As

1
ct′ = [d⊤PAs]T ·mb

.
The challenger then returns (ct0, ct1, . . . , ctn1

, ct′) for all i rows
ofM .
Repeat query/output phase: A can query the challenger on more
attributes sets, S′ ⊂ U .
Response phase: A will output its guess b ′.

We now give the proof of Theorem 5.1

Proof. The proof is formulated via a series of hybrids, and is

based on the proof structure of [1]. A key can be one of the following

forms, with variables in the key being progressively replaced from

the previous form: 1) Normal, as generated in the RFAME CPA

game. 2) P-normal, where Br is replaced with Br + r̂a⊥ where

r̂
R
← Zq . 3) P-normal

∗
, where we remove σya

⊤ + σyα
⊤ ∀y ∈ S,

and remove σ ′a⊤ from a P-normal key. 4) Semi-normal
∗
, where αy

is removed from a P-normal
∗
key. 5) Normal

∗
, where Br + r̂a⊤ is

replaced by Br in a P-normal
∗
key. 6) P-SF

∗
, where χa⊤ is added

to the last component of a P-normal
∗
key, where χ

R
← Zq . 7) SF

∗

where Br + r̂a⊤ is replaced by Br in a P-SF
∗
key.

The ciphertext is of the forms: 1) Normal
∗
, which are the cipher-

texts generated in the RFAME CPA game. 2) SF
∗
, where the As in

an Normal
∗
ciphertext is replaced by As + ŝb⊤, ŝ

R
← Zq . 3) Rnd

∗
,

where the entire messagemsдb is replaced bymsд∗
R
← G.

The first step of the proof is to replace all keys that A queries

in the RFAME CPA game progressively from Normal to Normal
∗
,

and to gradually convert the challenge ciphertext from Normal
∗
to

Rnd
∗
. So, for all ofA’s queried keys in the query phase, first change

the key from Normal to P-normal, then to P-normal
∗
, to Normal

∗
.

We then take the challenge ciphertext, of the form Normal
∗
, then

convert it to SF
∗
, and finally to Rnd

∗
, and convert the keys from

Normal
∗
to P-SF

∗
, and finally to SF

∗
. The idea is, after these con-

versions have been applied, A will be handed SF
∗
keys and Rnd

∗

ciphertext. We describe the sequence of hybrids:

(1) Hyb
1
is the original RFAME CPA game.

(2) Hyb
2
is same asHyb

1
, additionally, the first i−1 keys queried

by A are Normal
∗
, ith key is Normal

∗
, and remaining keys

are Normal.

(3) Hyb
3
is same as Hyb

2
, additionally, the challenge ciphertext

is SF
∗
.

(4) Hyb
4
is same as Hyb

3
, additionally, the first i − 1 keys are

SF
∗
, ith key is SF

∗
, and remaining keys are Normal

∗
.

(5) Hyb
5
is same as Hyb

4
, additionally, the ciphertext is con-

verted to Rnd
∗
.

We now describe how the our representation models the ciphertext

in our RFAME construction. For i ∈ [1..n1], and l ∈ {1, 2, 3}, and
s = (s1, s2)

⊤
.

ct0 = [As · αρ(i)]2+, ct
′ = [d⊤PAs]T ·msдb

cti,l =
[
(W ⊤π (i)A)l,1s1 + (W

⊤
π (i)A)l,2s2+∑

j
{(U⊤j A)l,1s1 + (U

⊤
j A)l,2s2}(M)i, j

]
1

The key sky,t is defined as:

sky,t =
[
(W ⊤y A)1,t ·

b1r1
at + αy

+ (W ⊤y A)2,t ·
b2r2

at + αy
+

(W ⊤y A)3,t ·
r1 + r2
at + αy

+
σy

at + αy
+

αy

at + αy

]
1

which can be rewritten as (WyBr)t + a
−1
t α−1[(WyBr)3 + σy +

αy], where r = (r1r2)
⊤
. The key sky,3 is identically distributed

to [WyBr + σyαy]a
⊥]1. The next part of the key, sk′ is identically

distributed to [d +U1Br + σ
′a⊤]1, and finally sk0 = [Br]2.

Now we define the hybrids as defined in [1], where A’s key

queries run from [1..N]. The Hyb
2
can be split up into four hybrids:

(1) Hyb
2,1,n , which is the same as RFAME CPA game, except

that the first i − 1 keys are Normal
∗
, ith key is P-Normal,

and remaining keys are Normal.

(2) Hyb
2,2,n , which is same as Hyb

2,1,n , except the i
th

key be-

comes P-normal
∗
.

(3) Hyb
2,3,n , which is same as Hyb

2,2,n , except the i
th

key be-

comes Semi-normal
∗
.

(4) Hyb
2,4,n , which is the same as Hyb

2,2,n , except that the i
th

key becomes Normal
∗
.

