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A1.  S is the set {1, 2, 3, ... , 1000000}. Show that for any subset A of S with 101 
elements we can find 100 distinct elements xi of S, such that the sets xi + A are all 
pairwise disjoint. [Note that xi + A is the set {a + xi | a is in A} ].   

A2.  Find all pairs (m, n) of positive integers such that m2/(2mn2 - n3 + 1) is a positive 
integer.  

 

A3.  A convex hexagon has the property that for any pair of opposite sides the 
distance between their midpoints is (√3)/2 times the sum of their lengths. Show that all 
the hexagon's angles are equal.   

B1.  ABCD is cyclic. The feet of the perpendicular from D to the lines AB, BC, CA 
are P, Q, R respectively. Show that the angle bisectors of ABC and CDA meet on the 
line AC iff RP = RQ.   

B2.  Given n > 2 and reals x1 ≤ x2 ≤ ... ≤ xn, show that (∑i,j |xi - xj| )
2 ≤ (2/3) (n2 - 1) ∑i,j 

(xi - xj)
2. Show that we have equality iff the sequence is an arithmetic progression.  

 

B3.  Show that for each prime p, there exists a prime q such that np - p is not divisible 
by q for any positive integer n.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IMO 2003 



 3 

 
 
  
Problem A1 

S is the set {1, 2, 3, ... , 1000000}. Show that for any subset A of S with 101 elements we can 
find 100 distinct elements xi of S, such that the sets xi + A are all pairwise disjoint. [Note 
that xi + A is the set {a + xi | a is in A} ].  

Solution 

Thanks to Li Yi  

Having found x1, x2, ... , xk there are k·101·100 forbidden values for xk+1 of the form xi + am - an 
with m and n unequal and another k forbidden values with m = n. Since 99·101·100 + 99 = 106 - 
1, we can successively choose 100 distinct xi.  

Gerhard Woeginger sent me a similar solution  

IMO 2003 

  
Problem A2 

Find all pairs (m, n) of positive integers such that m2/(2mn2 - n3 + 1) is a positive integer.    

Answer :  (m, n) = (2k, 1), (k, 2k) or (8k4 - k, 2k)    

Solution : Thanks to Li Yi  

The denominator is 2mn2 - n3 + 1 = n2(2m - n) + 1, so 2m >= n > 0. If n = 1, then m must be even, 
in other words, we have the solution (m, n) = (2k, 1).  

So assume n > 1. Put h = m2/(2mn2 - n3 + 1). Then we have a quadratic equation for m, namely m2 
- 2hn2m + (n3 - 1)h = 0. This has solutions hn2 +- N, where N is the positive square root of h2n4 - 
hn3 + h. Since n > 1, h ≥ 1, N is certainly real. But the sum and product of the roots are both 
positive, so both roots must be positive. The sum is an integer, so if one root is a positive integer, 
then so is the other.  

The larger root hn2 + N is greater than hn2, so the smaller root < h(n3 - 1)/(hn2) < n. But note that 
if 2m - n > 0, then since h > 0, we must have the denominator (2m - n)n2 + 1 smaller than the 
numerator and hence m > n. So for the smaller root we cannot have 2m - n > 0. But 2m - n must 
be non-negative (since h is positive), so 2m - n = 0 for the smaller root. Hence hn2 - N = n/2. Now 
N2 = (hn2 - n/2)2 = h2n4 - hn3 + h, so h = n2/4. Thus n must be even. Put n = 2k and we get the 
solutions (m, n) = (k, 2k) and (8k4 - k, 2k).  (We have shown that any solution must be of one of 
the three forms given, but it is trivial to check that they are all indeed solutions).  

 IMO 2003 
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Problem A3 

A convex hexagon has the property that for any pair of opposite sides the distance between 
their midpoints is ½ √3 times the sum of their lengths. Show that all the hexagon's angles 
are equal.    

Solution Thanks to Li Yi  

We use bold to denote vectors, so AB means the vector from A to B. We take some arbitrary 
origin and write the vector OA as A for short. Note that the vector to the midpoint of AB is (A + 
B)/2, so the vector from the midpoint of DE to the midpoint of AB is (A + B - D - E)/2. So the 
starting point is |A + B - D - E| ≥ √3 ( |A - B| + |D - E| ) and two similar equations. The key is to 
notice that by the triangle inequality we have |A - B| + |D - E| ≥ |A - B - D + E| with equality iff 
the opposite sides AB and DE are parallel. Thus we get |DA + EB| ≥ √3 |DA - EB|. Note that DA 
and EB are diagonals. Squaring, we get DA2 + 2 DA.EB + EB2 ≥ 3(DA2 - 2 DA.EB + EB2), or 
DA2 + EB2 ≤ 4 DA.EB. Similarly, we get EB2 + FC2 ≤ 4 EB.FC and FC2 + AD2 ≤ 4 FC.AD = - 
4 FC.DA. Adding the three equations gives 2(DA - EB + FC)2 ≤ 0. So it must be zero, and hence 
DA - EB + FC = 0 and opposite sides of the hexagon are parallel.  

Note that DA - EB + FC = A - D - B + E + C - F = BA + DC + FE. So BA + DC + FE = 0. In 
other words, the three vectors can form a triangle.  

 

Since EF is parallel to BC, if we translate EF along the vector ED we get CG, an extension of 
BC. Similarly, if we translate AB along the vector BC we get an extension of ED. Since BA, DC 
and FE form a triangle, AB must translate to DG. Thus HAB and CDG are congruent. Similarly, 
if we take AF and DE to intersect at I, the triangle FIE is also congruent (and similarly oriented) 
to HAB and CDG. Take J, K as the midpoints of AB, ED. HIG and HAB are equiangular and 
hence similar. IE = DG and K is the midpoint of ED, so K is also the midpoint of IG. Hence HJ is 
parallel to HK, so H, J, K are collinear.  
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Hence HJ/AB = HK/IG = (HK - HJ)/(IG - AB) = JK/(AB + ED) = ½ √3. Similarly, each of the 
medians of the triangle HAB is ½ √3 times the corresponding side. We will show that this implies 
it is equilateral. The required result then follows immediately.  

Suppose a triangle has side lengths a, b, c and the length of the median to the midpoint of side 
length c is m. Then applying the cosine rule twice we get m2 = a2/2 + b2/2 - c2/4. So if m2 = ¾ c2, 
it follows that a2 + b2 = 2c2. Similarly, b2 + c2 = 2a2. Subtracting, a = c. Similarly for the other 
pairs of sides.  

An alternative (and rather more elegant) solution sent my some anonymous contestants at the 
IMO is as follows  

 

Let the diagonals AD and BE meet at P. We show that angle APB <= 60o. Suppose angle APB > 
60o. Take X and Y inside the hexagon so that ABX and DEY are equilateral (as shown). Then 
since angle APB > angle AXB, P lies inside the circumcircle of ABX (which we take to have 
center O, radius r). Similarly, it lies inside the circumcircle of DEY (which we take to have center 
O' radius r'), so these circles must meet and hence OO' < r + r'. Now √3 (AB + DE)/2 = MN 
(where M, N are the midpoints of AB, DE) ≤ MO + OO' + O'N < r/2 + (r + r') + r'/2 = (3/2)(r + r') 
= √3 (AB + DE)/2. Contradiction.  

The same argument applies to any two long diagonals. Hence the angles must all be 60o. Also we 
must have MP ≤ MX with equality iff P = X, and similarly NP ≤ NY with equality iff P = Y. So 
MN ≤ MP + PN ≤ MX + NY = √3 (AB + DE)/2 = MN. Hence we have equality and so P = X = 
Y.  
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Hence angle APB = 60o. Suppose AD and CF meet at Q. The same argument shows that angle 
AQF = 60o. So the hexagon angle at A is angle APB + angle AQF = 120o. Similarly for the other 
angles.  

Finally, note that the only possible configuration is:  

 

The ratio AB/BC is arbitrary, but the figure is symmetrical under rotations through 120o. That 
follows immediately from either of the two solutions above.  

 IMO 2003 

  
  
Problem B1  

ABCD is cyclic. The feet of the perpendicular from D to the lines AB, BC, CA are P, Q, R 
respectively. Show that the angle bisectors of ABC and CDA meet on the line AC iff RP = 
RQ.  

   

Solution  

Thanks to Li Yi  
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APRD is cyclic with diameter AD (because angle APD = angle ARD = 90o. Suppose its center is 
O and its radius r. Angle PAR = ½ angle POR, so PR = 2r sin ½POR = AD sin PAR. Similarly, 
RQ = CD sin RCQ. (Note that it makes no difference if R, P are on the same or opposite sides of 
the line AD.) But sin PAR = sin BAC, sin RCQ = sin ACB, so applying the sine rule to the 
triangle ABC, sin RCQ/sin PAR = AB/BC. Thus we have AD/CD = (PR/RQ) (AB/BC). Suppose 
the angle bisectors of B, D meet AD at X, Y. Then we have AB/BC = AX/CX and AD/CD = 
AY/CY. Hence (AY/CY)/(AX/CX) = PR/RQ. So PR = RQ iff X = Y, which is the required result.  

Note that ABCD does not need to be cyclic! Exercise: does it need to be convex?  

IMO 2003 

 
  
Problem B2 

Given n > 2 and reals x1 <= x2 <= ... <= xn, show that (∑i,j  |xi - xj| )
2 ≤ (2/3) (n2 - 1) ∑i,j  (xi - xj)

2. 
Show that we have equality iff the sequence is an arithmetic progression.  

 Solution  Thanks to Li Yi  

Notice first that if we restrict the sums to i < j, then they are halved. The lhs sum is squared and 
the rhs sum is not, so the the desired inequality with sums restricted to i < j has (1/3) on the rhs 
instead of (2/3).  

Consider the sum of all |xi - xj| with i < j. x1 occurs in (n-1) terms with a negative sign. x2 occurs 
in one term with a positive sign and (n-2) terms with a negative sign, and so on. So we get -(n-
1)x1 - (n-3)x2 - (n-5)x3 - ... + (n-1)xn = ∑ (2i-1-n)xi.  

We can now apply Cauchy-Schwartz. The square of this sum is just ∑ xi
2 ∑ (2i-1-n)2.  

Looking at the other side of the desired inequality, we see immediately that it is n ∑ xi
2 - (∑ xi)

2. 
We would like to get rid of the second term, but that is easy because if we add h to every xi the 
sums in the desired inequality are unaffected (since they use only differences of xi), so we can 
choose h so that ∑ xi is zero. Thus we are home if we can show that ∑ (2i-1-n)2 ≤ n(n2 - 1)/3. That 
is easy: lhs = 4 ∑ i2 - 4(n+1) ∑ i + n(n+1)2 = (2/3)n(n+1)(2n+1) - 2n(n+1) + n(n+1)2 = 
(1/3)n(n+1)(2(2n+1) - 6 + 3(n+1) ) = (1/3)n(n2 - 1) = rhs. That establishes the required inequality.  

We have equality iff we have equality at the Cauchy-Schwartz step and hence iff xi is 
proportional to (2i-1-n). That implies that xi+1 - xi is constant. So equality implies that the 
sequence is an AP. But if the sequence is an AP with difference d (so xi+1 = xi + d) and we take x1 
= -(d/2)(n-1), then we get xi = (d/2)(2i-1-n) and ∑ xi = 0, so we have equality.  
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Problem B3 

Show that for each prime p, there exists a prime q such that np - p is not divisible by q for 
any positive integer n.  

 Solution Thanks to Li Yi  

If p = 2, then we can take q = 3, since squares cannot be 2 mod 3. So suppose p is odd.  

Consider N = 1 + p + p2 + ... + pp-1. There are p terms. Since p is odd, that means an odd number 
of odd terms, so N is odd. Also N = p + 1 mod p2, which is not 1 mod p2, so N must have a prime 
factor q which is not 1 mod p2. We will show that q has the required property.  

Since N = 1 mod p, p does not divide N, so q cannot be p. If p = 1 mod q, then N = 1 + 1 + ... + 1 
= p mod q. Since N = 0 mod q, that implies q divides p. Contradiction. So q does not divide p - 1.  

Now suppose np = p mod q (*). We have just shown that n cannot be 1 mod q. We have also 
shown that q is not p, so n cannot be a multiple of q. So assume n is not 0 or 1 mod q. Take the 
pth power of both sides of (*). Since (p - 1)N = pp - 1, we have pp = 1 mod q. So n to the power of 
p2 is 1 mod q. But nq-1 = 1 mod q (the well-known Fermat little theorem). So if d = gcd(q-1, p2), 
then nd = 1 mod q. We chose q so that q-1 is not divisible by p2, so d must be 1 or p. But we are 
assuming n is not 1 mod q, so d cannot be 1. So it must be p. In other words, np = 1 mod q. But np 
= p mod q, so p = 1 mod q. Contradiction (we showed above that q does not divide p - 1).  
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43rd IMO 2002 

 
 
 

A1.  S is the set of all (h, k) with h, k non-negative integers such that h + k < n. Each 
element of S is colored red or blue, so that if (h, k) is red and h' ≤ h, k' ≤ k, then (h', k') 
is also red. A type 1 subset of S has n blue elements with different first member and a 
type 2 subset of S has n blue elements with different second member. Show that there 
are the same number of type 1 and type 2 subsets.  

 

A2.  BC is a diameter of a circle center O. A is any point on the circle with angle AOC 
> 60o. EF is the chord which is the perpendicular bisector of AO. D is the midpoint of 
the minor arc AB. The line through O parallel to AD meets AC at J. Show that J is the 
incenter of triangle CEF.  

 

 

A3.  Find all pairs of integers m > 2, n > 2 such that there are infinitely many positive 
integers k for which (kn + k2 - 1) divides (km + k - 1).   

B1.  The positive divisors of the integer n > 1 are d1 < d2 < ... < dk, so that d1 = 1, dk = 
n. Let d = d1d2 + d2d3 + ... + dk-1dk. Show that d < n2 and find all n for which d divides 
n2.   

B2.  Find all real-valued functions f on the reals such that (f(x) + f(y)) (f(u) + f(v)) = 
f(xu - yv) + f(xv + yu) for all x, y, u, v.  

 

B3.  n > 2 circles of radius 1 are drawn in the plane so that no line meets more than 
two of the circles. Their centers are O1, O2, ... , On. Show that ∑i<j 1/OiOj ≤ (n-1)π/4.   
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Problem A1 

S is the set of all (h, k) with h, k non-negative integers such that h + k < n. Each element of S 
is colored red or blue, so that if (h, k) is red and h' ≤ h, k' ≤ k, then (h', k') is also red. A type 
1 subset of S has n blue elements with different first member and a type 2 subset of S has n 
blue elements with different second member. Show that there are the same number of type 
1 and type 2 subsets.  

 Solution 

Let ai be the number of blue members (h, k) in S with h = i, and let bi be the number of blue 
members (h, k) with k = i. It is sufficient to show that b0, b1, ... , bn-1 is a rearrangement of a0, a1, 
... , an-1 (because the number of type 1 subsets is the product of the ai and the number of type 2 
subsets is the product of the bi).  

Let ci be the largest k such that (i, k) is red. If (i, k) is blue for all k then we put ci = -1. Note that 
if i < j, then ci ≥ cj, since if (j, ci ) is red, then so is (i, ci ). Note also that (i, k) is red for k ≤ ci, so 
the sequence c0, c1, ... , cn-1 completely defines the coloring of S.  

Let Si be the set with the sequence c0, c1, ... , ci, -1, ... , -1, so that Sn-1 = S. We also take S-1 as the 
set with the sequence -1, -1, ... , -1, so that all its members are blue. We show that the 
rearrangement result is true for S-1 and that if it is true for Si then it is true for Si+1. It is obvious 
for S-1, because both ai and bi are n, n-1, ... , 2, 1. So suppose it is true for Si (where i < n-1). The 
only difference between the aj for Si and for Si+1 is that ai+1 = n-i-1 for Si and (n-i-1)-(ci+1+1) for 
Si+1. In other words, the number n-i-1 is replaced by the number n-i-c-2, where c = ci+1. The 
difference in the bj is that 1 is deducted from each of b0, b1, ... , bc. But these numbers are just n-i-
1, n-i-1, n-i-2, ... , n-i-c-1. So the effect of deducting 1 from each is to replace n-i-1 by n-i-c-2, 
which is the same change as was made to the aj. So the rearrangement result also holds for Si+1. 
Hence it holds for S.  
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Problem A2 

BC is a diameter of a circle center O. A is any point on the circle with angle AOC > 60o. EF 
is the chord which is the perpendicular bisector of AO. D is the midpoint of the minor arc 
AB. The line through O parallel to AD meets AC at J. Show that J is the incenter of triangle 
CEF.    

Solution 

 

F is equidistant from A and O. But OF = OA, so OFA is equilateral and hence angle AOF = 60o. 
Since angle AOC > 60o, F lies between A and C. Hence the ray CJ lies between CE and CF.  

D is the midpoint of the arc AB, so angle DOB = ½ angle AOB = angle ACB. Hence DO is 
parallel to AC. But OJ is parallel to AD, so AJOD is a parallelogram. Hence AJ = OD. So AJ = 
AE = AF, so J lies on the opposite side of EF to A and hence on the same side as C. So J must lie 
inside the triangle CEF.  

Also, since EF is the perpendicular bisector of AO, we have AE = AF = OE, so A is the center of 
the circle through E, F and J. Hence angle EFJ = ½ angle EAJ. But angle EAJ = angle EAC (same 
angle) = angle EFC. Hence J lies on the bisector of angle EFC.  

Since EF is perpendicular to AO, A is the midpoint of the arc EF. Hence angle ACE = angle 
ACF, so J lies on the bisector of angle ECF. Hence J is the incenter 
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Problem A3 

Find all pairs of integers m > 2, n > 2 such that there are infinitely many positive integers k 
for which (k n + k2 - 1) divides (km + k - 1).  

Solution 

Answer: m = 5, n = 3.  

Obviously m > n. Take polynomials q(x), r(x) with integer coefficients and with degree r(x) < n 
such that xm + x - 1 = q(x) (xn + x2 - 1) + r(x). Then xn + x2 - 1 divides r(x) for infinitely many 
positive integers x. But for sufficiently large x, xn + x2 - 1 > r(x) since r(x) has smaller degree. So 
r(x) must be zero. So xm + x - 1 factorises as q(x) (xn + x2 - 1), where q(x) = xm-n + am-n-1x

m-n-1 + ... 
+ a0.  

At this point I use an elegant approach provided by Jean-Pierre Ehrmann  

We have (xm + x - 1) = xm-n(xn + x2 - 1) + (1 - x)(xm-n+1 + xm-n - 1), so (xn + x2 - 1) must divide (xm-

n+1 + xm-n - 1). So, in particular, m ≥ 2n-1. Also (xn + x2 - 1) must divide (xm-n+1 + xm-n - 1) - xm-

2n+1(xn + x2 - 1) = xm-n - xm-2n+3 + xm-2n+1 - 1 (*).  

At this point there are several ways to go. The neatest is Bill Dubuque's:  

(*) can be written as xm-2n+3(xn-3 - 1) + (xm-(2n-1) - 1) which is < 0 for all x in (0, 1) unless n - 3 = 0 
and m - (2n - 1) = 0. So unless n = 3, m = 5, it is has no roots in (0, 1). But xn + x2 - 1 (which 
divides it) has at least one becaause it is -1 at x = 0 and +1 at x = 1. So we must have n = 3, m = 
5. It is easy to check that in this case we have an identity.  

Two alternatives follow. Jean-Pierre Ehrmann continued:  

If m = 2n-1, (*) is xn-1 - x2. If n = 3, this is 0 and indeed we find m = 5, n = 3 gives an identity. If 
n > 3, then it is x2(xn-3 - 1). But this has no roots in the interval (0, 1), whereas xn + x2 - 1 has at 
least one (because it is -1 at x = 0 and +1 at x = 1), so xn + x2 - 1 cannot be a factor.  

If m > 2n-1, then (*) has four terms and factorises as (x - 1)(xm-n-1 + xm-n-2 + ... + xm-2n+3 + xm-2n + 
xm-2n-1 + ... + 1). Again, this has no roots in the interval (0, 1), whereas xn + x2 - 1 has at least one, 
so xn + x2 - 1 cannot be a factor.  