Similarly, Hyb
4
can be split up into:

(1) Hyb
4,1,n , which is the same asHyb

3
except that the first i−1

keys are SF
∗
, ith key is P-normal

∗
, and remaining keys are

Normal
∗
.

(2) Hyb
4,2,n which is the same as Hyb

4,1,n , except the i
th

key

becomes Semi-normal
∗
.

(3) Hyb
4,3,n , which is same as Hyb

4,1,n , except the i
th

key be-

comes P-SF
∗
.

(4) Hyb
4,4,n , which is the same as Hyb

4,2,n , except that the i
th

key becomes SF
∗
.

We first need to show that Hyb
2
is indistinguishable from Hyb

1
.

Consider the four hybrids comprising Hyb
2
. In Hyb

2,1,n , the i
th

key is P-normal, and remaining keys are Normal, whereas in Hyb
1
,

all keys were Normal. This proof is the same as the one in [1], and

our extra α terms in the secret keys and ciphertext does not change

anything. Similarly the arguments for the transition from Hyb
2,1,n

to Hyb
2,2,n are the same as those in [1], and are given below.

We will need the following two lemmas from [1]:

Lemma 10.1. For all i ∈ [1..N] and PPT adversariesA, there exists
a PPT adversary B such that

AdvA
(2,3,n−1),(2,3,n)(λ) ≤ AdvBDLIN(λ) + 1/q

Lemma 10.2. For all i ∈ [1..N] and PPT adversaries A,

AdvA
(2,1,n),(2,2,n)(λ) ≤ 2/p

The transition from Hyb
2,2,n to Hyb

2,3,n is unique to RFAME,
and involves the concept of Semi-normal

∗
keys, which were not

there in [1]. We need to prove that this transition is indistinguish-

able from A’s standpoint.

Lemma 10.3. For all PPT adversaries A, there exists a PPT adver-
sary B such that

AdvA
(2,2,n),(2,3,n)(λ) ≤ AdvBDLIN(λ) + 1/p

Proof. We recollect that in the Hyb
2,3,n game, all keys are of

the form Normal
∗
, but the challenge ciphertext is Normal. In Hyb

3
,

all keys are Normal
∗
, but the ciphertext is of the form SF

∗
. B is the

DLIN adversary, and simulates the challenger in the RFAME CPA

game.

Let us rewrite the DLIN assumption as:

([A]1, [A]2, [As]1, [As]2) ≈ ([A]1, [A]2, [s
′]1, [s

′]2) (1)

where

A =

a1 0

0 a2
1 1

 , s =

s1
s2
−1

 s ′ =

s1
s2
s

Let B be a DLIN adversary that acts as a challenger for A in

A’s RFAME CPA game. B first gets its DLIN challenge as either

([B]1, [B]2, [Br
∗]1, [Br

∗]2) or ([B]1, [B]2, [r
′]1, [r

′]2) as its DLIN chal-

lenge. B then needs to setup thempkABE, and provideA with keys

in the query phase. B sets up thempkABE as ([A]2 ,[Pd
⊤,A]T ,[Z]2)

by sampling d ←$Zq ,, (A,a
⊥), (Z ,α⊥), (P ,p⊥) ← Samp(q).

Now B needs to simulate keys for A’s queries. Recollect that

in Hyb
2,2,n , the i

th
key is of the form sk0 = [Br + r̂a⊥]2, sky,t =

[Wy (Br + r̂a
⊥) + αy]1, sk′ = [d +U1Br + r̂a

⊥]1, and sk′′ = [Pd]1.
In Hyb

2,3,n , all the keys, except the ith key is an Semi-normal
∗

key. This key needs to be generated by B, and is of the form sk0 =
[Br + r̂a⊥]2, sky,t = [WyBr + r̂a

⊥]1, sk′ = [d +U1Br + r̂a
⊥]1, and

sk′′ = [Pd]1. The only term different from a P-normal
∗
key and

an Semi-normal
∗
key is the αy term. B can easily simulate this by

doing αy ←$Zq . If r̂ = 0, the view of A is identical to Hyb
2,2,n ,

else it is similar to Hyb
2,3,n . □

Lemma 10.4. For all i ∈ [1..N] and PPT adversariesA, there exists
a PPT adversary B such that

AdvA
(2,3,3),(2,3,N)(λ) ≤ AdvBDLINλ + 1/q

Proof. We want to prove that the view of an adversary in

Hyb
2,3,n is identically distributed to its view in Hyb

2,4,n . Recol-

lect that the difference between Hyb
2,3,n and Hyb

2,4,N is that the

ith key is Normal
∗
in the latter case. Let V be a matrix defined as

V⊤A = VB = 0, and letV = (b⊥)⊤a⊥. Let β be defined ads the inner

product of a⊥ and b⊥. LetW ∗y =Wy −σx (βr̂)
−1V −αy (βr̂)

−1V −αy ,

andU ∗j = Uj − σ
′(βr̂)−1V , where σy ,σ

′,αy , r̂ ←$Zq . Then the ith

key can be written as:

W ∗y (Br + r̂a
⊥) + σya

⊥ + αya
⊥

= (Wy − σy (βr̂)
−1V − αy (βr̂)

−1V − αy)(Br + r̂a
⊤)+

σya
⊥ + αya

⊥ + αy

=WyBr − σy (βr̂)
−1Vr̂a⊥ − αy (βr̂)

−1Vr̂a⊥Vr̂a⊥+

Wy r̂a
⊥ + σya

⊥ + αya
⊥ + αy

=Wy (Br + r̂a
⊤) − σyβ

−1βa
⊤

− αyβ
−1βa

⊤

σya
⊥ + αya

⊥

=Wy (Br + r̂a
⊥)

Similarly, d +U ∗
1
(Br + r̂a⊤) + σ ′a⊤ = d +U1(Br + r̂a

⊥). This is

exactly how the ith key of Hyb
2,4,N is distributed. □

At this point, the keys are all in the form Normal
∗
. We ob-

serve that the next game transitions are Hyb
2,4,N to Hyb

3
, and

Hyb
4,3,n−1 toHyb4,3,N . These transition is similar to the one in [1],

since, in gameHyb
3
, all keys areNormal

∗
, and only the challenge ci-

phertext is SF
∗
. In the latter case, additionally, ith key is P-normal

∗
.

We give their lemmas below:

Lemma 10.5. For all PPT adversaries A, there exists a PPT adver-
sary B such that

AdvA
(2,3,N),3(λ) ≤ AdvBDLINλ + 1/q

Lemma 10.6. For all i ∈ [1..N] and PPT adversariesA, there exists
a PPT adversary B such that

AdvA
(4,3,n−1),(4,1,n)(λ) ≤ AdvBDLINλ + 1/q

We need to prove thatA’s view in Hyb
4,3,n is indistinguishable

from the view in Hyb
4,1,n .

Lemma 10.7. For all i ∈ [1..N] and PPT adversariesA, there exists
a PPT adversary B such that

AdvA
(4,1,n),(4,3,n)(λ) ≤ AdvBDLINλ + 1/q

Proof. InHyb
4,1,n the ith key is P-normal

∗
, whereas inHyb

4,2,n ,

it is Semi-normal
∗
. In both cases, the ciphertext is of the form SF

∗
.

Let us consider a matrixV such thatV = (b⊥)T a⊥. Let β = ⟨a⊥,b⊥⟩
LetV be amatrix defined asV⊤A = VB = 0, and let β = (b⊥)⊤a⊥.

Let W ∗y = Wy − σx (βr̂)
−1V − αy (βr̂)

−1V − αy , and U ∗j = Uj −

σ ′(βr̂)−1V , where σy ,σ
′,αy , r̂ ←$Zq . Let w = (w1, . . . ,wn2

) be

the vector that satisfies (M,π), i.e.,w is a [1,0,..,0] vector. SetWy =

Wy + µyβ
−1V andUj = Uj + χ ·w jβ

−1V , where µy , χ ←$Zq . The

ith key for sky, sk′, sk0, respectively, can be written as:

[Wy (Br + r̂a
⊥) + αy + µy r̂a

⊥]

[d +U1(Br + r̂a
⊥) + χw1r̂a

⊥]

[Br + r̂a⊥]

The ciphertexts will correspondingly be:

cti =W ⊤π (i)(As + ŝb
⊥) +

∑
j
(M)i, jU

⊤
j (As + ŝb

⊥)

+
©«µπ (i) + χ

∑
j
(M)i, jw j

ª®¬ ŝb⊥
ct0 = [As + ŝb⊥ · απ (i)]

ct′ = [d⊤PAs + ŝb⊥]T ·mb

We now replace µπ (i)+χ
∑
j (M)i, jw j by µπ (i) (since

∑
j (M)i, jw j

= 0, if y satisfies S), and replace χw1r̂a
⊤
with χa⊤ in sk′. We then

replace αy from sky , since [Wy (Br + r̂a
⊥)+αy +µy r̂a

⊥] comes from

an identical distribution. Finally, if we replaceWy =Wy − µyβ
−1V ,

the challenge ciphertext becomes SF
∗
, and ith key is in P-SF

∗
, which

is exactly A’s view in Hyb
4,3,n . □

At this point, the ith key is P-SF
∗
, and ciphertext is SF

∗
. The last

thing we need to cover is the transition from Hyb
4,3,N to Hyb

5
.

This is exactly the same as one given in [1], since our extra terms

from the keys and ciphertext are already removed at this point.