François Lo Jacomo, having got to xn + x2 - 1 divides xm-n+1 + xm-n - 1 and looking at the case m -n 
+ 1 > n, continues:  

xn + x2 - 1 has a root r such that 0 < r < 1 (because it is -1 at x = 0 and +1 at x = 1). So rn = 1 - r2. 
It must also be a root of xm + x - 1, so 1 - r = rm ≤ r2n = (1 - r2)2. Hence (1 - r2)2 - (1 - r) = (1 - r) r 
(1 - r - r2) ≥ 0, so 1 - r - r2 ≥ 0. Hence rn = 1 - r2 ≥ r, which is impossible.  
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43rd IMO 2002 

 
 
Problem B1 

The positive divisors of the integer n > 1 are d1 < d2 < ... < dk, so that d1 = 1, dk = n. Let d = 
d1d2 + d2d3 + ... + dk-1dk. Show that d < n2 and find all n for which d divides n2.    

Solution 

dk+1-m <= n/m. So d < n2(1/(1.2) + 1/(2.3) + 1/(3.4) + ... ). The inequality is certainly strict because 
d has only finitely many terms. But 1/(1.2) + 1/(2.3) + 1/(3.4) + ... = (1/1 - 1/2) + (1/2 - 1/3) + 
(1/3 - 1/4) + ... = 1. So d < n2.  

Obviously d divides n2 for n prime. Suppose n is composite. Let p be the smallest prime dividing 
n. Then d > n2/p. But the smallest divisor of n2 apart from 1 is p, so if d divides n2, then d ≤ n2/p. 
So d cannot divide n2 for n composite.  

43rd IMO 2002 

 
 
Problem B2 

Find all real-valued functions f on the reals such that (f(x) + f(y)) (f(u) + f(v)) = f(xu - yv) + 
f(xv + yu) for all x, y, u, v.  

 Solution 

Answer:there are three possible functions: (1) f(x) = 0 for all x; (2) f(x) = 1/2 for all x; or (3) f(x) 
= x2.  

Put x = y = 0, u = v, then 4 f(0) f(u) = 2 f(0). So either f(u) = 1/2 for all u, or f(0) = 0. f(u) = 1/2 
for all u is certainly a solution. So assume f(0) = 0.  

Putting y = v = 0, f(x) f(u) = f(xu) (*). In particular, taking x = u = 1, f(1)2 = f(1). So f(1) = 0 or 1. 
Suppose f(1) = 0. Putting x = y = 1, v = 0, we get 0 = 2f(u), so f(x) = 0 or all x. That is certainly a 
solution. So assume f(1) = 1.  

Putting x = 0, u = v = 1 we get 2 f(y) = f(y) + f(-y), so f(-y) = f(y). So we need only consider f(x) 
for x positive. We show next that f(r) = r2 for r rational. The first step is to show that f(n) = n2 for 
n an integer. We use induction on n. It is true for n = 0 and 1. Suppose it is true for n-1 and n. 
Then putting x = n, y = u = v = 1, we get 2f(n) + 2 = f(n-1) + f(n+1), so f(n+1) = 2n2 + 2 - (n-1)2 = 
(n+1)2 and it is true for n+1. Now (*) implies that f(n) f(m/n) = f(m), so f(m/n) = m2/n2 for 
integers m, n. So we have established f(r) = r2 for all rational r.  

From (*) above, we have f(x2) = f(x)2 ≥ 0, so f(x) is always non-negative for positive x and hence 
for all x. Putting u = y, v = x, we get ( f(x) + f(y) )2 = f(x2 + y2), so f(x2 + y2) = f(x)2 + 2f(x)f(y) + 



 14

f(y)2 ≥ f(x)2 = f(x2). For any u > v > 0, we may put u = x2 + y2, v = x2 and hence f(u) ≥ f(v). In 
other words, f is an increasing function.  

So for any x we may take a sequence of rationals rn all less than x we converge to x and another 
sequence of rationals sn all greater than x which converge to x. Then rn

2 = f(rn) ≤ f(x) ≤ f(sn) = sn
2 

for all x and hence f(x) = x2.  

43rd IMO 2002 

 
 
Problem B3 

2 circles of radius 1 are drawn in the plane so that no line meets more than two of the 
circles. Their centers are O1, O2, ... , On. Show that ∑i<j  1/OiOj ≤ (n-1)π/4.    

Solution 

 

Denote the circle center Oi by Ci. The tangents from O1 to Ci contain an angle 2x where sin x = 
1/O1Oi. So 2x > 2/O1Oi. These double sectors cannot overlap, so ∑ 2/O1Oi < π. Adding the 
equations derived from O2, O3, ... we get 4 ∑ OiOj < nπ, so ∑ OiOj < nπ/4, which is not quite good 
enough.  

 

There are two key observations. The first is that it is better to consider the angle OiO1Oj than the 
angle between the tangents to a single circle. It is not hard to show that this angle must exceed 
both 2/O1Oi and 2/O1Oj. For consider the two common tangents to C1 and Ci which intersect at 
the midpoint of O1Oi. The angle between the center line and one of the tangents is at least 2/O1Oi. 
No part of the circle Cj can cross this line, so its center Oj cannot cross the line parallel to the 
tangent through O1. In other word, angle OiO1Oj is at least 2/O1Oi. A similar argument establishes 
it is at least 2/O1Oj.  
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Now consider the convex hull of the n points Oi. m ≤ n of these points form the convex hull and 
the angles in the convex m-gon sum to (m-2)π. That is the second key observation. That gains us 
not one but two amounts π/4. However, we lose one back. Suppose O1 is a vertex of the convex 
hull and that its angle is θ1. Suppose for convenience that the rays O1O2, O1O3, ... , O1On occur in 
that order with O2 and On adjacent vertices to O1 in the convex hull. We have that the n-2 angles 
between adjacent rays sum to θ1. So we have ∑ 2/O1Oi < θ1, where the sum is taken over only n-2 
of the i, not all n-1. But we can choose which i to drop, because of our freedom to choose either 
distance for each angle. So we drop the longest distance O1Oi. [If O1Ok is the longest, then we 
work outwards from that ray. Angle Ok-1O1Ok > 2/O1Ok-1, and angle OkO1Ok+1 > 2/O1Ok+1 and so 
on.]  

We now sum over all the vertices in the convex hull. For any centers Oi inside the hull we use the 
∑j 2/OiOj < π which we established in the first paragraph, where the sum has all n-1 terms. Thus 
we get ∑i,j 2/OiOj < (n-2)π, where for vertices i for which Oi is a vertex of the convex hull the sum 
is only over n-2 values of j and excludes 2/OiOmax i where Omax idenotes the furthest center from 
Oi.  

Now for Oi a vertex of the convex hull we have that the sum over all j, ∑ 2/OiOj, is the sum Σ' 
over all but j = max i plus at most 1/(n-2) Σ'. In other words we must increase the sum by at most 
a factor (n-1)/(n-2) to include the missing term. For Oi not a vertex of the hull, obviously no 
increase is needed. Thus the full sum ∑i,j 2/OiOj < (n-1)π. Hence ∑i<j 1/OiOj < (n-1)π/4 as 
required.  
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42nd IMO 2001 

 

  

A1.  ABC is acute-angled. O is its circumcenter. X is the foot of the perpendicular 
from A to BC. Angle C ≥ angle B + 30o. Prove that angle A + angle COX < 90o.   

A2.  a, b, c are positive reals. Let a' = √(a2 + 8bc), b' = √(b2 + 8ca), c' = √(c2 + 8ab). 
Prove that a/a' + b/b' + c/c' ≥ 1.   

A3.  Integers are placed in each of the 441 cells of a 21 x 21 array. Each row and each 
column has at most 6 different integers in it. Prove that some integer is in at least 3 
rows and at least 3 columns.   

B1.  Let n1, n2, ... , nm be integers where m is odd. Let x = (x1, ... , xm) denote a 
permutation of the integers 1, 2, ... , m. Let f(x) = x1n1 + x2n2 + ... + xmnm. Show that 
for some distinct permutations a, b the difference f(a) - f(b) is a multiple of m!.   

B2.  ABC is a triangle. X lies on BC and AX bisects angle A. Y lies on CA and BY 
bisects angle B. Angle A is 60o. AB + BX = AY + YB. Find all possible values for 
angle B.   

B3.  K > L > M > N are positive integers such that KM + LN = (K + L - M + N)(-K + 
L + M + N). Prove that KL + MN is composite.  
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IMO 2001 

 
  
  
Problem A1 

ABC is acute-angled. O is its circumcenter. X is the foot of the perpendicular from A to BC. 
Angle C ≥ angle B + 30o. Prove that angle A + angle COX < 90o  

 Solution 

 

Take D on the circumcircle with AD parallel to BC. Angle CBD = angle BCA, so angle ABD ≥ 
30o. Hence angle AOD ≥ 60o. Let Z be the midpoint of AD and Y the midpoint of BC. Then AZ ≥ 
R/2, where R is the radius of the circumcircle. But AZ = YX (since AZYX is a rectangle).  

Now O cannot coincide with Y (otherwise angle A would be 90o and the triangle would not be 
acute-angled). So OX > YX ≥ R/2. But XC = YC - YX < R - YX ≤ R/2. So OX > XC.  

Hence angle COX < angle OCX. Let CE be a diameter of the circle, so that angle OCX = angle 
ECB. But angle ECB = angle EAB and angle EAB + angle BAC = angle EAC = 90o, since EC is 
a diameter. Hence angle COX + angle BAC < 90o.  
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Problem A2 

a, b, c are positive reals. Let a' = √(a2 + 8bc), b' = √(b2 + 8ca), c' = √(c2 + 8ab). Prove that 
a/a' + b/b' + c/c' >= 1.    

Solution 

A not particularly elegant, but fairly easy, solution is to use Cauchy: (∑ xy)2 ≤ ∑ x2 ∑ y2.  

To get the inequality the right way around we need to take x2 = a/a' [to be precise, we are taking 
x1

2 = a/a', x2
2 = b/b', x3

2 = c/c'.]. Take y2 = a a', so that xy = a. Then we get ∑ a/a' >= (∑ a)2/∑ a a'.  

Evidently we need to apply Cauchy again to deal with ∑ a a'. This time we want ∑ a a' ≤ 
something. The obvious X=a, Y=a' does not work, but if we put X=a1/2, Y=a1/2a', then we have ∑ 
a a' ≤ (∑ a)1/2 (∑ a a'2)1/2. So we get the required inequality provided that (∑ a)3/2 ≥ (∑ a a'2)1/2 or 
(∑ a)3 ≥ ∑ a a'2.  

Multiplying out, this is equivalent to: 3(ab2 + ac2 + ba2 + bc2 + ca2 + cb2) ≥ 18abc, or a(b - c)2 + 
b(c - a)2 + c(a - b)2 ≥ 0, which is clearly true.  

 IMO 2001 

 
   
Problem A3 

Integers are placed in each of the 441 cells of a 21 x 21 array. Each row and each column 
has at most 6 different integers in it. Prove that some integer is in at least 3 rows and at least 
3 columns.  

Solution 

Notice first that the result is not true for a 20 x 20 array. Make 20 rectangles each 2 x 10, labelled 
1, 2, ... , 20. Divide the 20 x 20 array into four quadrants (each 10 x 10). In each of the top left 
and bottom right quadrants, place 5 rectangles horizontally. In each of the other two quadrants, 
place 5 rectangles vertically. Now each row intersects 5 vertical rectangles and 1 horizontal. In 
other words, it contains just 6 different numbers. Similarly each column. But any given number is 
in either 10 rows and 2 columns or vice versa, so no number is in 3 rows and 3 columns. [None of 
this is necessary for the solution, but it helps to show what is going on.]  

Returning to the 21 x 21 array, assume that an arrangement is possible with no integer in at least 3 
rows and at least 3 columns. Color a cell white if its integer appears in 3 or more rows and black 
if its integer appears in only 1 or 2 rows. We count the white and black squares.  
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Each row has 21 cells and at most 6 different integers. 6 x 2 < 21, so every row includes an 
integer which appears 3 or more times and hence in at most 2 rows. Thus at most 5 different 
integers in the row appear in 3 or more rows. Each such integer can appear at most 2 times in the 
row, so there are at most 5 x 2 = 10 white cells in the row. This is true for every row, so there are 
at most 210 white cells in total.  

Similarly, any given column has at most 6 different integers and hence at least one appears 3 or 
more times. So at most 5 different integers appear in 2 rows or less. Each such integer can occupy 
at most 2 cells in the column, so there are at most 5 x 2 = 10 black cells in the column. This is 
true for every column, so there are at most 210 black cells in total.  

This gives a contradiction since 210 + 210 < 441.  

Comment. This looks easy, but (like question 6) I found it curiously difficult (it took me well over 
2 hours). For a while I could not see how to do better than a 12 x 12 array (with 2 rows of 1s, 
then 2 rows of 2s etc), which was disorienting. Then I got the argument almost right, but not quite 
right, which took more time.  

The original question was phrased in terms of 21 boys and 21 girls in a competition with an 
unknown number of problems. Each boy, girl pair solved at least one problem. Each competitor 
solved at most 6 problems. One had to show that some problem was solved by at least 3 boys and 
at least 3 girls. The recasting in the terms above is almost immediate.  

Equally, one can easily recast the solution above into the competition format. Take any boy B0. At 
least one of the questions he attempts must be attempted by 3 or more girls (because he attempts 
at most 6 questions and there are more than 6x2 girls). Hence he attempts at most 5 questions 
which are only attempted by less than 3 girls. So at most 5 x 2 = 10 of the 21 pairs (B0, G) 
attempt a question attempted by less than 3 girls. So at most 210 of the 441 pairs pairs (B, G) 
attempt such a question. Similarly, at most 210 pairs (B, G) attempt a question attempted by less 
than 3 boys. Hence at least 21 pairs (B, G) attempt a question attempted by 3 or more girls and 3 
or more boys. So there must be at least one such question.  

Note that the arguments above generalise immediately to show that in a 4N+1 by 4N+1 array 
with at most N+1 different integers in each row and column, there is some integer that appears in 
at least 3 rows and 3 columns, but this is not true for a 4N by 4N array.  
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Problem B1 

Let n1, n2, ... , nm be integers, where m is odd. Let x = (x1, ... , xm) denote a permutation of the 
integers 1, 2, ... , m. Let f(x) = x1n1 + x2n2 + ... + xmnm. Show that for some distinct 
permutations a, b the difference f(a) - f(b) is a multiple of m!.    

Solution 

This is a simple application of the pigeon hole principle.  

The sum of all m! distinct residues mod m! is not divisible by m! because m! is even (since m > 
1). [The residues come in pairs a and m! - a, except for m!/2.].  

However, the sum of all f(x) as x ranges over all m! permutations is 1/2 (m+1)! ∑ ni, which is 
divisible by m! (since m+1 is even). So at least one residue must occur more than once among the 
f(x).  

IMO 2001 

 
Problem B2  

ABC is a triangle. X lies on BC and AX bisects angle A. Y lies on CA and BY bisects angle 
B. Angle A is 60o. AB + BX = AY + YB. Find all possible values for angle B.   

Answer  Answer: 80o.  

Solution  

 

This is an inelegant solution, but I did get it fast! Without loss of generality we can take length 
AB = 1. Take angle ABY = x. Note that we can now solve the two triangles AXB and AYB. In 
particular, using the sine rule, BX = sin 30o/sin(150o-2x), AY = sin x/sin(120o-x), YB = sin 
60o/sin(120o-x). So we have an equation for x.  
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Using the usual formula for sin(a + b) etc, and writing s = sin x, c = cos x, we get: 2√3 s2c - 4sc - 
2√3 c3 + 2√3 c2 + 6sc - 2s - √3 = 0 or -√3 (4c3 - 2c2 - 2c + 1) = 2s(2c2 -3c + 1). This has a 
common factor 2c - 1. So c = 1/2 or -√3 (2c2 - 1) = 2s(c - 1) (*).  

c = 1/2 means x = 60o or angle B = 120o. But in that case the sides opposite A and B are parallel 
and the triangle is degenerate (a case we assume is disallowed). So squaring (*) and using s2 = 1 - 
c2, we get: 16c4 - 8c3 - 12c2 + 8c - 1 = 0. This has another factor 2c - 1. Dividing that out we get: 
8c3 - 6c + 1 = 0. But we remember that 4c3 - 3c = cos 3x, so we conclude that cos 3x = -1/2. That 
gives x = 40o, 80o, 160o, 200o, 280o, 320o. But we require that x < 60o to avoid degeneracy. Hence 
the angle B = 2x = 80o.  

I subsequently found this geometric solution on the official Wolfram site (Wolfram was one of the 
sponsors of IMO 2001). I cannot say it is much easier, but at least it is geometric.  

 

Extend AB to X' with BX' = BX. Extend AY to Z with YZ = YB. Then AZ = AY + YZ = AY + 
YB = AB + BX = AB + BX' = AX'. Angle A = 60o, so AZX' is equilateral.  

Use B also to denote the angle at B. Then angle YBX = B/2. Also angle BXX' + angle BX'X = B. 
The triangle is isosceles by construction, so angle BX'X = B/2. Hence angle XX'Z = 60o - B/2. X 
lies on the bisector of A and AZ = AX', so XZ = XX'. Hence XZX' = 60o - B/2 also. But angle Z 
= 60o, so angle YZX = B/2 = angle YBX.  

Now YZ = YB, so angle YZB = angle YBZ. Hence angle XZB = angle XBX (they are the 
difference of pairs of equal angles). If X does not lie on BZ, then we can conclude that XB = XZ.  

In that case, since XZ = XX', we have XB = XX'. But already XB = BX' (by construction), so 
BXX' is equilateral and hence B/2 = 60o. But then angle B + angle A = 180o, so the triangle ABC 
is degenerate (with C at infinity), which we assume is disallowed. Hence X must lie on BZ, which 
means Z = C and angle B = 2 angle C. Hence angle B = 80, angle C = 40.   
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Problem B3  

K > L > M > N are positive integers such that KM + LN = (K + L - M + N)(-K + L + M + N). 
Prove that KL + MN is composite.  

 Solution  

Note first that KL+MN > KM+LN > KN+LM, because (KL+MN) - (KM+LN) = (K - N)(L - M) 
> 0 and (KM+LN) - (KN+LM) = (K - L)(M - N) > 0.  

Multiplying out and rearranging, the relation in the question gives K2 - KM + M2 = L2 + LN + N2. 
Hence (KM + LN)(L2 + LN + N2) = KM(L2 + LN + N2) + LN(K2 - KM + M2) = KML2 + KMN2 
+ K2LN + LM2N = (KL + MN)(KN + LM). In other words (KM + LN) divides (KL + MN)(KN + 
LM).  

Now suppose KL + MN is prime. Since it greater than KM + LN, it can have no common factors 
with KM + LN. Hence KM + LN must divide the smaller integer KN + LM. Contradiction.  

Comment. This looks easy, but in fact I found it curiously difficult. It is easy to go around in 
circles getting nowhere. Either I am getting older, or this is harder than it looks!  

Note that it is not hard to find K, L, M, N satisfying the condition in the question. For example 11, 
9, 5, 1.  
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41st IMO 2000 

 

  

A1.  AB is tangent to the circles CAMN and NMBD. M lies between C and D on the 
line CD, and CD is parallel to AB. The chords NA and CM meet at P; the chords NB 
and MD meet at Q. The rays CA and DB meet at E. Prove that PE = QE.  

 

 

A2.  A, B, C are positive reals with product 1. Prove that (A - 1 + 1/B)(B - 1 + 1/C)(C 
- 1 + 1/A) ≤ 1.  

 

A3.  k is a positive real. N is an integer greater than 1. N points are placed on a line, 
not all coincident. A move is carried out as follows. Pick any two points A and B 
which are not coincident. Suppose that A lies to the right of B. Replace B by another 
point B' to the right of A such that AB' = k BA. For what values of k can we move the 
points arbitarily far to the right by repeated moves?  

 

B1.  100 cards are numbered 1 to 100 (each card different) and placed in 3 boxes (at 
least one card in each box). How many ways can this be done so that if two boxes are 
selected and a card is taken from each, then the knowledge of their sum alone is 
always sufficient to identify the third box?  