Lemma 10.8. For all PPT adversaries A,

AdvA
(4,3,N),5(λ) ≤ 2/q

Putting everything together, from Lemma 10.1, Lemma 10.2,

Lemma 10.3, Lemma 10.4, Lemma 10.5, Lemma 10.6, Lemma 10.7,

and Lemma 10.8 we see that all the game transitions are indistin-

guishable from the point of view ofA, andHyb
1
is indistinguishable

from Hyb
5
, thus concluding the proof. □

10.7 Dynamic Group Signature Scheme
Definition 10.9. (Dynamic Group Signature Scheme, DGSS [15])

A DGSS scheme consists of the following algorithms:

(1) GSetup(1λ) → PP : This algorithm is run to setup the public
parameters of the system, PP.

(2) GKGen(PP) → (outGM , stGM): The group manager uses this
algorithm to generate outGM = (mpk, info0), consisting of the
manager’s public key and the initial group information, info0,
and the resulting state, stGM of the group manager. The group
public key is gpk = (PP ,mpk).

(3) Join: To enroll a user as a member, the GM may run the inter-
active joining protocol with her. Their respective algorithms
are:

• JoinWriteReg(i, ·)
U ser (M, st) → (out ,MGM , st): This algorithm

specifies the user’s execution of the interactive joining pro-
tocol with GM. Given an input message from GM and the
user’s internal state st , it returns a message for GM and a
new state. In its first call, the algorithm is executed on initial
input (init , gpk). In each instance of the protocol, the user is
allowed a single call to the oracle WriteReg(i, ·) for writing
into the registration table an entry reдi corresponding to its
identifier i . Joining session i terminates after at most k(λ)
rounds by a call returning (gsk,MGM , st), which includes
the user’s secret key gski = gsk, an optional final message
for the issuer including a termination message done, and the
user final state. If it terminates with gsk = ⊥, the user will
consider it as a fail to join, and on failure it will always be the
case that it ends withMGM = (done,⊥). After termination,
the user will ignore all future inputs to JoinU ser .
• JoinReadReg(i)GM (i,MGM , stGM) → (outGM ,M, stGM): This
algorithm specifies GM’s execution in the interactive joining
protocol with a user. The GM keeps track of distinct instances
of the protocol using unique identifiers i , which we, without
loss of generality, assume are numbered 1, 2, 3, etc. The
algorithm receives as input a session identifier i , a message
MGM received from the user, and the GM’s internal state
and it returns a messageM for the user interacting in session
i and updates the state stGM . The algorithm has access to the
oracle ReadReg(i) to read the entry reдi in the registration
table Reg. Each joining session will terminate after at most
a polynomial number of rounds. We let k(λ) be the maximal
number of rounds before termination. Termination will be
indicated in the local output outGM of the manager GM and
can be successful (⊤) or fail (⊥), and if it fails the output
message will be Mi = (done,⊥). After termination, GM
ignores future calls with the same i .
For conciseness we will often refer to the user involved in the
ith session of the Join protocol with the manager as user i .
We note that the user may not be aware of her own session
identifier i , since she may not be aware of how many other
users are joining or have already joined the group.

(4) UpdateGroup(R, stGM) → (info, stGM): The group manager
runs this algorithm to update the group information, where the
set R consists of session identifiers associated with users to be
revoked. The algorithm returns new public group information
info and updates the state of GM. The group information info

may or may not depend on the set of newly joined members of
the group, which the groupmanager records in its internal state.
The group information info is intended as group information
pertaining to the group and we will in general assume anybody
may have access to the sequence info0, info1, etc., the group
manager creates during the lifetime of the group signature
scheme.

(5) IsActive(i,τ , stGM) → {0, 1}: The Join protocol and the
UpdateGroup algorithm describe how an honest GM adds and
revokes group members. The exact moment when a member is
activated and able to sign is design specific. In some construc-
tions, group members are implicitly activated after successfully
terminating the Join protocols and may even be able to sign

with respect to previous epochs; in others they are explicitly
activated by GM when a new group information infoτ is pub-
lished. Consequently, different design choices lead to different
time spans when members are allowed to sign. In order to take
into account these differences in the security definitions with-
out favoring a particular design paradigm, we use the IsActive
procedure, which should be interpreted as the group manager’s
policy for when a member is considered active.
The IsActive algorithm takes as input a session identifier i , an
epoch τ associated with group information infoτ , the group
manager has published earlier, and the state of the group man-
ager stGM . We refer to a user as an active member of the group
at epoch τ if and only if the algorithm returns 1. We place the
following constraints on the policies an honest group manager
can have for when a user is active:
• If τ is not associated with any info the group manager has
published, the algorithm returns 0.
• If i is not associated with a joining session where the group
manager has terminated successfully, the algorithm returns
0.
• If i was revoked when creating info for this epoch or earlier,
the algorithm returns 0.
• If i is associated with a joining session where the group man-
ager ended her part successfully before infoτ was created,
and user i is not revoked at or before epoch τ , the algorithm
returns 1.

(6) Sign(gsk, info,m) → Σ: Given a user’s group signing key
gsk, group information info, and a message m, the signing
algorithm outputs a group signature, Σ.

(7) VerifySignature(gpk, info,m, Σ) → {0, 1}: The verification
algorithm checks whether Σ is a valid group signature onm
with respect to the group information info and outputs a bit: 1
for accept and 0 for reject.

(8) UserTrace(gpk, stGM , info,m, Σ) → (i,π): The opening algo-
rithm receives as input the group public key gpk, the state
of the group manager, some public group information info, a
message, and a signature. It returns a session identifier i to-
gether with a proof π attributing Σ to user i . If the algorithm
is unable to attribute the signature to a particular group mem-
ber, it returns (⊥,π) to indicate that it could not attribute the
signature.

(9) Judge(gpk, info, reg,m, Σ,π) → {0, 1}: The judge algorithm
checks the validity of a proof π attributing the signature Σ on
m w.r.t. group information info to a user with registry record
reд. It outputs 1 for accept and 0 for reject.

10.8 ReTRACe Security Properties and Proof
We formalize the security properties in Definition 10.10. We recall

that λ is the security parameter,U is the universe of attributes, and

S is the set of attributes whose keys are requested by adversary A.

Definition 10.10. (Security of ReTRACe) A ReTRACe scheme is
said to be secure if it possesses the following properties:

1) Correctness: We require that for all λ ∈ N, for all S ∈ U , for
all ReTRACe.Keygen(1λ) → (PubPar, SecPar), for all ReTRACe.
UserSetup (PubPar, SecPar) → (gsk, SK), for all

ReTRACe.CreateMessage (key, PubPar,m)→ (msд, ξmsд), it holds
true that ReTRACe.Verify(msд, ξmsд , PubPar) → 1, and
ReTRACe.VerifyMiner(msд, ξmsд ,PubPar, ·) → 1, We also require
that for all ReTRACe.AdaptMessage(msд,m′, PubPar) → (msд′,
ξmsд′), it holds that ReTRACe.Verify(msд′, ξmsд′ , PubPar)→ 1 and
correspondingly for ReTRACe.VerifyMiner.

We also require that for all ReTRACe.RevokeUser(msд,m′′,
PubPar) → (msд′′, ξmsд′′), it holds that ReTRACe.Verify(msд′′,
ξmsд′′) → 1, and correspondingly for ReTRACe.VerifyMiner. Here
m,m′,m′′ ∈ M whereM is a message space.
2) Indistinguishability: Let the advantage of an adversary A in
the indistinguishability game given in Figure 13 be defined as:
AdvAReTRACe.Indisguishability(λ) = Pr [IndisAReTRACe(λ) = 1].
A ReTRACe scheme provides indistinguishability if
AdvAReTRACe.Indisguishability(λ) is a negligible function in the security
parameter λ.
3) Public collision-resistance: Let the advantage of an adversary
A in the public collision resistance game given in Figure 14 be defined
as:AdvAReTRACe.PublicCollRes(λ) = Pr [PublicCollResAReTRACe(λ)= 1].
A ReTRACe scheme provides public collision resistance if
AdvAReTRACe.PublicCollRes(λ) is a negligible function in the security
parameter λ.
4) PrivateCollisionResistance: Let the advantage of an adversary
A in the private collision resistance game given in Figure 15 be defined
as: AdvAReTRACe.PrivateCollRes(λ) = Pr [PrivateCollResAReTRACe(λ) =
1]. A ReTRACe scheme provides private collision resistance if
AdvAReTRACe.PrivateCollRes(λ) is a negligible function in the security
parameter λ.
5) Revocation collision resistance: Let the advantage of an adver-
sary A in the revocation collision resistance game given in Figure 16
be defined as:

AdvAReTRACe.RevocationCollRes(λ)

=Pr [RevocationCollResAReTRACe(λ) = 1].

A ReTRACe scheme provides public collision resistance if
AdvAReTRACe.PublicCollRes(λ) is a negligible function in the security
parameter λ.

10.8.1 ReTRACeGames and Proof. In this sectionwe give the proof
of Theorem 7.1 w.r.t. the properties in Definition 10.10. We have

proven the IND-CPA security of RFAME, but the proof requires an
IND-CCA2 scheme. We apply the Fujisaki-Okamoto transform [30]

to convert RFAME into an IND-CCA2-secure scheme, and then

proceed with the proof.

Proof. Indistinguishability: Let A be a ReTRACe adversary,
and letB be the adversary in theRCHET game.B obtainspkch , skch
from its RCHET challenger. We will focus on showing that B can

successfully answer its RCHET challenge, ifA can successfully win

the ReTRACe indistinguishability game. B gets its (sk1, · · · , sk |S |)
and (gsk

1
, · · · , gsk |SGS |) from the ABE and GSS oracles respec-

tively, and passes them on to A. B simulates the

CreateUpdateOrRevoke oracle by internally calling it own RCHET
HashOrAdapt oracle, which returns (digest, rand0, Γpubinfo, Γprivinfo)
to A, Depending on A’s choice of integer i , B sends i to its own
RCHET challenger, and passes on the ti that the RCHET challenger

returns to A. It is easy to see that if A wins the ReTRACe indistin-
guishability game, B will win its RCHET game.