 

B2.  Can we find N divisible by just 2000 different primes, so that N divides 2N + 1? 
[N may be divisible by a prime power.]   

B3.  A1A2A3 is an acute-angled triangle. The foot of the altitude from Ai is Ki and the 
incircle touches the side opposite Ai at Li. The line K1K2 is reflected in the line L1L2. 
Similarly, the line K2K3 is reflected in L2L3 and K3K1 is reflected in L3L1. Show that 
the three new lines form a triangle with vertices on the incircle.  
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Problem A1  

AB is tangent to the circles CAMN and NMBD. M lies between C and D on the line CD, and 
CD is parallel to AB. The chords NA and CM meet at P; the chords NB and MD meet at Q. 
The rays CA and DB meet at E. Prove that PE = QE.  

Solution  

 

Angle EBA = angle BDM (because CD is parallel to AB) = angle ABM (because AB is tangent at 
B). So AB bisects EBM. Similarly, BA bisects angle EAM. Hence E is the reflection of M in AB. 
So EM is perpendicular to AB and hence to CD. So it suffices to show that MP = MQ.  

Let the ray NM meet AB at X. XA is a tangent so XA2 = XM·XN. Similarly, XB is a tangent, so 
XB2 = XM·XN. Hence XA = XB. But AB and PQ are parallel, so MP = MQ.  

IMO 2000 

 
  
Problem A2  

A, B, C are positive reals with product 1. Prove that (A - 1 + 1/B)(B - 1 + 1/C)(C - 1 + 1/A) ≤ 
1.    

Solution  

An elegant solution due to Robin Chapman is as follows:  

(B - 1 + 1/C) = B(1 - 1/B + 1/(BC) ) = B(1 + A - 1/B). Hence, (A - 1 + 1/B)(B - 1 + 1/C) = B(A2 - 
(1 - 1/B)2) ≤ B A2. So the square of the product of all three ≤ B A2 C B2 A C2 = 1.  

Actually, that is not quite true. The last sentence would not follow if we had some negative left 
hand sides, because then we could not multiply the inequalities. But it is easy to deal separately 
with the case where (A - 1 + 1/B), (B - 1 + 1/C), (C - 1 + 1/A) are not all positive. If one of the 
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three terms is negative, then the other two must be positive. For example, if A - 1 + 1/B < 0, then 
A < 1, so C - 1 + 1/A > 0, and B > 1, so B - 1 + 1/C > 0. But if one term is negative and two are 
positive, then their product is negative and hence less than 1.  

Few people would manage this under exam conditions, but there are plenty of longer and easier 
to find solutions!  

IMO 2000 

 
  
  
Problem A3  

k is a positive real. N is an integer greater than 1. N points are placed on a line, not all 
coincident. A move is carried out as follows. Pick any two points A and B which are not 
coincident. Suppose that A lies to the right of B. Replace B by another point B' to the right 
of A such that AB' = k BA. For what values of k can we move the points arbitrarily far to 
the right by repeated moves?  

 Answer  : k ≥ 1/(N-1).  

 Solution  

An elegant solution by Gerhard Woeginger is as follows:  

Suppose k < 1/(N-1), so that k0 = 1/k - (N - 1) > 0. Let X be the sum of the distances of the points 
from the rightmost point. If a move does not change the rightmost point, then it reduces X. If it 
moves the rightmost point a distance z to the right, then it reduces X by at least z/k - (N-1)z = k0 
z. X cannot be reduced below nil. So the total distance moved by the rightmost point is at most 
X0/k0, where X0 is the initial value of X.  

Conversely, suppose k ≥ 1/(N-1), so that k1 = (N-1) - 1/k ≥ 0. We always move the leftmost point. 
This has the effect of moving the rightmost point z > 0 and increasing X by (N-1)z - z/k = k1z ≥ 0. 
So X is never decreased. But z ≥ k X/(N-1) ≥ k X0/(N-1) > 0. So we can move the rightmost point 
arbitrarily far to the right (and hence all the points, since another N-1 moves will move the other 
points to the right of the rightmost point).  
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Problem B1  

100 cards are numbered 1 to 100 (each card different) and placed in 3 boxes (at least one 
card in each box). How many ways can this be done so that if two boxes are selected and a 
card is taken from each, then the knowledge of their sum alone is always sufficient to 
identify the third box?  

 Answer  

12. Place 1, 2, 3 in different boxes (6 possibilities) and then place n in the same box as its residue 
mod 3. Or place 1 and 100 in different boxes and 2 - 99 in the third box (6 possibilities).  

Solution  

An elegant solution communicated (in outline) by both Mohd Suhaimi Ramly and Fokko J van de 
Bult is as follows:  

Let Hn be the corresponding result that for cards numbered 1 to n the only solutions are by residue 
mod 3, or 1 and n in separate boxes and 2 to n - 1 in the third box. It is easy to check that they are 
solutions. Hn is the assertion that there are no others. H3 is obviously true (although the two cases 
coincide). We now use induction on n. So suppose that the result is true for n and consider the 
case n + 1.  

Suppose n + 1 is alone in its box. If 1 is not also alone, then let N be the sum of the largest cards 
in each of the boxes not containing n + 1. Since n + 2 ≤ N ≤ n + (n - 1) = 2n - 1, we can achieve 
the same sum N as from a different pair of boxes as (n + 1) + (N - n - 1). Contradiction. So 1 must 
be alone and we have one of the solutions envisaged in Hn+1.  

If n + 1 is not alone, then if we remove it, we must have a solution for n. But that solution cannot 
be the n, 1, 2 to n - 1 solution. For we can easily check that none of the three boxes will then 
accomodate n + 1. So it must be the mod 3 solution. We can easily check that in this case n + 1 
must go in the box with matching residue, which makes the (n + 1) solution the other solution 
envisaged by Hn+1. That completes the induction.  

My much more plodding solution (which I was quite pleased with until I saw the more elegant 
solution above) follows. It took about half-an-hour and shows the kind of kludge one is likely to 
come up with under time pressure in an exam!  

With a suitable labeling of the boxes as A, B, C, there are 4 cases to consider:  

Case 1: A contains 1; B contains 2; C contains 3  
Case 2: A contains 1,2  
Case 3: A contains 1, 3; B contains 2  
Case 4: A contains 1; B contains 2, 3.  
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We show that Cases 1 and 4 each yield just one possible arrangement and Cases 2 and 3 none.  

In Case 1, it is an easy induction that n must be placed in the same box as its residue (in other 
words numbers with residue 1 mod 3 go into A, numbers with residue 2 go into B, and numbers 
with residue 0 go into C). For (n + 1) + (n - 2) = n + (n - 1). Hence n + 1 must go in the same box 
as n - 2 (if they were in different boxes, then we would have two pairs from different pairs of 
boxes with the same sum). It is also clear that this is a possible arrangement. Given the sum of 
two numbers from different boxes, take its residue mod 3. A residue of 0 indicates that the third 
(unused) box was C, a residue of 1 indicates that the third box was A, and a residue of 2 indicates 
that the third box was B. Note that this unique arrangement gives 6 ways for the question, 
because there are 6 ways of arranging 1, 2 and 3 in the given boxes.  

In Case 2, let n be the smallest number not in box A. Suppose it is in box B. Let m be the smallest 
number in the third box, C. m - 1 cannot be in C. If it is in A, then m + (n - 1) = (m - 1) + n. 
Contradiction (m is in C, n - 1 is in A, so that pair identifies B as the third box, but m - 1 is in A 
and n is in B, identifying C). So m - 1 must be in B. But (m - 1) + 2 = m + 1. Contradiction. So 
Case 2 is not possible.  

In Case 3, let n be the smallest number in box C, so n - 1 must be in A or B. If n - 1 is in A, then 
(n - 1) + 2 = n + 2. Contradiction (a sum of numbers in A and B equals a sum from C and A). If n 
- 1 is in B, then (n - 1) + 3 = n + 2. Contradiction ( a sum from B and A equals a sum from C and 
B). So Case 3 is not possible.  

In Case 4, let n be the smallest number in box C. n - 1 cannot be in A, or (n - 1) + 2 = 3 + n (pair 
from A, B with same sum as pair from B, C), so n - 1 must be in B. Now n + 1 cannot be in A (or 
(n + 1) + 2 = 3 + n), or in B or C (or 1 + (n + 1) = 2 + n). So n + 1 cannot exist and hence n = 100. 
It is now an easy induction that all of 4, 5, ... 98 must be in B. For given that m is in B, if m + 1 
were in A, we would have 100 + m = 99 + (m + 1). But this arrangement (1 in A, 2 - 99 in B, 100 
in C) is certainly possible: sums 3 - 100 identify C as the third box, sum 101 identifies B as the 
third box, and sums 102-199 identify A as the third box. Finally, as in Case 1, this unique 
arrangement corresponds to 6 ways of arranging the cards in the given boxes.  

IMO 2000 

  
  
Problem B2  

Can we find N divisible by just 2000 different primes, so that N divides 2N + 1? [N may be 
divisible by a prime power.]  

 Answer :  Yes    

Solution  

Note that for b odd we have 2ab + 1 = (2a + 1)(2a(b-1) - 2a(b-2) + ... + 1), and so 2a + 1 is a factor of 
2ab + 1. It is sufficient therefore to find m such that (1) m has only a few distinct prime factors, (2) 
2m + 1 has a large number of distinct prime factors, (3) m divides 2m + 1. For then we can take k, 
a product of enough distinct primes dividing 2m + 1 (but not m), so that km has exactly 2000 
factors. Then km still divides 2m + 1 and hence 2km + 1.  
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The simplest case is where m has only one distinct prime factor p, in other words it is a power of 
p. But if p is a prime, then p divides 2p - 2, so the only p for which p divides 2p + 1 is 3. So the 
questions are whether ah = 2m + 1 is (1) divisible by m = 3h and (2) has a large number of distinct 
prime factors.  

ah+1 = ah(2
2m - 2m + 1), where m = 3h. But 2m = (ah - 1), so ah+1 = ah(ah

2 - 3 ah + 3). Now a1 = 9, so 
an easy induction shows that 3h+1 divides ah, which answers (1) affirmatively. Also, since ah is a 
factor of ah+1, any prime dividing ah also divides ah+1. Put ah = 3h+1bh. Then bh+1 = bh(3

2h+1bh
2 - 

3h+2bh + 1). Now (32h+1bh
2 - 3h+2bh + 1) > 1, so it must have some prime factor p > 1. But p cannot 

be 3 or divide bh (since (32h+1bh
2 - 3h+2bh + 1) is a multiple of 3bh plus 1), so bh+1 has at least one 

prime factor p > 3 which does not divide bh. So bh+1 has at least h distinct prime factors greater 
than 3, which answers (2) affirmatively. But that is all we need. We can take m in the first 
paragraph above to be 32000: (1) m has only one distinct prime factor, (2) 2m + 1 = 32001 b2000 has at 
least 1999 distinct prime factors other than 3, (3) m divides 2m + 1. Take k to be a product of 
1999 distinct prime factors dividing b2000. Then N = km is the required number with exactly 2000 
distinct prime factors which divides 2N + 1.  

IMO 2000 

 
Problem B3  

A1A2A3 is an acute-angled triangle. The foot of the altitude from Ai is Ki and the incircle 
touches the side opposite Ai at L i. The line K1K 2 is reflected in the line L1L 2. Similarly, the 
line K2K 3 is reflected in L2L 3 and K3K 1 is reflected in L3L 1. Show that the three new lines 
form a triangle with vertices on the incircle.  
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Solution  

 

Let O be the centre of the incircle. Let the line parallel to A1A2 through L2 meet the line A2O at 
X. We will show that X is the reflection of K2 in L2L3. Let A1A3 meet the line A2O at B2. Now 
A2K2 is perpendicular to K2B2 and OL2 is perpendicular to L2B2, so A2K2B2 and OL2B2 are 
similar. Hence K2L2/L2B2 = A2O/OB2. But OA3 is the angle bisector in the triangle A2A3B2, so 
A2O/OB2 = A2A3/B2A3.  

Take B'2 on the line A2O such that L2B2 = L2B'2 (B'2 is distinct from B2 unless L2B2 is 
perpendicular to the line). Then angle L2B'2X = angle A3B2A2. Also, since L2X is parallel to 
A2A1, angle L2XB'2 = angle A3A2B2. So the triangles L2XB'2 and A3A2B2 are similar. Hence 
A2A3/B2A3 = XL2/B2'L2 = XL2/B2L2 (since B'2L2 = B2L2).  

Thus we have shown that K2L2/L2B2 = XL2/B2L2 and hence that K2L2 = XL2. L2X is parallel to 
A2A1 so angle A2A1A3 = angle A1L2X = angle L2XK 2 + angle L2K2X = 2 angle L2XK 2 (isosceles). 
So angle L2XK 2 = 1/2 angle A2A1A3 = angle A2A1O. L2X and A2A1 are parallel, so K2X and OA1 
are parallel. But OA1 is perpendicular to L2L3, so K2X is also perpendicular to L2L3 and hence X 
is the reflection of K2 in L2L3.  
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Now the angle K3K2A1 = angle A1A2A3, because it is 90o - angle K3K2A2 = 90o - angle K3A3A2 
(A2A3K2K3 is cyclic with A2A3 a diameter) = angle A1A2A3. So the reflection of K2K3 in L2L3 is a 
line through X making an angle A1A2A3 with L2X, in other words, it is the line through X parallel 
to A2A3.  

Let Mi be the reflection of Li in AiO. The angle M2XL2 = 2 angle OXL2 = 2 angle A1A2O (since 
A1A2 is parallel to L2X) = angle A1A2A3, which is the angle betwee L2X and A2A3. So M2X is 
parallel to A2A3, in other words, M2 lies on the reflection of K2K3 in L2L3.  

If follows similarly that M3 lies on the reflection. Similarly, the line M1M3 is the reflection of 
K1K3 in L1L3, and the line M1M2 is the reflection of K1K2 in L1L2 and hence the triangle formed 
by the intersections of the three reflections is just M1M2M3.  
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40th IMO 1999 

 

  

A1.  Find all finite sets S of at least three points in the plane such that for all distinct 
points A, B in S, the perpendicular bisector of AB is an axis of symmetry for S.   

A2.  Let n ≥ 2 be a fixed integer. Find the smallest constant C such that for all non-
negative reals x1, ... , xn:  

  ∑i<j xi xj (xi
2 + xj

2) ≤ C ( ∑ xi )
4.  

Determine when equality occurs.  

 

A3.  Given an n x n square board, with n even. Two distinct squares of the board are 
said to be adjacent if they share a common side, but a square is not adjacent to itself. 
Find the minimum number of squares that can be marked so that every square (marked 
or not) is adjacent to at least one marked square.  

 

B1.  Find all pairs (n, p) of positive integers, such that: p is prime; n ≤ 2p; and (p - 1)n 
+ 1 is divisible by np-1.  

 

B2.  The circles C1 and C2 lie inside the circle C, and are tangent to it at M and N, 
respectively. C1 passes through the center of C2. The common chord of C1 and C2, 
when extended, meets C at A and B. The lines MA and MB meet C1 again at E and F. 
Prove that the line EF is tangent to C2.  

 

B3.  Determine all functions f: R→R such that f(x - f(y) ) = f( f(y) ) + x f(y) + f(x) - 1 
for all x, y in R. [R is the reals.]  
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Problem A1  

Find all finite sets S of at least three points in the plane such that for all distinct points A, B 
in S, the perpendicular bisector of AB is an axis of symmetry for S.   

Solution  by Gerhard Woeginger  

The possible sets are just the regular n-gons (n > 2).  

Let A1, A2, ... , Ak denote the vertices of the convex hull of S (and take indices mod k as 
necessary). We show first that these form a regular k-gon. Ai+1 must lie on the perpendicular 
bisector of Ai and Ai+2 (otherwise its reflection would lie outside the hull). Hence the sides are all 
equal. Similarly, Ai+1 and Ai+2 must be reflections in the perpendicular bisector of Ai and Ai+3 
(otherwise one of the reflections would lie outside the hull). Hence all the angles are equal.  

Any axis of symmetry for S must also be an axis of symmetry for the Ai, and hence must pass 
through the center C of the regular k-gon. Suppose X is a point of S in the interior of k-gon. Then 
it must lie inside or on some triangle AiA i+1C. C must be the circumcenter of AiA i+1X (since it lies 
on the three perpendicular bisectors, which must all be axes of symmetry of S), so X must lie on 
the circle center C, through Ai and Ai+1. But all points of the triangle AiA i+1X lie strictly inside 
this circle, except Aiand Ai+1, so X cannot be in the interior of the k-gon.  

IMO 1999 

 
   
Problem A2  

Let n >= 2 by a fixed integer. Find the smallest constant C such that for all non-negative 
reals x1, ... , xn:  

  ∑i<j  xi xj (xi
2 + xj

2) <= C (∑ xi)
4.  

Determine when equality occurs.  

Answer Answer: C = 1/8. Equality iff two xi are equal and the rest zero.   

Solution  

By a member of the Chinese team at the IMO - does anyone know who?  

(∑ xi)
4 = (∑ xi

2 + 2 ∑i<jxixj)
2 ≥ 4 (∑ xi

2) (2 ∑i<j xixj) = 8 ∑i<j ( xixj ∑ xk
2) ≥ 8 ∑i<j xixj(xi

2 + xj
2).  
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The second inequality is an equality only if n - 2 of the xi are zero. So assume that x3 = x4 = ... = 
xn = 0. Then for the first inequality to be an equality we require that (x1

2 + x2
2) = 2 x1x2 and hence 

that x1 = x2. However, that is clearly also sufficient for equality.    

Alternative solution by Gerhard Woeginger  

Setting x1 = x2 = 1, xi = 0 for i > 2 gives equality with C = 1/8, so, C cannot be smaller than 1/8.  

We now use induction on n. For n = 2, the inequality with C = 1/8 is equivalent to (x1 - x2)
4 ≥ 0, 

which is true, with equality iff x1 = x2. So the result is true for n = 2.  

For n > 2, we may take x1 + ... + xn = 1, and x1 ≤ x2 ≤ ... ≤ xn. Now replace x1 and x2 by 0 and x1 + 
x2. The sum on the rhs is unchanged and the sum on the lhs is increased by (x1 + x2)

3 S - (x1
3 + 

x2
3) S - x1x2(x1

2 + x2
2), where S = x3 + x4 + ... + xn. But S is at least 1/3 (the critical case is n = 3, 

xi = 1/3), so this is at least x1x2(x1 + x2 - x1
2 - x2

2). This is strictly greater than 0 unless x1 = 0 
(when it equals 0), so the result follows by induction.    

Comment. The first solution is elegant and shows clearly why the inequality is true. The second 
solution is more plodding, but uses an approach which is more general and can be applied in 
many other cases. At least with hindsight, the first solution is not as impossible to find as one 
might think. A little playing around soon uncovers the fact that one can get C = 1/8 with two xi 
equal and the rest zero, and that this looks like the best possible. One just has to make the jump to 
replacing (xi

2 + xj
2) by ∑ xk

2. The solution is then fairly clear. Of course, that does not detract 
from the contestant's achievement, because I and almost everyone else who has looked at the 
problem failed to make that jump.  

IMO 1999 

 
   
Problem A3  

Given an n x n square board, with n even. Two distinct squares of the board are said to be 
adjacent if they share a common side, but a square is not adjacent to itself. Find the 
minimum number of squares that can be marked so that every square (marked or not) is 
adjacent to at least one marked square.  

Answer  : n/2 (n/2 + 1) = n(n + 2)/4.    

Solution  

Let n = 2m. Color alternate squares black and white (like a chess board). It is sufficient to show 
that m(m+1)/2 white squares are necessary and sufficient to deal with all the black squares.  

This is almost obvious if we look at the diagonals.  

Look first at the odd-length white diagonals. In every other such diagonal, mark alternate squares 
(starting from the border each time, so that r+1 squares are marked in a diagonal length 2r+1). 
Now each black diagonal is adjacent to a picked white diagonal and hence each black square on it 
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is adjacent to a marked white square. In all 1 + 3 + 5 + ... + m-1 + m + m-2 + ... + 4 + 2 = 1 + 2 + 
3 + ... + m = m(m+1)/2 white squares are marked. This proves sufficiency.  

For necessity consider the alternate odd-length black diagonals. Rearranging, these have lengths 
1, 3, 5, ... , 2m-1. A white square is only adjacent to squares in one of these alternate diagonals 
and is adjacent to at most 2 squares in it. So we need at least 1 + 2 + 3 + ... + m = m(m+1)/2 white 
squares.  

IMO 1999 

 
Problem B1  

Find all pairs (n, p) of positive integers, such that: p is prime; n ≤ 2p; and (p - 1)n + 1 is 
divisible by np-1.  

Answer  (1, p) for any prime p; (2, 2); (3, 3).    

Solution  by Gerhard Woeginger, Technical University, Graz  

Evidently (1, p) is a solution for every prime p. Assume n > 1 and take q to be the smallest prime 
divisor of n. We show first that q = p.  

Let x be the smallest positive integer for which (p - 1)x = - 1 (mod q), and y the smallest positive 
integer for which (p - 1)y = 1 (mod q). Certainly y exists and indeed y < q, since (p - 1)q-1 = 1 
(mod q). We know that (p - 1)n = -1 (mod q), so x exists also. Writing n = sy + r, with 0 ≤ r < y, 
we conclude that (p - 1)r = -1 (mod q), and hence x ≤ r < y (r cannot be zero, since 1 is not -1 
(mod q) ).  

Now write n = hx + k with 0 ≤ k < x. Then   -1 = (p - 1)n = (-1)h(p - 1)k (mod q). h cannot be even, 
because then (p - 1)k = -1 (mod q), contradicting the minimality of x. So h is odd and hence (p - 
1)k = 1 (mod q) with 0 ≤ k < x < y. This contradicts the minimality of y unless k = 0, so n = hx. 
But x < q, so x = 1. So (p - 1) = -1 (mod q). p and q are primes, so q = p, as claimed.  

So p is the smallest prime divisor of n. We are also given that n ≤ 2p. So either p = n, or p = 2, n = 
4. The latter does not work, so we have shown that n = p. Evidently n = p = 2 and n = p = 3 work. 
Assume now that p > 3. We show that there are no solutions of this type.  

Expand (p - 1)p + 1 by the binomial theorem, to get (since (-1)p = -1): 1 + -1 + p2 - 1/2 p(p - 1)p2 + 
p(p - 1)(p - 2)/6 p3 - ...  
The terms of the form (bin coeff) pi with i >= 3 are obviously divisible by p3, since the binomial 
coefficients are all integral. Hence the sum is p2 + a multiple of p3. So the sum is not divisible by 
p3. But for p > 3, pp-1 is divisible by p3, so it cannot divide (p - 1)p + 1, and there are no more 
solutions.  

 
 
 
 



 35

IMO 1999 

 
  
Problem B2  

The circles C1 and C2 lie inside the circle C, and are tangent to it at M and N, respectively. 
C1 passes through the center of C2. The common chord of C1 and C2, when extended, meets 
C at A and B. The lines MA and MB meet C1 again at E and F. Prove that the line EF is 
tangent to C2.  

 Solution  by Jean-Pierre Ehrmann  

Let O, O1, O2 and r, r1, r2 be the centers and radii of C, C1, C2 respectively. Let EF meet the line 
O1O2 at W, and let O2W = x. We need to prove that x = r2.  

Take rectangular coordinates with origin O2, x-axis O2O1, and let O have coordinates (a, b). 
Notice that O and M do not, in general, lie on O1O2. Let AB meet the line O1O2 at V.  

We observe first that O2V = r2
2/(2 r1). [For example, let X be a point of intersection of C1 and C2 

and let Y be the midpoint of O2X. Then O1YO2 and XVO2 are similar. Hence, O2V/O2X = 
O2Y/O2O1.]  

An expansion (or, to be technical, a homothecy) center M, factor r/r1 takes O1 to O and EF to AB. 
Hence EF is perpendicular to O1O2. Also the distance of O1 from EF is r1/r times the distance of O 
from AB, so (r1 - x) = r1/r (a - r2

2/(2 r1) ) (*).  

We now need to find a. We can get two equations for a and b by looking at the distances of O 
from O1 and O2. We have:  
  (r - r1)

2 = (r1 - a)2 + b2, and  
  (r - r2)

2 = a2 + b2.  

Subtracting to eliminate b, we get   a = r2
2/(2 r1) + r - r r2/r1.   Substituting back in (*), we get x = 

r2, as required.  

Alternative solution by Marcin Kuczma, communicated Arne Smeets  
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Let C1 and C2 meet at X and Y, and let AN meet C2 again at D. Then AE·AM = AX·AY = 
AD·AN, so triangles AED and ANM are similar. Hence ∠ADE = ∠AMN.  

Take the tangent AP as shown. Then ∠PAN = ∠AMN = ∠ADE, so AP and DE are parallel. 
The homothecy center M mapping C to C1 takes the line AP to the line ED, so ED is tangent to C1 
at E. A similar argument show that it is tangent to C2 at D. The homothecy takes AB to EF, so EF 
is perpendicular to O1O2 (the line of centers). Hence O2EF is isosceles. So angle O2EF = angle 
O2FE = angle DEO2 (DE tangent). In other words, O2E bisects angle DEF. But ED is tangent to 
C2, so EF is also.  

IMO 1999 

  
  
Problem 6  

Determine all functions f: R -> R such that f(x - f(y) ) = f( f(y) ) + x f(y) + f(x) - 1 for all x, y 
in R. [R is the reals.]    

Solution  communicated by Ong Shien Jin  

Let c = f(0) and A be the image f(R). If a is in A, then it is straightforward to find f(a): putting a = 
f(y) and x = a, we get f(a - a) = f(a) + a2 + f(a) - 1, so f(a) = (1 + c)/2 - a2/2 (*).  

The next step is to show that A - A = R. Note first that c cannot be zero, for if it were, then 
putting y = 0, we get: f(x - c) = f(c) + xc + f(x) - 1 (**) and hence f(0) = f(c) = 1. Contradiction. 
But (**) also shows that f(x - c) - f(x) = xc + (f(c) - 1). Here x is free to vary over R, so xc + (f(c) 
- 1) can take any value in R.  

Thus given any x in R, we may find a, b in A such that x = a - b. Hence f(x) = f(a - b) = f(b) + ab 
+ f(a) - 1. So, using (*):   f(x) = c - b2/2 + ab - a2/2 = c - x2/2.  

In particular, this is true for x in A. Comparing with (*) we deduce that c = 1. So for all x in R we 
must have   f(x) = 1 - x2/2. Finally, it is easy to check that this satisfies the original relation and 
hence is the unique solution.  
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 39th IMO 1998 

 

  

A1.  In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular 
and the opposite sides AB and DC are not parallel. The point P, where the 
perpendicular bisectors of AB and DC meet, is inside ABCD. Prove that ABCD is 
cyclic if and only if the triangles ABP and CDP have equal areas.  

 

A2.  In a competition there are a contestants and b judges, where b ≥ 3 is an odd 
integer. Each judge rates each contestant as either "pass" or "fail". Suppose k is a 
number such that for any two judges their ratings coincide for at most k contestants. 
Prove k/a ≥ (b-1)/2b.  

 

A3.  For any positive integer n, let d(n) denote the number of positive divisors of n 
(including 1 and n). Determine all positive integers k such that d(n2) = k d(n) for some 
n.   

B1.  Determine all pairs (a, b) of positive integers such that ab2 + b + 7 divides a2b + a 
+ b.   

B2.  Let I be the incenter of the triangle ABC. Let the incircle of ABC touch the sides 
BC, CA, AB at K, L, M respectively. The line through B parallel to MK meets the 
lines LM and LK at R and S respectively. Prove that the angle RIS is acute.   

B3.  Consider all functions f from the set of all positive integers into itself satisfying 
f(t2f(s)) = s f(t)2 for all s and t. Determine the least possible value of f(1998).  

 

  
  
 
 
 
 
 
 
 
 
 

IMO 1998 
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Problem A1 

In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular and the 
opposite sides AB and DC are not parallel. The point P, where the perpendicular bisectors 
of AB and DC meet, is inside ABCD. Prove that ABCD is cyclic if and only if the triangles 
ABP and CDP have equal areas.    

Solution 

 

Let AC and BD meet at X. Let H, K be the feet of the perpendiculars from P to AC, BD 
respectively. We wish to express the areas of ABP and CDP in terms of more tractable triangles. 
There are essentially two different configurations possible. In the first, we have area PAB = area 
ABX + area PAX + area PBX, and area PCD = area CDX - area PCX - area PDX. So if the areas 
being equal is equivalent to: area ABX - area CDX + area PAX + area PCX + area PBX + area 
PDX = 0. ABX and CDX are right-angled, so we may write their areas as AX·BX/2 and 
CX·DX/2. We may also put AX = AH - HX = AH - PK, BX = BK - PH, CX = CH + PK, DX = 
DK + PH. The other triangles combine in pairs to give area ACP + area BDP = (AC·PH + 
BD·PK)/2. This leads, after some cancellation to AH·BK = CH·DK. There is a similar 
configuration with the roles of AB and CD reversed.  

The second configuration is area PAB = area ABX + area PAX - PBX, area PCD = area CDX + 
area PDX - area PCX. In this case AX = AH + PK, BX = BK - PH, CX = CH - PK, DX = DK + 
PH. But we end up with the same result: AH·BK = CH·DK.  

Now if ABCD is cyclic, then it follows immediately that P is the center of the circumcircle and 
AH = CH, BK = DK. Hence the areas of PAB and PCD are equal.  

Conversely, suppose the areas are equal. If PA > PC, then AH > CH. But since PA = PB and PC 
= PD (by construction), PB > PD, so BK > DK. So AH·BK > CH·DK. Contradiction. So PA is 
not greater than PC. Similarly it cannot be less. Hence PA = PC. But that implies PA = PB = PC 
= PD, so ABCD is cyclic.  
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Problem A2 

In a competition there are a contestants and b judges, where b ≥ 3 is an odd integer. Each 
judge rates each contestant as either "pass" or "fail". Suppose k is a number such that for 
any two judges their ratings coincide for at most k contestants. Prove k/a ≥ (b-1)/2b.    

Solution 

Let us count the number N of triples (judge, judge, contestant) for which the two judges are 
distinct and rate the contestant the same. There are b(b-1)/2 pairs of judges in total and each pair 
rates at most k contestants the same, so N ≤ kb(b-1)/2.  

Now consider a fixed contestant X and count the number of pairs of judges rating X the same. 
Suppose x judges pass X, then there are x(x-1)/2 pairs who pass X and (b-x)(b-x-1)/2 who fail X, 
so a total of (x(x-1) + (b-x)(b-x-1))/2 pairs rate X the same. But (x(x-1) + (b-x)(b-x-1))/2 = (2x2 - 
2bx + b2 - b)/2 = (x - b/2)2 + b2/4 - b/2 ≥ b2/4 - b/2 = (b - 1)2/4 - 1/4. But (b - 1)2/4 is an integer 
(since b is odd), so the number of pairs rating X the same is at least (b - 1)2/4. Hence N ≥ a (b - 
1)2/4. Putting the two inequalities together gives k/a ≥ (b - 1)/2b.  

IMO 1998 

  
Problem A3 

For any positive integer n, let d(n) denote the number of positive divisors of n (including 1 
and n). Determine all positive integers k such that d(n2) = k d(n) for some n.    

Solution 

Let n = p1
a
1...pr

a
r. Then d(n) = (a1 + 1)(a2 + 1) ... (ar + 1), and d(n2) = (2a1 + 1)(2a2 + 1) ... (2ar + 

1). So the ai must be chosen so that (2a1 + 1)(2a2 + 1) ... (2ar + 1) = k (a1 + 1)(a2 + 1) ... (ar + 1). 
Since all (2ai + 1) are odd, this clearly implies that k must be odd. We show that conversely, 
given any odd k, we can find ai.  

We use a form of induction on k. First, it is true for k = 1 (take n = 1). Second, we show that if it 
is true for k, then it is true for 2mk - 1. That is sufficient, since any odd number has the form 2mk - 
1 for some smaller odd number k. Take ai = 2i((2m - 1)k - 1) for i = 0, 1, ... , m-1. Then 2ai + 1 = 
2i+1(2m - 1)k - (2i+1 - 1) and ai + 1 = 2i(2m - 1)k - (2i - 1). So the product of the (2ai + 1)'s divided 
by the product of the (ai + 1)'s is 2m(2m - 1)k - (2m - 1) divided by (2m - 1)k, or (2mk - 1)/k. Thus if 
we take these ais together with those giving k, we get 2mk - 1, which completes the induction 
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Problem B1  

Determine all pairs (a, b) of positive integers such that ab2 + b + 7 divides a2b + a + b.  

Answer (a, b) = (11, 1), (49, 1) or (7k2, 7k).   

Solution  

If a < b, then b ≥ a + 1, so ab2 + b + 7 > ab2 + b ≥ (a + 1)(ab + 1) = a2b + a + ab ≥ a2b + a + b. So 
there can be no solutions with a < b. Assume then that a ≥ b.  

Let k = the integer (a2b + a + b)/(ab2 + b + 7). We have (a/b + 1/b)(ab2 + b + 7) = ab2 + a + ab + 
7a/b + 7/b + 1 > ab2 + a + b. So k < a/b + 1/b. Now if b ≥ 3, then (b - 7/b) > 0 and hence (a/b - 
1/b)(ab2 + b + 7) = ab2 + a - a(b - 7/b) - 1 - 7/b < ab2 + a < ab2 + a + b. Hence either b = 1 or 2 or 
k > a/b - 1/b.  

If a/b - 1/b < k < a/b + 1/b, then a - 1 < kb < a + 1. Hence a = kb. This gives the solution (a, b) = 
(7k2, 7k).  

It remains to consider b = 1 and 2. If b = 1, then a + 8 divides a2 + a + 1 and hence also a(a + 8) - 
(a2 + a + 1) = 7a - 1, and hence also 7(a + 8) - (7a - 1) = 57. The only factors bigger than 8 are 19 
and 57, so a = 11 or 49. It is easy to check that (a, b) = (11, 1) and (49, 1) are indeed solutions.  

If b = 2, then 4a + 9 divides 2a2 + a + 2, and hence also a(4a + 9) - 2(2a2 + a + 2) = 7a - 4, and 
hence also 7(4a + 9) - 4(7a - 4) = 79. The only factor greater than 9 is 79, but that gives a = 35/2 
which is not integral. Hence there are no solutions for b = 2.  

A variant on this from Johannes Tang Lek Huo is as follows:  

We have ab2 + b + 7 divides a(ab2 + b + 7) - b(a2b + a + b) = 7a - b2 . If 7a = b2, then b must be a 
multiple of 7, so b = 7k for some k. Then a = 7k2, and it is easy to check that this is a solution. We 
cannot have 7a < b2 for then 0 < b2 - 7a < ab2 < ab2 + b + 7. If 7a > b, then we must have 7a - b ≤ 
ab2 + b + 7 > ab2, so 7 > b2, so b = 1 or 2.  

We can then continue as above.  
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Problem B2 

Let I be the incenter of the triangle ABC. Let the incircle of ABC touch the sides BC, CA, 
AB at K, L, M respectively. The line through B parallel to MK meets the lines LM and LK 
at R and S respectively. Prove that the angle RIS is acute.   

Solution 

We show that RI2 + SI2 - RS2 > 0. The result then follows from the cosine rule.  

BI is perpendicular to MK and hence also to RS. So IR2 = BR2 + BI2 and IS2 = BI2 + BS2. 
Obviously RS = RB + BS, so RS2 = BR2 + BS2 + 2 BR·BS. Hence RI2 + SI2 - RS2 = 2 BI2 - 2 
BR·BS. Consider the triangle BRS. The angles at B and M are 90 - B/2 and 90 - A/2, so the angle 
at R is 90 - C/2. Hence BR/BM = cos A/2/cos C/2 (using the sine rule). Similarly, considering the 
triangle BKS, BS/BK = cos C/2/cos A/2. So BR·BS = BM·BK = BK2. Hence RI2 + SI2 - RS2 = 
2(BI2 - BK2) = 2 IK2 > 0.  

IMO 1998 

  
 
Problem B3  

Consider all functions f from the set of all positive integers into itself satisfying f(t2f(s)) = s 
f(t) 2 for all s and t. Determine the least possible value of f(1998).    

Answer  :  120    

Solution  

Let f(1) = k. Then f(kt2) = f(t)2 and f(f(t)) = k2t. Also f(kt)2 = 1·f(kt)2 = f(k3t2) = f(12f(f(kt 2))) = 
k2f(kt2) = k2f(t)2. Hence f(kt) = k f(t).  

By an easy induction knf(tn+1) = f(t)n+1. But this implies that k divides f(t). For suppose the highest 
power of a prime p dividing k is a > b, the highest power of p dividing f(t). Then a > b(1 + 1/n) 
for some integer n. But then na > (n + 1)b, so kn does not divide f(t)n+1. Contradiction.  

Let g(t) = f(t)/k. Then f(t2f(s)) = f(t2kg(s)) = k f(t2g(s) = k2g(t2g(s)), whilst s f(t)2 = k2s f(t)2. So 
g(t2g(s)) = s g(t)2. Hence g is also a function satisfying the conditions which evidently has smaller 
values than f (for k > 1). It also satisfies g(1) = 1. Since we want the smallest possible value of 
f(1998) we may restrict attention to functions f satisfying f(1) = 1.  

Thus we have f(f(t) = t and f(t2) = f(t)2. Hence f(st)2 = f(s2t2) = f(s2f(f(t 2))) = f(s)2f(t2) = f(s)2f(t)2. 
So f(st) = f(s) f(t).  
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Suppose p is a prime and f(p) = m·n. Then f(m)f(n) = f(mn) = f(f(p)) = p, so one of f(m), f(n) = 1. 
But if f(m) = 1, then m = f(f(m)) = f(1) = 1. So f(p) is prime. If f(p) = q, then f(q) = p.  

Now we may define f arbitarily on the primes subject only to the conditions that each f(prime) is 
prime and that if f(p) = q, then f(q) = p. For suppose that s = p1

a
1...pr

a
r and that f(pi) = qi. If t has 

any additional prime factors not included in the qi, then we may add additional p's to the 
expression for s so that they are included (taking the additional a's to be zero). So suppose t = 
q1

b
1...qr

b
r.Then t2f(s) = q1

2b
1
+a

1 ...qr
2b

r
+a

r and hence f(t2f(s) = p1
2b

1
+a

1 ...pr
2b

r
+a

r = s f(t)2.  

We want the minimum possible value of f(1998). Now 1998 = 2.33.37, so we achieve the 
minimum value by taking f(2) = 3, f(3) = 2, f(37) = 5 (and f(37) = 5). This gives f(1998) = 3·235 = 
120.  
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38th IMO 1997 

 

A1.  In the plane the points with integer coordinates are the vertices of unit squares. 
The squares are colored alternately black and white as on a chessboard. For any pair of 
positive integers m and n, consider a right-angled triangle whose vertices have integer 
coordinates and whose legs, of lengths m and n, lie along the edges of the squares. Let 
S1 be the total area of the black part of the triangle, and S2 be the total area of the 
white part. Let f(m, n) = |S1 - S2|.  

(a)  Calculate f(m, n) for all positive integers m and n which are either both even or 
both odd.  
(b)  Prove that f(m, n) ≤ max(m, n)/2 for all m, n.  
(c)  Show that there is no constant C such that f(m, n) < C for all m, n.  

 

A2.  The angle at A is the smallest angle in the triangle ABC. The points B and C 
divide the circumcircle of the triangle into two arcs. Let U be an interior point of the 
arc between B and C which does not contain A. The perpendicular bisectors of AB 
and AC meet the line AU at V and W, respectively. The lines BV and CW meet at T. 
Show that AU = TB + TC.  

 

A3.  Let x1, x2, ... , xn be real numbers satisfying |x1 + x2 + ... + xn| = 1 and |xi| ≤ 
(n+1)/2 for all i. Show that there exists a permutation yi of xi such that |y1 + 2y2 + ... + 
nyn| ≤ (n+1)/2.   