Public Collision Resistance: B does the setup of keys, gives A

PubPar. B gets its (sk1, · · · , sk |S |) and (gsk1, · · · , gsk |SGS |) from
the ABE and GSS oracles respectively, and passes them on to A. B

calls the AIARevoke oracle to revoke a user, and passes on the up-

dated PubPar′ toA. B then simulates the CreateUpdateOrRevoke
oracle by internally invoking its own RCHET, RFAME and DGSS
challengers. B creates two policy attributes, id1, id2 that satisfy

A’s ϒABE and ϒGS. It then calls its own RCHET oracle to simulate

AdaptMessage, and calls its DGSS oracle to produce valid signa-

tures. Note that while simulating the CreateUpdateOrRevoke ora-
cle, B will need to decrypt RFAME ciphertexts (contained within

msд tuple) and needs access to a decryption oracle; this is where

we need RFAME to be CCA2-secure. The rest of the simulation

proceeds normally, with B returning either an adapted message or

trapdoor to A depending on A’s choice of i .
WhenA outputs a successful collision based on either a success-

ful message adaptation or a successful trapdoor adaption, B will

output this as a response to its RCHET challenger. B will output

the signatures contained in ξmsд∗ as the response to its own DGSS
challenger.

Private Collision Resistance: B will get the public parameters

of ReTRACe, PubPar. It also gets the long-term trapdoor of the

RCHET scheme, (SK , skch). B passes along (SK , skch) and PubPar
to A. B initializes Q, queries RFAME and GSS oracles for SABE
and SGS, respectively, and passes on answers to A. In the chal-

lenge phase, B will parse A’s ϒ
info
= (ϒABE, ϒGS), do necessary

checks, callsits RCHET and RFAME challenger for for simulating

ReTRACe.CreateMessage, ReTRACe.AdaptMessage, and
ReTRACe.RevokeUser. When A outputs its response, B will im-

mediately break DGSS and RCHET similar to the public collision

resistance game. For breaking RFAME, B needs to guess the bit b of

its own challenger. Note that A can either request AdaptMessage
or RevokeUser, but not both. When B simulates AdaptMessage,
it usesm0 of its own challenge as the Γ

privinfo
, else it usesm1. It

A outputs a successful collision by doing an AdaptMessage, i.e.,
(verify(PubPar,msд∗, ξmsд∗) → 1∧verify(PubPar,msд∗′, ξmsд∗′) →

1), B outputs 0, else it outputs 1 as its guess for its RFAME chal-

lenger.

Revocation Collision Resistance: B gets public parameters of

the system, passes on PubPar to A; in this case, B gets both,

the longterm trapdoor and the ephemeral trapdoor of the RCHET
scheme, (SK , skch , Γprivinfo = (d,δ , etd)), all of which are passed

along toA.B queries itsRFAME andGSS challengers, getsSABE,SGS
and gives them to A. B simulates CreateMessage, AdaptMessage
and RevokeUser similar to the prior properties. WhenA outputs its

response, B will immediately break theDGSS and RCHET schemes.

ForRFAME, we notice that we cannot use the same strategy as in the

public and private collision resistance games, since in the revocation

collision resistance game,B knows (SK , skch , Γprivinfo = (d,δ , etd)).
B in this case does not need to use its RFAME decryption or-

acle. B will construct its response to A’s adaptTrapdoor query
in a way that it sets m0 = Γ′

privinfo
, and m1 ←$Z∗q . When A re-

turns a successful collision, B will take A’s successful collision,

(verify(PubPar,msд∗, ξmsд∗) → 1∧verify(PubPar,msд∗′′, ξmsд∗′′) →

1), and check if it can extract the Γ′
privinfo

. If yes, B returns 0, else

it returns 1. □

Game IndisAReTRACe(λ)
1. Keygen(1λ) → (SecPar,PubPar, skch)
2. AABEKeyGen(SecPar)(PubPar,SABE) → (sk1, . . . , sk |S |)
3. AGSKeyGen(SecPar)(PubPar,SGS) → (дsk1, . . . ,дsk |SGS |)
4. i ← {0, 1, 2}

5. ACreateUpdateOrRevoke(key, ·, ·, ·, ·)(PubPar, infoτ , ϒinfo, ϒadmin
) → i ′

where oracle HashOrAdapt on input (key,PubPar,m,m′) does:
/* ϒ

info
and ϒ

admin
given by A is used inside the CreateMessage */

5.1 Parse ϒ
info
= (ϒABE, ϒGS), check if ϒABE(SABE) , 1, and similarly for ϒ

admin
. If yes, return ⊥

5.2. Do CreateMessage(key,PubPar,m) → (msд, ξmsд)

5.3. If i = 0, Set t0 = (msд, ξmsд)

5.4. If i = 1, do AdaptMessage(key,PubPar,m′,msд, ξmsд) → (msд′, ξmsд′)

Set t1 = (msд′, ξmsд′)