B1.  An n x n matrix whose entries come from the set S = {1, 2, ... , 2n-1} is called a 
silver matrix if, for each i = 1, 2, ... , n, the ith row and the ith column together contain 
all elements of S. Show that:  

(a)  there is no silver matrix for n = 1997;  
(b)  silver matrices exist for infinitely many values of n.  

 

B2.  Find all pairs (a, b) of positive integers that satisfy ab2 = ba.  
 

B3.  For each positive integer n, let f(n) denote the number of ways of representing n 
as a sum of powers of 2 with non-negative integer exponents. Representations which 
differ only in the ordering of their summands are considered to be the same. For 
example, f(4) = 4, because 4 can be represented as 4, 2 + 2, 2 + 1 + 1 or 1 + 1 + 1 + 1. 
Prove that for any integer n ≥ 3, 2n2/4 < f(2n) < 2n2/2.  
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Problem A1  

In the plane the points with integer coordinates are the vertices of unit squares. The squares 
are colored alternately black and white as on a chessboard. For any pair of positive integers 
m and n, consider a right-angled triangle whose vertices have integer coordinates and 
whose legs, of lengths m and n, lie along the edges of the squares. Let S1 be the total area of 
the black part of the triangle, and S2 be the total area of the white part. Let f(m, n) = |S1 - 
S2|.  

(a)  Calculate f(m, n) for all positive integers m and n which are either both even or both 
odd.  
(b)  Prove that f(m, n) ≤ max(m, n)/2 for all m, n.  
(c)  Show that there is no constant C such that f(m, n) < C for all m, n.    

Solution  

(a)  If m and n are both even, then f(m,n) = 0. Let M be the midpoint of the hypoteneuse. The 
critical point is that M is a lattice point. If we rotate the triangle through 180 to give the other half 
of the rectangle, we find that its coloring is the same. Hence S1 and S2 for the triangle are each 
half their values for the rectangle. But the values for the rectangle are equal, so they must also be 
equal for the triangle and hence f(m,n) = 0.  

If m and n are both odd, then the midpoint of the hypoteneuse is the center of a square and we 
may still find that the coloring of the two halves of the rectangle is the same. This time S1 and S2 
differ by one for the rectangle, so f(m,n) = 1/2.  

(b)  The result is immediate from (a) for m and n of the same parity. The argument in (a) fails for 
m and n with opposite parity, because the two halves of the rectangle are oppositely colored. Let 
m be the odd side. Then if we extend the side length m by 1 we form a new triangle which 
contains the original triangle. But it has both sides even and hence S1 = S2. The area added is a 
triangle base 1 and height n, so area n/2. The worst case would be that all this area was the same 
color, in which case we would get f(m,n) = n/2. But n <= max(m,n), so this establishes the result.  

(c)  Intuitively, it is clear that if the hypoteneuse runs along the diagonal of a series of black 
squares, and we then extend one side, the extra area taken in will be mainly black. We need to 
make this rigorous. For the diagonal to run along the diagonal of black squares we must have n = 
m. It is easier to work out the white area added by extending a side. The white area takes the form 
of a series of triangles each similar to the new n+1 x n triangle. The biggest has sides 1 and 
n/(n+1). The next biggest has sides (n-1)/n and (n-1)/(n+1), the next biggest (n-2)/n and (n-
2)/(n+1) and so on, down to the smallest which is 1/n by 1/(n+1). Hence the additional white area 
is 1/2 (n/(n+1) + (n-1)2/(n(n+1)) + (n-2)2/(n(n+1)) + ... + 1/(n(n+1)) ) = 1/(2n(n+1))  (n2 + ... + 12) 
= (2n+1)/12. Hence the additional black area is n/2 - (2n+1)/12 = n/3 - 1/12 and the black excess 
in the additional area is n/6 - 1/6. If n is even, then f(n,n) = 0 for the original area, so for the new 
triangle f(n+1,n) = (n-1)/6 which is unbounded.  
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Problem A2  

The angle at A is the smallest angle in the triangle ABC. The points B and C divide the 
circumcircle of the triangle into two arcs. Let U be an interior point of the arc between B 
and C which does not contain A. The perpendicular bisectors of AB and AC meet the line 
AU at V and W, respectively. The lines BV and CW meet at T. Show that AU = TB + TC.    

Solution  

Extend BV to meet the circle again at X, and extend CW to meet the circle again at Y. Then by 
symmetry (since the perpendicular bisectors pass through the center of the circle) AU = BX and 
AU = CY. Also arc AX = arc BU, and arc AY = arc UC. Hence arc XY = arc BC and so angle 
BYC = angle XBY and hence TY = TB. So AU = CY = CT + TY = CT + TB.  

IMO 1997 

  
Problem A3  

Let x1, x2, ... , xn be real numbers satisfying |x1 + x2 + ... + xn| = 1 and |xi| ≤ (n+1)/2 for all i. 
Show that there exists a permutation yi of xi such that |y1 + 2y2 + ... + nyn| ≤ (n+1)/2.    

Solution  

Without loss of generality we may assume x1 + ... + xn = +1. [If not just reverse the sign of every 
xi.] For any given arrangement xi we use sum to mean x1 + 2x2 + 3x3 + ... + nxn. Now if we add 
together the sums for x1, x2, ... , xn and the reverse xn, xn-1, ... , x1, we get (n+1)(x1 + ... + xn) = 
n+1. So either we are home with the original arrangement or its reverse, or they have sums of 
opposite sign, one greater than (n+1)/2 and one less than -(n+1)/2.  

A transposition changes the sum from ka + (k+1)b + other terms to kb + (k+1)a + other terms. 
Hence it changes the sum by |a - b| (where a, b are two of the xi) which does not exceed n+1. Now 
we can get from the original arrangement to its reverse by a sequence of transpositions. Hence at 
some point in this sequence the sum must fall in the interval [-(n+1)/2, (n+1)/2] (because to get 
from a point below it to a point above it in a single step requires a jump of more than n+1). That 
point gives us the required permutation.  
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Problem B1 

An n x n matrix whose entries come from the set S = {1, 2, ... , 2n-1} is called silver matrix if, 
for each i = 1, 2, ... , n, the ith row and the ith column together contain all elements of S. 
Show that:  

(a)  there is no silver matrix for n = 1997;  
(b)  silver matrices exist for infinitely many values of n.  

 Solution 

(a)  If we list all the elements in the rows followed by all the elements in the columns, then we 
have listed every element in the array twice, so each number in S must appear an even number of 
times. But considering the ith row with the ith column, we have also given n complete copies of S 
together with an additional copy of the numbers on the diagonal. If n is odd, then each of the 2n-1 
numbers appears an odd number of times in the n complete copies, and at most n numbers can 
have this converted to an even number by an appearance on the diagonal. So there are no silver 
matrices for n odd. In particular, there is no silver matrix for n = 1997.  

(b)  Let Ai,j be an n x n silver matrix with 1s down the main diagonal. Define the 2n x 2n matrix 
Bi,j with 1s down the main diagonal as follows: Bi,j = Ai,j; Bi+n,j+n = Ai,j; Bi,j+n = 2n + Ai,j; Bi+n,j = 2n 
+ Ai,j for i not equal j and Bi+n,i = 2n. We show that Bi,j is silver. Suppose i ≤ n. Then the first half 
of the ith row is the ith row of Ai,j, and the top half of the ith column is the ith column of Ai,j, so 
between them those two parts comprise the numbers from 1 to 2n - 1. The second half of the ith 
row is the ith row of Ai,j with each element increased by 2n, and the bottom half of the ith column 
is the ith column of Ai,j with each element increased by 2n, so between them they give the 
numbers from 2n + 1 to 4n - 1. The only exception is that Ai+n,i = 2n instead of 2n + Ai,i. We still 
get 2n + Ai,i because it was in the second half of the ith row (these two parts do not have an 
element in common). The 2n fills the gap so that in all we get all the numbers from 1 to 4n - 1.  

An exactly similar argument works for i > n. This time the second half of the row and the second 
half of the column (which overlap by one element) give us the numbers from 1 to 2n - 1, and the 
first halves (which do not overlap) give us 2n to 4n - 1. So Bi,j is silver. Hence there are an infinite 
number of silver matrices.  
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Problem B2  

Find all pairs (a, b) of positive integers that satisfy ab^2 = ba.  

Answer :(1,1), (16,2), (27,3).    

Solution  

Notice first that if we have am = bn, then we must have a = ce, b = cf, for some c, where m=fd, 
n=ed and d is the greatest common divisor of m and n. [Proof: express a and b as products of 
primes in the usual way.]  

In this case let d be the greatest common divisor of a and b2, and put a = de, b2 = df. Then for 
some c, a = ce, b = cf. Hence f ce = e c2f. We cannot have e = 2f, for then the c's cancel to give e = 
f. Contradiction. Suppose 2f > e, then f = e c2f-e. Hence e = 1 and f = c2f-1. If c = 1, then f = 1 and 
we have the solution a = b = 1. If c ≥ 2, then c2f-1 ≥ 2f > f, so there are no solutions.  

Finally, suppose 2f < e. Then e = f ce-2f. Hence f = 1 and e = ce-2. ce-2 ≥ 2e-2 ≥ e for e ≥ 5, so we 
must have e = 3 or 4 (e > 2f = 2). e = 3 gives the solution a = 27, b = 3. e = 4 gives the solution a 
= 16, b = 2.  

IMO 1997 

 
 
  
Problem 6  

For each positive integer n, let f(n) denote the number of ways of representing n as a sum of 
powers of 2 with non-negative integer exponents. Representations which differ only in the 
ordering of their summands are considered to be the same. For example, f(4) = 4, because 4 
can be represented as 4, 2 + 2, 2 + 1 + 1 or 1 + 1 + 1 + 1. Prove that for any integer n ≥ 3, 
2n^2/4 < f(2n) < 2n^2/2.  

 Solution  

The key is to derive a recurrence relation for f(n) [not for f(2n)]. If n is odd, then the sum must 
have a 1. In fact, there is a one-to-one correspondence between sums for n and sums for n-1. So:  

          f(2n+1) = f(2n)  

Now consider n even. The same argument shows that there is a one-to-one correspondence 
between sums for n-1 and sums for n which have a 1. Sums which do not have a 1 are in one-to-
one correspondence with sums for n/2 (just halve each term). So:  
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          f(2n) = f(2n - 1) + f(n) = f(2n - 2) + f(n).  

The upper limit is now almost immediate. First, the recurrence relations show that f is monotonic 
increasing. Now apply the second relation repeatedly to f(2n+1) to get:  

  f(2n+1) = f(2n+1 - 2n) + f(2n - 2n-1 + 1) + ... + f(2n - 1) + f(2n) = f(2n) + f(2n - 1 ) + ... + f(2n-1 + 1) + 
f(2n)   (*)  

and hence f(2n+1) ≥ (2n-1 + 1)f(2n)    

We can now establish the upper limit by induction. It is false for n = 1 and 2, but almost true for n 
= 2, in that: f(22) = 22^2/2. Now if f(2n) ≤ 2n^2/2, then the inequality just established shows that 
f(2n+1) < 2n2n^2/2 < 2(n^2+2n+1)/2 = 2(n+1)^2/2, so it is true for n + 1. Hence it is true for all n > 2.  

Applying the same idea to the lower limit does not work. We need something stronger. We may 
continue (*) inductively to obtain f(2n+1) = f(2n) + f(2n - 1) + ... + f(3) + f(2) + f(1) + 1.   (**)     
We now use the following lemma:  

  f(1) + f(2) + ... + f(2r) ≥ 2r f(r)  

We group the terms on the lhs into pairs and claim that f(1) + f(2r) ≥ f(2) + f(2r-1) ≥ f(3) + f(2r-2) 
≥ ... ≥ f(r) + f(r+1). If k is even, then f(k) = f(k+1) and f(2r-k) = f(2r+1-k), so f(k) + f(2r+1-k) = 
f(k+1) + f(2r-k). If k is odd, then f(k+1) = f(k) + f((k+1)/2) and f(2r+1-k) = f(2r-k) + f((2r-
k+1)/2), but f is monotone so f((k+1)/2) ≤ f((2r+1-k)/2) and hence f(k) + f(2r+1-k) ≥ f(k+1) + 
f(2r-k), as required.  

Applying the lemma to (**) gives f(2n+1) > 2n+1f(2n-1). This is sufficient to prove the lower limit by 
induction. It is true for n = 1. Suppose it is true for n. Then f(2n+1) > 2n+12(n-1)^2/4 = 2(n^2-2n+1+4n+4)/4 > 
2(n+1)^2/4, so it is true for n+1.  
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37th IMO 1996 

 

  

A1.  We are given a positive integer r and a rectangular board divided into 20 x 12 
unit squares. The following moves are permitted on the board: one can move from one 
square to another only if the distance between the centers of the two squares is √r. The 
task is to find a sequence of moves leading between two adjacent corners of the board 
which lie on the long side.  

(a)  Show that the task cannot be done if r is divisible by 2 or 3.  
(b)  Prove that the task is possible for r = 73.  
(c)  Can the task be done for r = 97?  

 

A2.  Let P be a point inside the triangle ABC such that ∠APB - ∠ACB = ∠APC - ∠ABC. Let D, E be the incenters of triangles APB, APC respectively. Show that AP, 
BD, CE meet at a point.   

A3.  Let S be the set of non-negative integers. Find all functions f: S→S such that f(m 
+ f(n)) = f(f(m)) + f(n) for all m, n.   

B1.  The positive integers a, b are such that 15a + 16b and 16a - 15b are both squares 
of positive integers. What is the least possible value that can be taken on by the 
smaller of these two squares?   

B2.  Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC is parallel 
to EF, and CD is parallel to FA. Let RA, RC, RE denote the circumradii of triangles 
FAB, BCD, DEF respectively, and let p denote the perimeter of the hexagon. Prove 
that:  

        RA + RC + RE ≥ p/2.  

 

B3.  Let p, q, n be three positive integers with p + q < n. Let x0, x1, ... , xn be integers 
such that x0 = xn = 0, and for each 1 ≤ i ≤ n, xi - xi-1 = p or -q. Show that there exist 
indices i < j with (i, j) not (0, n) such that xi = xj.   
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Problem A1  

We are given a positive integer r and a rectangular board divided into 20 x 12 unit squares. 
The following moves are permitted on the board: one can move from one square to another 
only if the distance between the centers of the two squares is √r. The task is to find a 
sequence of moves leading between two adjacent corners of the board which lie on the long 
side.  

(a)  Show that the task cannot be done if r is divisible by 2 or 3.  
(b)  Prove that the task is possible for r = 73.  
(c)  Can the task be done for r = 97?    

Answer  No.    

Solution  

(a)  Suppose the move is a units in one direction and b in the orthogonal direction. So a2 + b2 = r. 
If r is divisible by 2, then a and b are both even or both odd. But that means that we can only 
access the black squares or the white squares (assuming the rectangle is colored like a 
chessboard). The two corners are of opposite color, so the task cannot be done. All squares are 
congruent to 0 or 1 mod 3, so if r is divisible by 3, then a and b must both be multiples of 3. That 
means that if the starting square has coordinates (0,0), we can only move to squares of the form 
(3m,3n). The required destination is (19,0) which is not of this form, so the task cannot be done.  

(b)  If r = 73, then we must have a = 8, b = 3 (or vice versa). There are 4 types of move:  

      A: (x,y) to (x+8,y+3)  
      B: (x,y) to (x+3,y+8)  
      C: (x,y) to (x+8,y-3)  
      D: (x,y) to (x+3,y-8)  

We regard (x,y) to (x-8,y-3) as a negative move of type A, and so on. Then if we have a moves of 
type A, b of type B and so on, then we require:  

    8(a + c) + 3(b + d) = 19; 3(a - c) + 8(b - d) = 0.  

A simple solution is a = 5, b = -1, c = -3, d = 2, so we start by looking for solutions of this type. 
After some fiddling we find:  

(0,0) to (8,3) to (16,6) to (8,9) to (11,1) to (19,4) to (11,7) to (19,10) to (16,2) to (8,5) to (16,8) to 
(19,0).  

(c)  If r = 97, then we must have a = 9, b = 4. As before, assume we start at (0,0). A good deal of 
fiddling around fails to find a solution, so we look for reasons why one is impossible. Call moves 
which change y by 4 "toggle" moves. Consider the central strip y = 4, 5, 6 or 7. Toggle moves 
must toggle us in and out of the strip. Non-toggle moves cannot be made if we are in the strip and 
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keep us out of it if we are out of it. Toggle moves also change the parity of the x-coordinate, 
whereas non-toggle moves do not. Now we start and finish out of the strip, so we need an even 
number of toggle moves. On the other hand, we start with even x and end with odd x, so we need 
an odd number of toggle moves. Hence the task is impossible.  

IMO 1996 

  
Problem A2  

Let P be a point inside the triangle ABC such that ∠∠∠∠APB - ∠∠∠∠ACB = ∠∠∠∠APC - ∠∠∠∠ABC. Let 
D, E be the incenters of triangles APB, APC respectively. Show that AP, BD, CE meet at a 
point.    

Solution  

We need two general results: the angle bisector theorem; and the result about the feet of the 
perpendiculars from a general point inside a triangle. The second is not so well-known. Let P be a 
general point in the triangle ABC with X, Y, Z the feet of the perpendiculars to BC, CA, AB. 
Then PA = YZ/sin A and ∠APB - ∠C = ∠XZY. To prove the first part: AP = AY/sin APY = 
AY/sin AZY (since AYPZ is cyclic) = YZ/sin A (sine rule). To prove the second part: ∠XZY = ∠XZP + ∠YZP = ∠XBP + ∠YAP = 90o - ∠XPB + 90o - ∠YPA = 180o - (360o - ∠APB - ∠XPY) = -180o + ∠APB + (180o - ∠C) = ∠APB - ∠C.  

 

So, returning to the problem, ∠APB - ∠C = ∠XZY and ∠APC - ∠B = ∠XYZ. Hence XYZ is 
isosceles: XY = XZ. Hence PC sin C = PB sin B. But AC sin C = AB sin B, so AB/PB = AC/PC. 
Let the angle bisector BD meet AP at W. Then, by the angle bisector theorem, AB/PB = AW/WP. 
Hence AW/WP = AC/PC, so, by the angle bisector theorem, CW is the bisector of angle ACP, as 
required.  
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Problem A3  

Let S be the set of non-negative integers. Find all functions f: S→S such that f(m + f(n)) = 
f(f(m)) + f(n) for all m, n.    

Solution 

Setting m = n = 0, the given relation becomes: f(f(0)) = f(f(0)) + f(0). Hence f(0) = 0. Hence also 
f(f(0)) = 0. Setting m = 0, now gives f(f(n)) = f(n), so we may write the original relation as f(m + 
f(n)) = f(m) + f(n).  

So f(n) is a fixed point. Let k be the smallest non-zero fixed point. If k does not exist, then f(n) is 
zero for all n, which is a possible solution. If k does exist, then an easy induction shows that f(qk) 
= qk for all non-negative integers q. Now if n is another fixed point, write n = kq + r, with 0 ≤ r < 
k. Then f(n) = f(r + f(kq)) = f(r) + f(kq) = kq + f(r). Hence f(r) = r, so r must be zero. Hence the 
fixed points are precisely the multiples of k.  

But f(n) is a fixed point for any n, so f(n) is a multiple of k for any n. Let us take n1, n2, ... , nk-1 to 
be arbitrary non-negative integers and set n0 = 0. Then the most general function satisfying the 
conditions we have established so far is:  

      f(qk + r) = qk + nrk for 0 ≤ r < k.  

We can check that this satisfies the functional equation. Let m = ak + r, n = bk + s, with 0 ≤ r, s < 
k. Then f(f(m)) = f(m) = ak + nrk, and f(n) = bk + nsk, so f(m + f(n)) = ak + bk + nrk + nsk, and 
f(f(m)) + f(n) = ak + bk + nrk + nsk. So this is a solution and hence the most general solution.  

IMO 1996 

  
Problem B1  

The positive integers a, b are such that 15a + 16b and 16a - 15b are both squares of positive 
integers. What is the least possible value that can be taken on by the smaller of these two 
squares?    

Answer  4812.    

Solution  

Put 15a ± 16b = m2, 16a - 15b = n2. Then 15m2 + 16n2 = 481a = 13·37a. The quadratic residues 
mod 13 are 0, ±1, ±3, ±4, so the residues of 15m2 are 0, ±2, ±5, ±6, and the residues of 16n2 are 0, 
±1, ±3, ±4. Hence m and n must both be divisible by 13. Similarly, the quadratic residues of 37 
are 0, ±1, ±3, ±4, ±7, ±9, ±10, ±11, ±12, ±16, so the residues of 15m2 are 0, ±2, ±5, ±6, ±8, ±13, 
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±14, ±15, ±17, ±18, and the residues of 16n2 are 0, ±1, ±3, ±4, ±7, ±9, ±10, ±11, ±12, ±16. Hence 
m and n must both be divisible by 37. Put m = 481m', n = 481n' and we get: a = 481(15m'2 + 
16n'2). We also have 481b = 16m2 - 15n2 and hence b = 481(16m'2 - 15n'2). The smallest possible 
solution would come from putting m' = n' = 1 and indeed that gives a solution.  

This solution is straightforward, but something of a slog - all the residues have to be calculated. A 
more elegant variant is to notice that m4 + n4 = 481(a2 + b2). Now if m and n are not divisible by 
13 we have m4 + n4 = 0 (mod 13). Take k so that km = 1 (mod 13), then (nk)4 = -(mk)4 = -1 (mod 
13). But that is impossible because then (nk)12 = -1 (mod 13), but x12 = 1 (mod 13) for all non-
zero residues. Hence m and n are both divisible by 13. The same argument shows that m and n 
are both divisible by 37.  

IMO 1996 

 
  
Problem B2  

Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC is parallel to EF, and 
CD is parallel to FA. Let RA, RC, RE denote the circumradii of triangles FAB, BCD, DEF 
respectively, and let p denote the perimeter of the hexagon. Prove that:  

        RA + RC + RE ≥ p/2.    

Solution  

The starting point is the formula for the circumradius R of a triangle ABC: 2R = a/sin A = b/sin B 
= c/sin C. [Proof: the side a subtends an angle 2A at the center, so a = 2R sin A.] This gives that 
2RA = BF/sin A, 2RC = BD/sin C, 2RE = FD/sin E. It is clearly not true in general that BF/sin A > 
BA + AF, although it is true if angle FAB ≥ 120o, so we need some argument that involves the 
hexagon as a whole.  

 

Extend sides BC and FE and take lines perpendicular to them through A and D, thus forming a 
rectangle. Then BF is greater than or equal to the side through A and the side through D. We may 
find the length of the side through A by taking the projections of BA and AF giving AB sin B + 
AF sin F. Similarly the side through D is CD sin C + DE sin E. Hence:  

    2BF ≥ AB sin B + AF sin F + CD sin C + DE sin E.   Similarly:  

    2BD ≥ BC sin B + CD sin D + AF sin A + EF sin E, and  
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    2FD ≥ AB sin A + BC sin C + DE sin D + EF sin F.  

Hence 2BF/sin A + 2BD/sin C + 2FD/sin E ≥ AB(sin A/sin E + sin B/sin A) + BC(sin B/sin C + 
sin C/sin E) + CD(sin C/sin A + sin D/sin C) + DE(sin E/sin A + sin D/sin E) + EF(sin E/sin C + 
sin F/sin E) + AF(sin F/sin A + sin A/sin C).  

We now use the fact that opposite sides are parallel, which implies that opposite angles are equal: 
A = D, B = E, C = F. Each of the factors multiplying the sides in the last expression now has the 
form x + 1/x which has minimum value 2 when x = 1. Hence 2(BF/sin A + BD/sin C + FD/sin E) 
≥ 2p and the result is proved.  

IMO 1996 

 
Problem B3  

Let p, q, n be three positive integers with p + q < n. Let x0, x1, ... , xn be integers such that x0 
= xn = 0, and for each 1 ≤ i ≤ n, xi - xi-1 = p or -q. Show that there exist indices i < j with (i, j) 
not (0, n) such that xi = xj.   

Solution  

Let xi - xi-1 = p occur r times and xi - xi-1 = -q occur s times. Then r + s = n and pr = qs. If p and q 
have a common factor d, the yi = xi/d form a similar set with p/d and q/d. If the result is true for 
the yi then it must also be true for the xi. So we can assume that p and q are relatively prime. 
Hence p divides s. Let s = kp. If k = 1, then p = s and q = r, so p + q = r + s = n. But we are given 
p + q < n. Hence k > 1. Let p + q = n/k = h.  

Up to this point everything is fairly obvious and the result looks as though it should be easy, but I 
did not find it so. Some fiddling around with examples suggested that we seem to get xi = xj for j 
= i + h. We observe first that xi+h - xi must be a multiple of h. For suppose e differences are p, and 
hence h-e are -q. Then xi+h - xi = ep - (h - e)q = (e - q)h.  

The next step is not obvious. Let di = xi+h - xi. We know that all dis are multiples of h. We wish to 
show that at least one is zero. Now di+1 - di = (xi+h+1 - xi+h) - (xi+1 - xi) = (p or -q) - (p or -q) = 0, h 
or -h. So if neither of di nor di+1 are zero, then either both are positive or both are negative (a jump 
from positive to negative would require a difference of at least 2h). Hence if none of the dis are 
zero, then all of them are positive, or all of them are negative. But d0 + dh + ... + dkh is a 
concertina sum with value xn - x0 = 0. So this subset of the dis cannot  
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36th IMO 1995 

 

  

A1.  Let A, B, C, D be four distinct points on a line, in that order. The circles with 
diameter AC and BD intersect at X and Y. The line XY meets BC at Z. Let P be a 
point on the line XY other than Z. The line CP intersects the circle with diameter AC 
at C and M, and the line BP intersects the circle with diameter BD at B and N. Prove 
that the lines AM, DN, XY are concurrent.  

 

A2.  Let a, b, c be positive real numbers with abc = 1. Prove that:  

    1/(a3(b + c)) + 1/(b3(c + a)) + 1/(c3(a + b)) ≥ 3/2.   

A3.  Determine all integers n > 3 for which there exist n points A1, ... , An in the plane, 
no three collinear, and real numbers r1, ... , rn such that for any distinct i, j, k, the area 
of the triangle AiA jAk is ri + rj + rk.   

B1.  Find the maximum value of x0 for which there exists a sequence x0, x1, ... , x1995 
of positive reals with x0 = x1995 such that for i = 1, ... , 1995:  

        xi-1 + 2/xi-1 = 2xi + 1/xi.  
 

B2.  Let ABCDEF be a convex hexagon with AB = BC = CD and DE = EF = FA, 
such that ∠BCD = ∠EFA = 60o. Suppose that G and H are points in the interior of 
the hexagon such that ∠AGB = ∠DHE = 120o. Prove that AG + GB + GH + DH + 
HE ≥ CF.  

 

B3.  Let p be an odd prime number. How many p-element subsets A of {1, 2, ... , 2p} 
are there, the sum of whose elements is divisible by p?  
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Problem A1  

Let A, B, C, D be four distinct points on a line, in that order. The circles with diameter AC 
and BD intersect at X and Y. The line XY meets BC at Z. Let P be a point on the line XY 
other than Z. The line CP intersects the circle with diameter AC at C and M, and the line 
BP intersects the circle with diameter BD at B and N. Prove that the lines AM, DN, XY are 
concurrent.    

Solution  

 

Let DN meet XY at Q. Angle QDZ = 90o - angle NBD = angle BPZ. So triangles QDZ and BPZ 
are similar. Hence QZ/DZ = BZ/PZ, or QZ = BZ·DZ/PZ. Let AM meet XY at Q'. Then the same 
argument shows that Q'Z = AZ·CZ/PZ. But BZ·DZ = XZ·YZ = AZ·CZ, so QZ = Q'Z. Hence Q 
and Q' coincide.  

IMO 1995 

  
  
Problem A2  

Let a, b, c be positive real numbers with abc = 1. Prove that:  

    1/(a3(b + c)) + 1/(b3(c + a)) + 1/(c3(a + b)) ≥ 3/2.  

  Solution  

Put a = 1/x, b = 1/y, c = 1/z. Then 1/(a3(b+c)) = x3yz/(y+z) = x2/(y+z). Let the expression given be 
E. Then by Cauchy's inequality we have (y+z + z+x + x+y)E ≥ (x + y + z)2, so E ≥ (x + y + z)/2. 
But applying the arithmetic/geometric mean result to x, y, z gives (x + y + z) ≥ 3. Hence result.  

Thanks to Gerhard Woeginger for pointing out that the original solution was wrong.  



 57

IMO 1995 

 
  
Problem A3  

Determine all integers n > 3 for which there exist n points A1, ... , An in the plane, no three 
collinear, and real numbers r1, ... , rn such that for any distinct i, j, k, the area of the triangle 
A iA jAk is ri + r j + rk.    

Answer    n = 4.  

 Solution  

The first point to notice is that if no arrangement is possible for n, then no arrangement is possible 
for any higher integer. Clearly the four points of a square work for n = 4, so we focus on n = 5.  

If the 5 points form a convex pentagon, then considering the quadrilateral A1A2A3A4 as made up 
of two triangles in two ways, we have that r1 + r3 = r2 + r4. Similarly, A5A1A2A3 gives r1 + r3 = r2 
+ r5, so r4 = r5.  

We show that we cannot have two r's equal (whether or not the 4 points form a convex pentagon). 
For suppose r4 = r5. Then A1A2A4 and A1A2A5 have equal area. If A4 and A5 are on the same side 
of the line A1A2, then since they must be equal distances from it, A4A5 is parallel to A1A2. If they 
are on opposite sides, then the midpoint of A4A5 must lie on A1A2. The same argument can be 
applied to A1 and A3, and to A2 and A3. But we cannot have two of A1A2, A1A3 and A2A3 parallel 
to A4A5, because then A1, A2 and A3 would be collinear. We also cannot have the midpoint of 
A4A5 lying on two of A1A2, A1A3 and A2A3 for the same reason. So we have established a 
contradiction. hence no two of the r's can be equal. In particular, this shows that the 5 points 
cannot form a convex pentagon.  

Suppose the convex hull is a quadrilateral. Without loss of generality, we may take it to be 
A1A2A3A4. A5 must lie inside one of A1A2A4 and A2A3A4. Again without loss of generality we 
may take it to be the latter, so that A1A2A5A4 is also a convex quadrilateral. Then r2 + r4 = r1 + r3 
and also = r1 + r5. So r3 = r5, giving a contradiction as before.  

The final case is the convex hull a triangle, which we may suppose to be A1A2A3. Each of the 
other two points divides its area into three triangles, so we have: (r1 + r2 + r4) + (r2 + r3 + r4) + (r3 
+ r1 + r4) = (r1 + r2 + r5) + (r2 + r3 + r5) + (r3 + r1 + r5) and hence r4 = r5, giving a contradiction.  

So the arrangement is not possible for 5 and hence not for any n > 5.  
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Problem B1  

Find the maximum value of x0 for which there exists a sequence x0, x1, ... , x1995 of positive 
reals with x0 = x1995 such that for i = 1, ... , 1995:  

        xi-1 + 2/xi-1 = 2xi + 1/xi.  

Answer     2997.    

Solution : The relation given is a quadratic in xi, so it has two solutions, and by inspection these 
are xi = 1/xi-1 and xi-1/2. For an even number of moves we can start with an arbitrary x0 and get 
back to it. Use n-1 halvings, then take the inverse, that gets to 2n-1/x0 after n moves. Repeating 
brings you back to x0 after 2n moves. However, 1995 is odd!  

The sequence given above brings us back to x0 after n moves, provided that x0 = 2(n-1)/2. We show 
that this is the largest possible x0. Suppose we have a halvings followed by an inverse followed 
by b halvings followed by an inverse. Then if the number of inverses is odd we end up with 2a-b+c- 

.../x0, and if it is even we end up with x0/2
a-b+c- .... In the first case, since the final number is x0 we 

must have x0 = 2(a-b+-...)/2. All the a, b, ... are non-negative and sum to the number of moves less the 
number of inverses, so we clearly maximise x0 by taking a single inverse and a = n-1. In the 
second case, we must have 2a-b+c- ... = 1 and hence a - b + c - ... = 0. But that implies that a + b + c 
+ ... is even and hence the total number of moves is even, which it is not. So we must have an odd 
number of inverses and the maximum value of x0 is 2(n-1)/2.  

 IMO 1995 

  
Problem B2  

Let ABCDEF be convex hexagon with AB = BC = CD and DE = EF = FA, such that ∠∠∠∠BCD 
= ∠∠∠∠EFA = 60o. Suppose that G and H are points in the interior of the hexagon such that ∠∠∠∠AGB = ∠∠∠∠DHE = 120o. Prove that AG + GB + GH + DH + HE ≥ CF.  

 Solution 

BCD is an equilateral triangle and AEF is an equilateral triangle. The presence of equilateral 
triangles and quadrilaterals suggests using Ptolemy's inequality. [If this is unfamiliar, see ASU 
61/6 solution.]. From CBGD, we get CG·BD ≤ BG·CD + GD·CB, so CG ≤ BG + GD. Similarly 
from HAFE we get HF ≤ HA + HE. Also CF is shorter than the indirect path C to G to H to F, so 
CF ≤ CG + GH + HF. But we do not get quite what we want.  

However, a slight modification of the argument does work. BAED is symmetrical about BE 
(because BA = BD and EA = ED). So we may take C' the reflection of C in the line BE and F' the 
reflection of F. Now C'AB and F'ED are still equilateral, so the same argument gives C'G ≥ AG + 
GB and HF' ≤ DH + HE. So CF = C'F' ≤ C'G + GH + HF' ≤ AG + GB + GH + DH + HE.  
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Problem B3  

Let p be an odd prime number. How many p-element subsets A of {1, 2, ... , 2p} are there, 
the sum of whose elements is divisible by p?    

Answer : 2 + (2pCp - 2)/p, where 2pCp is the binomial coefficient (2p)!/(p!p!).    

Solution  

Let A be a subset other than {1, 2, ... , p} and {p+1, p+2, ... , 2p}. Consider the elements of A in 
{1, 2, ... , p}. The number r satisfies 0 < r < p. We can change these elements to another set of r 
elements of {1, 2, ... , p} by adding 1 to each element (and reducing mod p if necessary). We can 
repeat this process and get p sets in all. For example, if p = 7 and the original subset of {1, 2, ... , 
7} was {3 , 5}, we get:  

  {3 , 5}, {4, 6}, {5, 7}, {6, 1}, {7, 2}, {1, 3}, {2, 4}.  

The sum of the elements in the set is increased by r each time. So, since p is prime, the sums must 
form a complete set of residues mod p. In particular, they must all be distinct and hence all the 
subsets must be different.  

Now consider the sets A which have a given intersection with {p+1, ... , n}. Suppose the elements 
in this intersection sum to k mod p. The sets can be partitioned into groups of p by the process 
described above, so that exactly one member of each group will have the sum -k mod p for its 
elements in {1, 2, ... , p}. In other words, exactly one member of each group will have the sum of 
all its elements divisible by p.  

There are 2pCp subsets of {1, 2, ... , 2p} of size p. Excluding {1, 2, ... , p} and {p+1, ... , 2p} 
leaves (2pCp - 2). We have just shown that (2pCp - 2)/p of these have sum divisible by p. The 
two excluded subsets also have sum divisible by p, so there are 2 + (2pCp - 2)/p subsets in all 
having sum divisible by p.  
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A1.  Let m and n be positive integers. Let a1, a2, ... , am be distinct elements of {1, 2, ... 
, n} such that whenever ai + aj ≤ n for some i, j (possibly the same) we have ai + aj = ak 
for some k. Prove that:  

    (a1 + ... + am)/m ≥ (n + 1)/2.  
 

A2.  ABC is an isosceles triangle with AB = AC. M is the midpoint of BC and O is the 
point on the line AM such that OB is perpendicular to AB. Q is an arbitrary point on 
BC different from B and C. E lies on the line AB and F lies on the line AC such that 
E, Q, F are distinct and collinear. Prove that OQ is perpendicular to EF if and only if 
QE = QF.  

 

A3.  For any positive integer k, let f(k) be the number of elements in the set {k+1, 
k+2, ... , 2k} which have exactly three 1s when written in base 2. Prove that for each 
positive integer m, there is at least one k with f(k) = m, and determine all m for which 
there is exactly one k.  

 

B1.  Determine all ordered pairs (m, n) of positive integers for which (n3 + 1)/(mn - 1) 
is an integer.  

 

B2.  Let S be the set of all real numbers greater than -1. Find all functions f from S 
into S such that f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x and y, and f(x)/x is 
strictly increasing on each of the intervals -1 < x < 0 and 0 < x.   

B3.  Show that there exists a set A of positive integers with the following property: for 
any infinite set S of primes, there exist two positive integers m in A and n not in A,  
each of which is a product of k distinct elements of S for some k ≥ 2.  
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Problem A1  

Let m and n be positive integers. Let a1, a2, ... , am be distinct elements of {1, 2, ... , n} such 
that whenever ai + aj ≤ n for some i, j (possibly the same) we have ai + aj = ak for some k. 
Prove that:  

    (a1 + ... + am)/m ≥ (n + 1)/2.    

Solution  

Take a1 < a2 < ... < am. Take k ≤ (m+1)/2. We show that ak + am-k+1 ≥ n + 1. If not, then the k 
distinct numbers a1 + am-k+1, a2 + am-k+1, ... , ak + am-k+1 are all ≤ n and hence equal to some ai. But 
they are all greater than am-k+1, so each i satisfies m-k+2 ≤ i ≤ m, which is impossible since there 
are only k-1 available numbers in the range.  

IMO 1994 

 
 
Problem A2  

ABC is an isosceles triangle with AB = AC. M is the midpoint of BC and O is the point on 
the line AM such that OB is perpendicular to AB. Q is an arbitrary point on BC different 
from B and C. E lies on the line AB and F lies on the line AC such that E, Q, F are distinct 
and collinear. Prove that OQ is perpendicular to EF if and only if QE = QF.    

Solution  

 

Assume OQ is perpendicular to EF. Then ∠EBO = ∠EQO = 90o, so EBOQ is cyclic. Hence ∠OEQ = ∠OBQ. Also ∠OQF = ∠OCF = 90o, so OQCF is cyclic. Hence ∠OFQ = ∠OCQ. 
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But ∠OCQ = ∠OBQ since ABC is isosceles. Hence ∠OEQ = ∠OFQ, so OE = OF, so triangles 
OEQ and OFQ are congruent and QE = QF.  

Assume QE = QF. If OQ is not perpendicular to EF, then take E'F' through Q perpendicular to 
OQ with E' on AB and F' on AC. Then QE' = QF', so triangles QEE' and QFF' are congruent. 
Hence ∠QEE' = ∠QFF'. So CA and AB make the same angles with EF and hence are parallel. 
Contradiction. So OQ is perpendicular to EF.  

IMO 1994 

  
  
Problem A3  

For any positive integer k, let f(k) be the number of elements in the set {k+1, k+2, ... , 2k} 
which have exactly three 1s when written in base 2. Prove that for each positive integer m, 
there is at least one k with f(k) = m, and determine all m for which there is exactly one k.    

Answer :  2, 4, ... , n(n-1)/2 + 1, ... .    

Solution  

To get a feel, we calculate the first few values of f explicitly:  

f(2) = 0, f(3) = 0  
f(4) = f(5) = 1, [7 = 111]  
f(6) = 2, [7 = 111, 11 = 1011]  
f(7) = f(8) = f(9) = 3 [11 = 1011, 13 = 1101, 14 = 1110]  
f(10) = 4 [11, 13, 14, 19 = 10011]  
f(11) = f(12) = 5 [13, 14, 19, 21 = 10101, 22 = 10110]  
f(13) = 6 [14, 19, 21, 22, 25 = 11001, 26 = 11010]  

We show that f(k+1) = f(k) or f(k) + 1. The set for k+1 has the additional elements 2k+1 and 
2k+2 and it loses the element k+1. But the binary expression for 2k+2 is the same as that for k+1 
with the addition of a zero at the end, so 2k+2 and k+1 have the same number of 1s. So if 2k+1 
has three 1s, then f(k+1) = f(k) + 1, otherwise f(k+1) = f(k). Now clearly an infinite number of 
numbers 2k+1 have three 1s, (all numbers 2r + 2s + 1 for r > s > 0). So f(k) increases without 
limit, and since it only moves up in increments of 1, it never skips a number. In other words, 
given any positive integer m we can find k so that f(k) = m.  