5.5. If i = 2, do RevokeUser(key,PubPar,m′,msд, ξmsд) → (msд′′, ξmsд′′)

Set t2 = (msд′′, ξmsд′′)

5.6. Verify all returned values, if any are ⊥, return ⊥

5.7. Return ti
6. Return 1 if i ′ = i , else return 0

Figure 13: ReTRACe indistinguishability game

Game PublicCollResAReTRACe(λ)
1. Keygen(1λ) → (PubPar, SecPar)
2. Q ← ∅, picks i ←$ {0, 1, 2}

3. AABEKeyGen(SecPar)(PubPar,SABE) → (sk1, . . . , sk |SABE |)
4. AGSKeyGen(SecPar)(PubPar,SGS) → (дsk1, . . . ,дsk |SGS |)
5. AAIARevoke(·,mskABE,ν)(mpkABE) → (mpkABE

′) and A updates PubPar to PubPar′

6. ACreateUpdateOrRevoke(key, ·, ·, ·, ·)(PubPar, ϒ
info
,m,m′, ϒ

admin
,PubPar′) →

(msд∗, ξmsд∗ ,msд∗′, ξmsд∗′)

where oracle CreateUpdateOrRevoke on input (m,m′, key,PubPar,PubPar′) does:
/*ϒ

info
and ϒ

admin
given by A is used inside the CreateMessage */

6.1. Parse ϒ
info
= (ϒABE, ϒGS), if either ϒABE(SABE) = 1, ϒ

admin
(SABE) = 1 or ϒGS(SGS) = 1, return ⊥

6.2. Create two policy attributes, id1, id2 s.t., ϒABE(id1, id2) = 1 and ϒGS(id1, id2) = 1

6.3. Do CreateMessage(key,PubPar,m) → (msд, ξmsд)

6.4. If i = 0, do AdaptMessage(key,PubPar,m′,msд, ξmsд) → (msд′, ξmsд′)

Set t0 = (PubPar,m,msд, ξmsд ,m
′,msд′, ξmsд′)

/* Next, we consider Case 1 of RevokeUser below, i.e., new ϒ′
info

is created*/

6.5. If i = 1, create ϒ′
info
= (ϒ′ABE, ϒGS), s.t., ϒ

′
ABE(id1) = 1

Do RevokeUser(key,PubPar,m′,msд, ξmsд) → (msд′, ξmsд′)

Set t1 = (PubPar,m,msд, ξmsд ,m
′,msд′, ξmsд′)

/* Now we consider Case 2 of RevokeUser below, i..e, when AIA revokes a user’s id2 attribute*/
6.6. If i = 2, Use PubPar′

Do RevokeUser(key,PubPar′,m′,msд, ξmsд) → (msд′, ξ ′msд)

Set t2 = (PubPar,m,msд, ξmsд ,m
′,msд′, ξmsд′ ,PubPar′)

5.7. Q ← Q ∪ {msд∗.m∗,msд∗′.m∗}
5.8. return ti

6. If (((verify(PubPar,msд∗, ξmsд∗) → 1) ∧ (verify(PubPar,msд∗′, ξmsд∗′) → 1) ∧ (msд∗′ < Q) ∧ (msд∗ ,msд∗′))∨
((verify(PubPar,msд∗, ξmsд∗) → 1) ∧ (verify(PubPar′,msд∗′, ξmsд∗′)) → 1)∧

(msд∗′.m∗,msд∗.m∗ < Q) ∧ (msд∗ ,msд∗′)) , return 1, else return 0.

Figure 14: ReTRACe public collision resistance game

Game PrivateCollResAReTRACe(λ)
1. Keygen(1λ) → (SecPar,PubPar)
2. A(ppRCHET) → (sk

∗
ch ,pk

∗
ch),A picks i ←$ {0, 1, 2}

3. Q ← ∅

4. AABEKeyGen(SecPar)(PubPar,SABE) → (sk1, . . . , sk |SABE |)
5. AGSKeyGen(SecPar)(PubPar,SGS) → (дsk1, . . . ,дsk |SGS |)
6. AAIARevoke(·,mskABE,ν)(mpkABE) → (mpkABE