From the analysis in the last paragraph we can only have a single k with f(k) = m if both 2k-1 and 
2k+1 have three 1s, or in other words if both k-1 and k have two 1s. Evidently this happens when 
k-1 has the form 2n + 1. This determines the k, namely 2n + 2, but we need to determine the 
corresponding m = f(k). It is the number of elements of {2n+3, 2n+4, ... , 2n+1+4} which have three 
1s. Elements with three 1s are either 2n+2r+2s with 0 ≤ r < s < n, or 2n+1+3. So there are m= n(n-
1)/2 + 1 of them. As a check, for n = 2, we have k = 22+2 = 6, m = 2, and for n = 3, we have k = 
23+2 = 10, m = 4, which agrees with the f(6) = 2, f(10) = 4 found earlier.    
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Problem B1  

Determine all ordered pairs (m, n) of positive integers for which (n3 + 1)/(mn - 1) is an 
integer.    

Answer : (1, 2), (1, 3), (2, 1), (2, 2), (2, 5), (3, 1), (3, 5), (5, 2), (5, 3).    

Solution  

We start by checking small values of n. n = 1 gives n3 + 1 = 2, so m = 2 or 3, giving the solutions 
(2, 1) and (3, 1). Similarly, n = 2 gives n3 + 1 = 9, so 2m-1 = 1, 3 or 9, giving the solutions (1, 2), 
(2, 2), (5, 2). Similarly, n = 3 gives n3 + 1 = 28, so 3m - 1 = 2, 14, giving the solutions (1, 3), (5, 
3). So we assume hereafter that n > 3.  

Let n3 + 1 = (mn - 1)h. Then we must have h = -1 (mod n). Put h = kn - 1. Then n3 + 1 = mkn2 - 
(m + k)n + 1. Hence n2 = mkn - (m + k). (*)   Hence n divides m + k. If m + k ≥ 3n, then since n > 
3 we have at least one of m, k ≥ n + 2. But then (mn - 1)(kn - 1) ≥ (n2 + 2n - 1)(n - 1) = n3 + n2 - 
3n + 1 = (n3 + 1) + n(n - 3) > n3 + 1. So we must have m + k = n or 2n.  

Consider first m + k = n. We may take m ≥ k (provided that we remember that if m is a solution, 
then so is n - m). So (*) gives n = m(n - m) - 1. Clearly m = n - 1 is not a solution. If m = n - 2, 
then n = 2(n - 2) - 1, so n = 5. This gives the two solutions (m, n) = (2, 5) and (3, 5). If m < n - 2 
then n - m ≥ 3 and so m(n - m) - 1 ≥ 3m - 1 ≥ 3n/2 - 1 > n for n > 3.  

Finally, take m + k = 2n. So (*) gives n + 2 = m(2n - m). Again we may take m ≥ k. m = 2n - 1 is 
not a solution (we are assuming n > 3). So 2n - m ≥ 2, and hence m(2n - m) ≥ 2m ≥ 2n > n + 2.  

IMO 1994 

 
 
Problem B2  

Let S be the set of all real numbers greater than -1. Find all functions f :S→S such that f(x + 
f(y) + xf(y)) = y + f(x) + yf(x) for all x and y, and f(x)/x is strictly increasing on each of the 
intervals -1 < x < 0 and 0 < x.    

Answer :  f(x) = -x/(x+1).    

Solution  

Suppose f(a) = a. Then putting x = y = a in the relation given, we get f(b) = b, where b = 2a + a2. 
If -1 < a < 0, then -1 < b < a. But f(a)/a = f(b)/b. Contradiction. Similarly, if a > 0, then b > a, but 
f(a)/a = f(b)/b. Contradiction. So we must have a = 0.  
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But putting x = y in the relation given we get f(k) = k for k = x + f(x) + xf(x). Hence for any x we 
have x + f(x) + xf(x) = 0 and hence f(x) = -x/(x+1).  

Finally, it is straightforward to check that f(x) = -x(x+1) satisfies the two conditions.  

IMO 1994 

   
Problem B3  

Show that there exists a set A of positive integers with the following property: for any 
infinite set S of primes, there exist two positive integers m in A and n not in A, each of 
which is a product of k distinct elements of S for some k ≥ 2.    

Solution  

Let the primes be p1 < p2 < p3 < ... . Let A consists of all products of n distinct primes such that 
the smallest is greater than pn. For example: all primes except 2 are in A; 21 is not in A because it 
is a product of two distinct primes and the smallest is greater than 3. Now let S = {pi1, pi2, ... } be 
any infinite set of primes. Assume that pi1 < pi2 < ... . Let n = i1. Then pi1pi2 ... pin is not in A 
because it is a product of n distinct primes, but the smallest is not greater than pn. But pi2pi3 ... 
pin+1 is in A, because it is a product of n distinct primes and the smallest is greater than pn. But 
both numbers are products of n distinct elements of S.  
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A1.  Let f(x) = xn + 5xn-1 + 3, where n > 1 is an integer. Prove that f(x) cannot be 
expressed as the product of two non-constant polynomials with integer coefficients.  

 

A2.  Let D be a point inside the acute-angled triangle ABC such that ∠ADB = ∠ACB + 90o, and AC·BD = AD·BC.  

(a)  Calculate the ratio AB·CD/(AC·BD).  

(b)  Prove that the tangents at C to the circumcircles of ACD and BCD are 
perpendicular.  

 

A3.  On an infinite chessboard a game is played as follows. At the start n2 pieces are 
arranged in an n x n block of adjoining squares, one piece on each square. A move in 
the game is a jump in a horizontal or vertical direction over an adjacent occupied 
square to an unoccupied square immediately beyond. The piece which has been 
jumped over is removed. Find those values of n for which the game can end with only 
one piece remaining on the board.  

 

B1.  For three points P, Q, R in the plane define m(PQR) as the minimum length of the 
three altitudes of the triangle PQR (or zero if the points are collinear). Prove that for 
any points A, B, C, X:  

    m(ABC) ≤ m(ABX) + m(AXC) + m(XBC).  
 

B2.  Does there exist a function f from the positive integers to the positive integers 
such that f(1) = 2, f(f(n)) = f(n) + n for all n, and f(n) < f(n+1) for all n?  

 

B3.  There are n > 1 lamps L0, L1, ... , Ln-1 in a circle. We use Ln+k to mean Lk. A lamp 
is at all times either on or off. Initially they are all on. Perform steps s0, s1, ... as 
follows: at step si, if L i-1 is lit, then switch Li from on to off or vice versa, otherwise do 
nothing. Show that:  

(a)  There is a positive integer M(n) such that after M(n) steps all the lamps are on 
again;  

(b)  If n = 2k, then we can take M(n) = n2 - 1.  

(c)  If n = 2k + 1, then we can take M(n) = n2 - n + 1.  
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Problem A1  

Let f(x) = xn + 5xn-1 + 3, where n > 1 is an integer. Prove that f(x) cannot be expressed as the 
product of two non-constant polynomials with integer coefficients.    

Solution 

Suppose f(x) = (xr + ar-1x
r-1 + ... + a1x ± 3)(xs + bs-1x

s-1 + ... + b1x ± 1). We show that all the a's are 
divisible by 3 and use that to establish a contradiction.  

First, r and s must be greater than 1. For if r = 1, then ± 3 is a root, so if n is even, we would have 
0 = 3n ± 5·3n-1 + 3 = 3n-1( 3 ± 5) + 3, which is false since 3 ± 5 = 8 or -2. Similarly if n is odd we 
would have 0 = 3n-1(±3 + 5) + 3, which is false since ±3 + 5 = 8 or 2. If s = 1, then ±1 is a root and 
we obtain a contradiction in the same way.  

So r ≤ n - 2, and hence the coefficients of x, x2, ... , xr are all zero. Since the coefficient of x is 
zero, we have: a1 ± 3b1 = 0, so a1 is divisible by 3. We can now proceed by induction. Assume a1, 
... , at are all divisible by 3. Then consider the coefficient of xt+1. If s-1 ≥ t+1, then at+1 = linear 
combination of a1, ... , at ± 3bt+1. If s-1 < t+1, then at+1 = linear combination of some or all of a1, ... 
, at. Either way, at+1 is divisible by 3. So considering the coefficients of x, x2, ... , xr-1 gives us that 
all the a's are multiples of 3. Now consider the coefficient of xr, which is also zero. It is a sum of 
terms which are multiples of 3 plus ±1, so it is not zero. Contradiction. Hence the factorization is 
not possible.  

IMO 1993 

 
   
Problem A2 

Let D be a point inside the acute-angled triangle ABC such that ∠∠∠∠ADB = ∠∠∠∠ACB + 90o, and 
AC·BD = AD·BC.  

(a)  Calculate the ratio AB·CD/(AC·BD).  

(b)  Prove that the tangents at C to the circumcircles of ACD and BCD are perpendicular.  

   

Solution 

By Glen Ong, Oracle Corporation  
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Take B' so that CB = CB', ∠BCB' = 90o and B' is on the opposite side of BC to A. It is easy to 
check that ADB, ACB' are similar and DAC, BAB' are similar. Hence AB/BD = AB'/B'C and 
CD/AC = BB'/AB'. It follows that the ratio given is BB'/B'C which is √2.  

Take XD the tangent to the circumcircle of ADC at D, so that XD is in the ∠ADB. Similarly, 
take YD the tangent to the circumcircle BDC at D. Then ∠ADX = ∠ACD, ∠BDY = ∠BCD, 
so ∠ADX + ∠BDY = ∠ACB and hence ∠XDY = ∠ADB - (∠ADX + ∠BDY) = ∠ADB - ∠ACB = 90o. In other words the tangents to the circumcircles at D are perpendicular. Hence, by 
symmetry (reflecting in the line of centers) the tangents at C are perpendicular.  

Theo Koupelis, University of Wisconsin, Marathon   provided a similar solution (about 10 
minutes later!) taking the point B' so that ∠BDB' = 90o, BD = B'D and ∠B'DA = ∠ACB. DAC, 
B'AB are similar; and ABC, AB'D are similar.  

Marcin Mazur, University of Illinois at Urbana-Champaign   provided the first solution I 
received (about 10 minutes earlier!) using the generalized Ptolemy's equality (as opposed to the 
easier equality), but I do not know of a slick proof of this, so I prefer the proof above.  
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Problem A3  

On an infinite chessboard a game is played as follows. At the start n2 pieces are arranged in 
an n x n block of adjoining squares, one piece on each square. A move in the game is a jump 
in a horizontal or vertical direction over an adjacent occupied square to an unoccupied 
square immediately beyond. The piece which has been jumped over is removed. Find those 
values of n for which the game can end with only one piece remaining on the board.   

Solution  

We show first that the game can end with only one piece if n is not a multiple of 3. Note first that 
the result is true for n = 2 or 4.  

n=2  

 
X X   . . X   . . X   . . .  
 
X X   X X     . . X   . . . 
 
                          X 
 
n = 4  
 
              X         X         X         X         X 
 
X X X X   X X . X   X X . X   . . X X   . . X X   . X . . 
 
X X X X   X X . X   . . X X   . . X X   X . X X   X . X X 
 
X X X X   X X X X   X X X X   X X X X   . X X X   . X X X 
 
X X X X   X X X X   X X X X   X X X X   . X X X   . X X X 
 
 
 
    X         X         X 
 
. X . .   . X . .   . X X .   . X . .   . X . .   . . . . 
 
X X . .   . . X .   . . . .   . . X .   . X X .   . . X . 
 
. X X X   . X X X   . X . X   . X . X   . . . X   . X . X 
 
. X X X   . X X X   . X X X   . X X X   . . X X   . . X X 
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. . . .   . . . .   . . . .   . . . . 
 
. . X X   . X . .   . . . .   . . . . 
 
. X . .   . X . .   . . . .   . . . . 
 
. . X .   . . X .   . X X .   . . . X 
 
The key technique is the following three moves which can be used to wipe out three adjacent 
pieces on the border provided there are pieces behind them:  
 
 X X X     X X .     X X .     X X X 
 
 X X X     X X .     . . X     . . . 
 
               X         X 
 
We can use this technique to reduce (r + 3) x s rectangle to an r x s rectangle. There is a slight 
wrinkle for the last two rows of three:  
 
 X X X X     X X . X     . . X X     . . X X     . . . X     . . 
. X 
 
 X X X X     X X . X     . . X X     . . X X     . . . X     . . 
. X 
 
 . . . X     . . X X     . . X X     . X . .     . X X .     . . 
. X 
 
Thus we can reduce a square side 3n+2 to a 2 x (3n+2) rectangle. We now show how to wipe out 
the rectangle. First, we change the 2 x 2 rectangle at one end into a single piece alongside the 
(now) 2 x 3n rectangle:  
 
  X X    . .     . . 
 
  X X    . .     . . 
 
         X X        X    
 
Then we use the following technique to shorten the rectangle by 3:  
 
 X X X     X . X     X . X     . . .     . . . 
 
 X X X     X . X     X . X     . . .     . . . 
 
 X         X X     X .       X X . X         . X 
 
That completes the case of the square side 3n+2. For the square side 3n+1 we can use the 
technique for removing 3 x r rectangles to reduce it to a 4 x 4 square and then use the technique 
above for the 4 x 4 rectangle.  
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Finally, we use a parity argument to show that if n is a multiple of 3, then the square side n cannot 
be reduced to a single piece. Color the board with 3 colors, red, white and blue:  

 
 R W B R W B R W B ... 
 
 W B R W B R W B R ... 
 
 B R W B R W B R W ... 
 
 R W B R W B R W B ... 
 
 ... 
 
Let suppose that the single piece is on a red square. Let A be the number of moves onto a red 
square, B the number of moves onto a white square and C the number of moves onto a blue 
square. A move onto a red square increases the number of pieces on red squares by 1, reduces the 
number of pieces on white squares by 1, and reduces the number of pieces on blue squares by 1. 
Let n = 3m. Then there are initially m pieces on red squares, m on white and m on blue. Thus we 
have:  

  - A + B + C = m-1;   A - B + C = m;   A + B - C = m.  

Solving, we get A = m, B = m - 1/2, C = m - 1/2. But the number of moves of each type must be 
integral, so it is not possible to reduce the number of pieces to one if n is a multiple of 3.  

IMO 1993 

 
  
Problem B1  

For three points P, Q, R in the plane define m(PQR) as the minimum length of the three 
altitudes of the triangle PQR (or zero if the points are collinear). Prove that for any points 
A, B, C, X:  

    m(ABC) ≤ m(ABX) + m(AXC) + m(XBC).   

Solution 

The length of an altitude is twice the area divided by the length of the corresponding side. 
Suppose that BC is the longest side of the triangle ABC. Then m(ABC) = area ABC/BC. [If A = 
B = C, so that BC = 0, then the result is trivially true.]  

Consider first the case of X inside ABC. Then area ABC = area ABX + area AXC + area XBC, 
so m(ABC)/2 = area ABX/BC + area AXC/BC + area XBC/BC. We now claim that the longest 
side of ABX is at most BC, and similarly for AXC and XBC. It then follows at once that area 
ABX/BC ≤ area ABX/longest side of ABX = m(ABX)/2 and the result follows (for points X 
inside ABC).  
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The claim follows from the following lemma. If Y lies between D and E, then FY is less than the 
greater than FD and FE. Proof: let H be the foot of the perpendicular from F to DE. One of D and 
E must lie on the opposite side of Y to H. Suppose it is D. Then FD = FH/cos HFD > FH/cos 
HFY = FY. Returning to ABCX, let CX meet AB at Y. Consider the three sides of ABX. By 
definition AB ≤ BC. By the lemma AX is smaller than the larger of AC and AY, both of which do 
not exceed BC. Hence AX ≤ BC. Similarly BX ≤ BC.  

It remains to consider X outside ABC. Let AX meet AC at O. We show that the sum of the 
smallest altitudes of ABY and BCY is at least the sum of the smallest altitudes of ABO and ACO. 
The result then follows, since we already have the result for X = O. The altitude from A in ABX 
is the same as the altitude from A in ABO. The altitude from X in ABX is clearly longer than the 
altitude from O in ABO (let the altitudes meet the line AB at Q and R respectively, then triangles 
BOR and BXQ are similar, so XQ = OR·BX/BO > OR). Finally, let k be the line through A 
parallel to BX, then the altitude from B in ABX either crosses k before it meets AX, or crosses 
AC before it crosses AX. If the former, then it is longer than the perpendicular from B to k, which 
equals the altitude from A to BO. If the latter, then it is longer than the altitude from B to AO. 
Thus each of the altitudes in ABX is longer than an altitude in ABO, so m(ABX) > m(ABO).  

 IMO 1993 

 
   
Problem B2  

Does there exist a function f from the positive integers to the positive integers such that f(1) 
= 2, f(f(n)) = f(n) + n for all n, and f(n) < f(n+1) for all n?    

Answer  

Yes: f(n) = [g*n + ½], where g = (1 + √5)/2 = 1.618 ... .    

Solution  

This simple and elegant solution is due to Suengchur Pyun  

Let g(n) = [g*n + ½]. Obviously g(1) = 2. Also g(n+1) = g(n) + 1 or g(n) + 2, so certainly g(n+1) 
> g(n).  

Consider d(n) = g* [g*n + ½] + ½ - ( [g*n + ½] + n). We show that it is between 0 and 1. It 
follows immediately that g(g(n)) = g(n) + n, as required.  

Certainly, [g*n + ½] > g*n - ½, so d(n) > 1 - g/2 > 0 (the n term has coefficient g2 - g - 1 which is 
zero). Similarly, [g*n + ½] ≤ g*n + ½, so d(n) ≤ g/2 < 1, which completes the proof.  

I originally put up the much clumsier result following:  

Take n = brbr-1 ... b0 in the Fibonacci base. Then f(n) = brbr-1 ... b00. This satisfies the required 
conditions.  
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Let u0 = 1, u1 = 2, ... , un=un-1+un-2, ... be the Fibonacci numbers. We say n = brbr-1 ... b0 in the 
Fibonacci base if br = 1, every other bi = 0 or 1, no two adjacent bi are non-zero, and n = brur + ... 
+ b0u0. For example, 28 = 1001010 because 28 = 21 + 5 + 2.  

We have to show that every n has a unique expression of this type. We show first by induction 
that it has at least one expression of this type. Clearly that is true for n = 1. Take ur to be the 
largest Fibonacci number ≤ n. Then by induction we have an expression for n - ur. The leading 
term cannot be ui for i > r - 2, for then we would have n >= ur + ur-1 = ur+1. So adding ur to the 
expression for n - ur gives us an expression of the required type for n, which completes the 
induction.  

We show that ur + ur-2 + ur-4 + ... = ur+1 - 1. Again we use induction. It is true for r = 1 and 2. 
Suppose it is true for r - 1, then ur+1 + ur-1 + ... = ur+2 - ur + ur-1 + ur-3 + ... = ur+2 - ur + ur - 1 = ur+2 - 
1. So it is true for r + 1. Hence it is true for all r. Now we can prove that the expression for n is 
unique. It is for n = 1. So assume it is for all numbers < n, but that the expression for n is not 
unique, so that we have n = ur + more terms = us + more terms. If r = s, then the expression for n - 
ur is not unique. Contradiction. So suppose r > s. But now the second expression is at most us+1 - 1 
which is less than ur. So the expression for n must be unique and the induction is complete.  

It remains to show that f satisfies the required conditions. Evidently if n = 1 = u0, then f(n) = u1 = 
2, as required. If n = ua1 + ... + uar, then f(n) = ua1+1 + ... + uar+1 and f(f(n)) = ua1+2 + ... + uar+2. So 
f(n) + n = (ua1 + ua1+1) + ... + (uar + uar+1) = f(f(n)).  

IMO 1993 

  
Problem B3 

There are n > 1 lamps L0, L1, ... , Ln-1 in a circle. We use Ln+k to mean Lk. A lamp is at all 
times either on or off. Initially they are all on. Perform steps s0, s1, ... as follows: at step si, if 
L i-1 is lit, then switch Li from on to off or vice versa, otherwise do nothing. Show that:  

(a)  There is a positive integer M(n) such that after M(n) steps all the lamps are on again;  

(b)  If n = 2k, then we can take M(n) = n2 - 1.  