′) and A updates PubPar to PubPar′

7. ACreateUpdateOrRevoke(·, ·, ·, ·, ·)(PubPar, ϒ
info
,m,m′, ϒ

admin
,PubPar′) →

(msд∗, ξmsд∗ ,msд∗′, ξmsд∗′)

where oracle CreateUpdateOrRevoke on input (m,m′, key,PubPar,PubPar′) does:
/*ϒ

info
and ϒ

admin
given by A is used inside the CreateMessage */

7.1. Parse ϒ
info
= (ϒABE, ϒGS), if either ϒABE(SABE) = 1, ϒ

admin
(SABE) = 1 or ϒGS(SGS) = 1, return ⊥

7.2. Create two policy attributes, id1, id2 s.t., ϒABE(id1, id2) = 1 and ϒGS(id1, id2) = 1

7.3. Do CreateMessage(key,PubPar,m) → (msд, ξmsд)

7.4. If i = 0, do AdaptMessage(key,PubPar,m′,msд, ξmsд) → (msд′, ξmsд′)

Set t0 = (PubPar,m,msд, ξmsд ,m
′,msд′, ξmsд′)

/* Next, we consider Case 1 of RevokeUser below, i.e., new ϒ′
info

is created*/

7.5. If i = 1, create ϒ′
info
= (ϒ′ABE, ϒGS), s.t., ϒ

′
ABE(id1) = 1

Do RevokeUser(key,PubPar,m′,msд, ξmsд) → (msд′, ξmsд′)

Set t1 = (PubPar,m,msд, ξmsд ,m
′,msд′, ξmsд′)

/* Now we consider Case 2 of RevokeUser below, i..e, when AIA revokes a user’s id2 attribute*/
7.6. If i = 2, Use PubPar′

Do RevokeUser(key,PubPar′,m′,msд, ξmsд) → (msд′, ξ ′msд)

Set t2 = (PubPar,m,msд, ξmsд ,m
′,msд′, ξmsд′ ,PubPar′)

7.7. Q ← Q ∪ {msд∗.m∗,msд∗.digest∗}
7.8. return ti

8. Return 1 if (((verify(PubPar,msд∗, ξmsд∗) → 1) ∧ (verify(PubPar,msд∗′, ξmsд∗′) → 1)∧

(msд∗′ < Q) ∧ (msд∗ ,msд∗′))∨ ((verify(PubPar,msд∗, ξmsд∗) → 1)∧

(verify(PubPar′,msд∗′, ξmsд∗′)) → 1)∧ (msд∗.m∗,msд∗.digest∗) < Q∧
(·,msд∗.digest∗) ∈ Q, else return 0.

Figure 15: ReTRACe private collision resistance game

Game RevocationCollResAReTRACe(λ)
1. Keygen(1λ) → (SecPar,PubPar)
2. A(ppRCHET) → (sk

∗
ch ,pk

∗
ch)

3. A does CreateMessage(key,PubPar,m) → (msд∗, ξmsд∗)

4. AABEKeyGen(SecPar)(PubPar,SABE) → (sk1, . . . , sk |SABE |)
5. AGSKeyGen(SecPar)(PubPar,SGS) → (дsk1, . . . ,дsk |SGS |)
6. ARevoke(·, ·, ·, ·, ·)(key,PubPar,m,msд, ξmsд) →

(msд∗, ξmsд∗ ,msд∗′′, ξmsд∗′′)

where oracle Revoke on input (key,PubPar,m∗′,msд∗, ξmsд∗) does:

6.1. If verify(PubPar,msд∗, ξmsд∗) → 0, return ⊥

6.2. Call RevokeUser(key,PubPar,m∗′,msд∗, ξmsд∗) → (msд∗′, ξmsд∗′)

6.3. return (m∗′,msд∗′, ξmsд∗′)

7. Return 1 if (verify(PubPar,msд∗, ξmsд∗) → 1 ∧ verify(PubPar,msд∗′′, ξmsд∗′′) → 1). Else return 0

Figure 16: ReTRACe revocation collision resistance game

	Abstract
	1 Introduction and Related Work
	1.1 Related Work
	1.2 Challenges in the State-of-the-art
	1.3 Our Contributions

	2 System Model and Threat Model
	2.1 Policies
	2.2 Parties
	2.3 Blockchain Operations
	2.4 Trust Assumptions and Threat Model
	2.5 Computational Assumptions

	3 ReTRACe System Overview
	4 Revocable Chameleon Hash with Ephemeral Trapdoors
	4.1 RCHET Security Properties

	5 Revocable Attribute-based Encryption
	5.1 Definitions and Construction

	6 Dynamic Group Signature Schemes
	7 The ReTRACe Framework
	7.1 ReTRACe Construction
	7.2 ReTRACe Security Properties

	8 Implementation and Results
	9 Conclusion
	Acknowledgments
	References
	10 Appendix
	10.1 Computational Assumptions
	10.2 Practical Applicability of ReTRACe
	10.3 RCHET Construction
	10.4 RCHET Security Properties and Proof
	10.5 RFAME Correctness
	10.6 RFAME Security Analysis
	10.7 Dynamic Group Signature Scheme
	10.8 ReTRACe Security Properties and Proof