(c)  If n = 2k + 1, then we can take M(n) = n2 - n + 1.  

Solution  

(a)  The process cannot terminate, because before the last move a single lamp would have been 
on. But the last move could not have turned it off, because the adjacent lamp was off. There are 
only finitely many states (each lamp is on or off and the next move can be at one of finitely many 
lamps), hence the process must repeat. The outcome of each step is uniquely determined by the 
state, so either the process moves around a single large loop, or there is an initial sequence of 
steps as far as state k and then the process goes around a loop back to k. However, the latter is not 
possible because then state k would have had two different precursors. But a state has only one 
possible precursor which can be found by toggling the lamp at the current position if the previous 
lamp is on and then moving the position back one. Hence the process must move around a single 
large loop, and hence it must return to the initial state.  



 73

(b)  Represent a lamp by X when on, by - when not. For 4 lamps the starting situation and the 
situation after 4, 8, 12, 16 steps is as follows:  

 
X X X X 
 
- X - X 
 
X - - X 
 
- - - X 
 
X X X - 
 
On its first move lamp n-2 is switched off and then remains off until each lamp has had n-1 
moves. Hence for each of its first n-1 moves lamp n-1 is not toggled and it retains its initial state. 
After each lamp has had n-1 moves, all of lamps 1 to n-2 are off. Finally over the next n-1 moves, 
lamps 1 to n-2 are turned on, so that all the lamps are on. We show by induction on k that these 
statements are all true for n = 2k. By inspection, they are true for k = 2. So suppose they are true 
for k and consider 2n = 2k+1 lamps. For the first n-1 moves of each lamp the n left-hand and the n 
right-hand lamps are effectively insulated. Lamps n-1 and 2n-1 remain on. Lamp 2n-1 being on 
means that lamps 0 to n-2 are in just the same situation that they would be with a set of only n 
lamps. Similarly, lamp n-1 being on means that lamps n to 2n-2 are in the same situation that they 
would be with a set of only n lamps. Hence after each lamp has had n-1 moves, all the lamps are 
off except for n-1 and 2n-1. In the next n moves lamps 1 to n-2 are turned on, lamp n-1 is turned 
off, lamps n to 2n-2 remain off, and lamp 2n-1 remains on. For the next n-1 moves for each lamp, 
lamp n-1 is not toggled, so it remains off. Hence all of n to 2n-2 also remain off and 2n-1 remains 
on. Lamps 0 to n-2 go through the same sequence as for a set of n lamps. Hence after these n-1 
moves for each lamp, all the lamps are off, except for 2n-1. Finally, over the next 2n-1 moves, 
lamps 0 to 2n-2 are turned on. This completes the induction. Counting moves, we see that there 
are n-1 sets of n moves, followed by n-1 moves, a total of n2 - 1.  

(c)  We show by induction on the number of moves that for n = 2k+ 1 lamps after each lamp has 
had m moves, for i = 0, 1, ... , 2k - 2, lamp i+2 is in the same state as lamp i is after each lamp has 
had m moves in a set of n - 1 = 2k lamps (we refer to this as lamp i in the reduced case). Lamp 0 
is off and lamp 1 is on. It is easy to see that this is true for m = 1 (in both cases odd numbered 
lamps are on and even numbered lamps are off). Suppose it is true for m. Lamp 2 has the same 
state as lamp 0 in the reduced case and both toggle since their predecessor lamps are on. Hence 
lamps 3 to n - 1 behave the same as lamps 1 to n - 3 in the reduced case. That means that lamp n - 
1 remains off. Hence lamp 0 does not toggle on its m+1th move and remains off. Hence lamp 1 
does not toggle on its m+1th move and remains on. The induction stops working when lamp n - 2 
toggles on its nth move in the reduced case, but it works up to and including m = n - 2. So after n 
- 2 moves for each lamp all lamps are off except lamp 1. In the next two moves nothing happens, 
then in the following n - 1 moves lamps 2 to n - 1 and lamp 0 are turned on. So all the lamps are 
on after a total of (n - 2)n + n + 1 = n2 + n + 1 moves.  
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A1.  Find all integers a, b, c satisfying 1 < a < b < c such that (a - 1)(b -1)(c - 1) is a 
divisor of abc - 1.   

A2.  Find all functions f defined on the set of all real numbers with real values, such 
that f(x2 + f(y)) = y + f(x)2 for all x, y.   

A3.  Consider 9 points in space, no 4 coplanar. Each pair of points is joined by a line 
segment which is colored either blue or red or left uncolored. Find the smallest value 
of n such that whenever exactly n edges are colored, the set of colored edges 
necessarily contains a triangle all of whose edges have the same color.  

 

B1.  L is a tangent to the circle C and M is a point on L. Find the locus of all points P 
such that there exist points Q and R on L equidistant from M with C the incircle of the 
triangle PQR.   

B2.  Let S be a finite set of points in three-dimensional space. Let Sx, Sy, Sz be the sets 
consisting of the orthogonal projections of the points of S onto the yz-plane, zx-plane, 
xy-plane respectively. Prove that:  

      |S|2 ≤ |Sx| |Sy| |Sz|, where |A| denotes the number of points in the set A.  

[The orthogonal projection of a point onto a plane is the foot of the perpendicular from 
the point to the plane.]  

 

B3.  For each positive integer n, S(n) is defined as the greatest integer such that for 
every positive integer k ≤ S(n), n2 can be written as the sum of k positive squares.  

(a)  Prove that S(n) ≤ n2 - 14 for each n ≥ 4.  
(b)  Find an integer n such that S(n) = n2 - 14.  
(c)  Prove that there are infinitely many integers n such that S(n) = n2 - 14.  
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Problem A1  

Find all integers a, b, c satisfying 1 < a < b < c such that (a - 1)(b -1)(c - 1) is a divisor of abc 
- 1.    

Solution  

Answer: a = 2, b = 4, c = 8; or a = 3, b = 5, c = 15.  

Let k = 21/3. If a ≥ 5, then k(a - 1) > a. [Check: (k(a - 1)3 - a3 = a3 - 6a2 + 6a - 2. For a ≥ 6, a3 ≥ 6a2 
and 6a > 2, so we only need to check a = 5: 125 - 150 + 30 - 2 = 3.] We know that c > b > a, so if 
a ≥ 5, then 2(a - 1)(b - 1)(c - 1) > abc > abc - 1. So we must have a = 2, 3 or 4.  

Suppose abc - 1 = n(a - 1)(b - 1)(c - 1). We consider separately the cases n = 1, n = 2 and n ≥ 3. If 
n = 1, then a + b + c = ab + bc + ca. But that is impossible, because a, b, c are all greater than 1 
and so a < ab, b < bc and c < ca.  

Suppose n = 2. Then abc - 1 is even, so all a, b, c are odd. In particular, a = 3. So we have 4(b - 
1)(c - 1) = 3bc - 1, and hence bc + 5 = 4b + 4c. If b >= 9, then bc >= 9c > 4c + 4b. So we must 
have b = 5 or 7. If b = 5, then we find c = 15, which gives a solution. If b = 7, then we find c = 
23/3 which is not a solution.  

The remaining case is n >= 3. If a = 2, we have n(bc - b - c + 1) = 2bc - 1, or (n - 2)bc + (n + 1) = 
nb + nc. But b ≥ 3, so (n - 2)bc ≥ (3n - 6)c ≥ 2nc for n ≥ 6, so we must have n = 3, 4 or 5. If n = 3, 
then bc + 4 = 3b + 3c. If b >= 6, then bc ≥ 6c > 3b + 3c, so b = 3, 4 or 5. Checking we find only b 
= 4 gives a solution: a = 2, b = 4, c = 8. If n = 4, then (n - 2)bc, nb and nc are all even, but (n + 1) 
is odd, so there is no solution. If n = 5, then 3bc + 6 = 5b + 5c. b = 3 gives c = 9/4, which is not a 
solution. b >= 4 gives 3bc > 10c > 5b + 5c, so there are no solutions.  

If a = 3, we have 2n(bc - b - c + 1) = 3bc - 1, or (2n - 3)bc + (2n + 1) = 2nb + 2nc. But b ≥ 4, so 
(2n - 3)bc ≥ (8n - 12)c ≥ 4nc > 2nc + 2nb. So there are no solutions. Similarly, if a = 4, we have 
(3n - 4)bc + (3n + 1) = 3nb + 3nc. But b ≥ 4, so (3n - 4)bc ≥ (12n - 16)c > 6nc > 3nb + 3nc, so 
there are no solutions.  
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Problem A2  

Find all functions f defined on the set of all real numbers with real values, such that f(x2 + 
f(y)) = y + f(x)2 for all x, y.    

Solution  

The first step is to establish that f(0) = 0. Putting x = y = 0, and f(0) = t, we get f(t) = t2. Also, 
f(x2+t) = f(x)2, and f(f(x)) = x + t2. We now evaluate f(t2+f(1)2) two ways. First, it is f(f(1)2 + f(t)) 
= t + f(f(1))2 = t + (1 + t2)2 = 1 + t + 2t2 + t4. Second, it is f(t2 + f(1 + t)) = 1 + t + f(t)2 = 1 + t + t4. 
So t = 0, as required.  

It follows immediately that f(f(x)) = x, and f(x2) = f(x)2. Given any y, let z = f(y). Then y = f(z), 
so f(x2 + y) = z + f(x)2 = f(y) + f(x)2. Now given any positive x, take z so that x = z2. Then f(x + 
y) = f(z2 + y) = f(y) + f(z)2 = f(y) + f(z2) = f(x) + f(y). Putting y = -x, we get 0 = f(0) = f(x + -x) = 
f(x) + f(-x). Hence f(-x) = - f(x). It follows that f(x + y) = f(x) + f(y) and f(x - y) = f(x) - f(y) hold 
for all x, y.  

Take any x. Let f(x) = y. If y > x, then let z = y - x. f(z) = f(y - x) = f(y) - f(x) = x - y = -z. If y < 
x, then let z = x - y and f(z) = f(x - y) = f(x) - f(y) = y - x. In either case we get some z > 0 with 
f(z) = -z < 0. But now take w so that w2 = z, then f(z) = f(w2) = f(w)2 >= 0. Contradiction. So we 
must have f(x) = x.  

IMO 1992 

  
  
Problem A3  

Consider 9 points in space, no 4 coplanar. Each pair of points is joined by a line segment 
which is colored either blue or red or left uncolored. Find the smallest value of n such that 
whenever exactly n edges are colored, the set of colored edges necessarily contains a triangle 
all of whose edges have the same color.  

 Solution  

by Gerhard Wöginger  

We show that for n = 32 we can find a coloring without a monochrome triangle. Take two squares 
R1R2R3R4 and B1B2B3B4. Leave the diagonals of each square uncolored, color the remaining 
edges of R red and the remaining edges of B blue. Color blue all the edges from the ninth point X 
to the red square, and red all the edges from X to the blue square. Color RiBj red if i and j have 
the same parity and blue otherwise.  
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Clearly X is not the vertex of a monochrome square, because if XY and XZ are the same color 
then, YZ is either uncolored or the opposite color. There is no triangle within the red square or the 
blue square, and hence no monochrome triangle. It remains to consider triangles of the form 
RiRjBk and BiBjRk. But if i and j have the same parity, then RiRj is uncolored (and similarly BiBj), 
whereas if they have opposite parity, then RiBk and RjBk have opposite colors (and similarly BiRk 
and BjRk).  

It remains to show that for n = 33 we can always find a monochrome triangle. There are three 
uncolored edges. Take a point on each of the uncolored edges. The edges between the remaining 
6 points must all be colored. Take one of these, X. At least 3 of the 5 edges to X, say XA, XB, 
XC must be the same color (say red). If AB is also red, then XAB is monochrome. Similarly, for 
BC and CA. But if AB, BC and CA are all blue, then ABC is monochrome.  

IMO 1992 

 
  
Problem B1  

L is a tangent to the circle C and M is a point on L. Find the locus of all points P such that 
there exist points Q and R on L equidistant from M with C the incircle of the triangle PQR.  

Solution  

Answer: Let X be the point where C meets L, let O be the center of C, let XO cut C gain at Z, and 
take Y on QR so that M be the midpoint of XY. Let L' be the line YZ. The locus is the open ray 
from Z along L' on the opposite side to Y.  

mainly by Gerhard Wöginger, Technical University, Graz (I filled in a few details)  

Let C' be the circle on the other side of QR to C which also touches the segment QR and the lines 
PQ and QR. Let C' touch QR at Y'. If we take an expansion (technically, homothecy) center P, 
factor PY'/PZ, then C goes to C', the tangent to C at Z goes to the line QR, and hence Z goes to 
Y'. But it is easy to show that QX = RY'.  

We focus on the QORO'. Evidently X,Y' are the feet of the perpendiculars from O, O' 
respectively to QR. Also, OQO' = ORO' = 90. So QY'O' and OXQ are similar, and hence 
QY'/Y'O' = OX/XQ. Also RXO and O'Y'R are similar, so RX/XO = O'Y'/Y'R. Hence QY'·XQ = 
OX·O'Y' = RX·Y'R. Hence QX/RX = QX/(QR - QX) = RY'/(QR - RY') = RY'/QY'. Hence QX = 
RY'.  

But QX = RY by construction (M is the midpoint of XY and QR), so Y = Y'. Hence P lies on the 
open ray as claimed. Conversely, if we take P on this ray, then by the same argument QX = RY. 
But M is the midpoint of XY, so M must also be the midpoint of QR, so the locus is the entire 
(open) ray.  

Gerhard only found this after Theo Koupelis, University of Wisconsin, Marathon had already 
supplied the following analytic solution.  
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Take Cartesian coordinates with origin X, so that M is (a, 0) and O is (0, R). Let R be the point 
(b, 0) (we take a, b >= 0). Then Q is the point (2a - b, 0), and Y is (2a, 0). Let angle XRO be θ. 
Then tan θ = R/b and angle PRX = 2θ, so tan PRX = 2 tan θ/( 1 - tan2θ) = 2Rb/(b2 - R2). Similarly, 
tan PQX = 2R(b - 2a)/( (b - 2a)2 - R2).  

If P has coordinates (A, B), then B/(b - A) = tan PRX, and B/(b - 2a + x) = tan PQX. So we have 
two simultaneous equations for A and B. Solving, and simplifying slightly, we find A = -2aR2/(b2 
- 2ab - R2), B = 2b(b - 2a)R/(b2 - 2ab - R2). (*)  

We may now check that B/(2a - A) = R/a, so P lies on YZ as claimed. So we have shown that the 
locus is a subset of the line YZ. But since b2 - 2ab - R2 maps the open interval (a + √(a2 + R2), ∞) 
onto the open interval (0, ∞), (*) shows that we can obtain any value A in the open interval (-∞,0) 
by a suitable choice of b, and hence any point P on the ray (except its endpoint Z) by a suitable 
choice of R.  

IMO 1992 

 
   
Problem B2  

Let S be a finite set of points in three-dimensional space. Let Sx, Sy, Sz be the sets consisting 
of the orthogonal projections of the points of S onto the yz-plane, zx-plane, xy-plane 
respectively. Prove that:  

      |S|2 <= |Sx| |Sy| |Sz|, where |A| denotes the number of points in the set A.  

[The orthogonal projection of a point onto a plane is the foot of the perpendicular from the 
point to the plane.]    

Solution  

by Gerhard Wöginger  

Induction on the number of different z-coordinates in S.  

For 1, it is sufficient to note that S = Sz and |S| ≤ |Sx| |Sy|  (at most |Sx| points of S project onto 
each of the points of Sy).  

In the general case, take a horizontal (constant z) plane dividing S into two non-empty parts T and 
U. Clearly, |S| = |T| + |U|, |Sx| = |Tx| + |Ux|, and |Sy| = |Ty| + |Uy|.  
By induction, |S| = |T| + |U| ≤ (|Tx| |Ty| |Tz|)

1/2 + (|Ux| |Uy| |Uz|)
1/2. But |Tz|, |Uz| ≤ |Sz|, and for any 

positive a, b, c, d we have (a b)1/2 + (c d)1/2 ≤ ( (a + c) (b + d) )1/2 (square!).  
Hence |S| ≤ |Sz|

1/2( ( |Tx| + |Ux| ) ( |Ty| + |Uy| ) )
1/2 = ( |Sx| |Sy| |Sz| ) 

1/2.   

IMO 1992 
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Problem B3  

For each positive integer n, S(n) is defined as the greatest integer such that for every 
positive integer k ≤ S(n), n2 can be written as the sum of k positive squares.  

(a)  Prove that S(n) <= n2 - 14 for each n ≥ 4.  
(b)  Find an integer n such that S(n) = n2 - 14.  
(c)  Prove that there are infinitely many integers n such that S(n) = n2 - 14.    

Solution  

(a)  Let N = n2. Suppose we could express N as a sum of N - 13 squares. Let the number of 4s be 
a, the number of 9s be b and so on. Then we have 13 = 3a + 8b + 15c + ... . Hence c, d, ... must all 
be zero. But neither 13 nor 8 is a multiple of 3, so there are no solutions. Hence S(n) ≤ N - 14.  

A little experimentation shows that the problem is getting started. Most squares cannot be 
expressed as a sum of two squares. For N = 132 = 169, we find: 169 = 9 + 4 + 4 + 152 1s, a sum 
of 155 = N - 14 squares. By grouping four 1s into a 4 repeatedly, we obtain all multiples of 3 plus 
2 down to 41 (169 = 9 + 40 4s). Then grouping four 4s into a 16 gives us 38, 35, ... , 11 (169 = 10 
16s + 9). Grouping four 16s into a 64 gives us 8 and 5. We obtain the last number congruent to 2 
mod 3 by the decomposition: 169 = 122 + 52.  

For the numbers congruent to 1 mod 3, we start with N - 15 = 154 squares: 169 = 5 4s + 149 1s. 
Grouping as before gives us all 3m + 1 down to 7: 169 = 64 + 64 + 16 + 16 + 4 + 4 + 1. We may 
use 169 = 102 + 82 + 22 + 12 for 4.  

For multiples of 3, we start with N - 16 = 153 squares: 169 = 9 + 9 + 151 1s. Grouping as before 
gives us all multiples of 3 down to 9: 169 = 64 + 64 + 16 + 9 + 9 + 4 + 1 + 1 + 1. Finally, we may 
take 169 = 122 + 42 + 32 for 3 and split the 42 to get 169 = 122 + 32 + 22 + 22 + 22 + 22 for 6. That 
completes the demonstration that we can write 132 as a sum of k positive squares for all k <= 
S(13) = 132 - 14.  

We now show how to use the expressions for 132 to derive further N. For any N, the grouping 
technique gives us the high k. Simply grouping 1s into 4s takes us down: from 9 + 4 + 4 + (N-17) 
1s to (N-14)/4 + 6 < N/2 or below; from 4 + 4 + 4 + 4 + 4 + (N-20) 1s to (N-23)/4 + 8 < N/2 or 
below; from 9 + 9 + (N-18) 1s to (N-21)/4 + 5 < N/2 or below. So we can certainly get all k in the 
range (N/2 to N-14) by this approach. Now suppose that we already have a complete set of 
expressions for N1 and for N2 (where we may have N1 = N2). Consider N3 = N1N2. Writing N3 = 
N1( an expression for N2 as a sum of k squares) gives N3 as a sum of 1 thru k2 squares, where k2 = 
N2 - 14 squares (since N1 is a square). Now express N1 as a sum of two squares: n1

2 + n2
2. We 

have N3 = n1
2(a sum of k2 squares) + n2

2(a sum of k squares). This gives N3 as a sum of k2 + 1 
thru 2k2 squares. Continuing in this way gives N3 as a sum of 1 thru k1k2 squares. But ki = Ni - 14 
> 2/3 Ni, so k1k2 > N3/2. So when combined with the top down grouping we get a complete set of 
expressions for N3.  

This shows that there are infinitely many squares N with a complete set of expressions, for 
example we may take N = the squares of 13, 132, 133, ... .  
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32nd IMO 1991 

 

  

A1.  Given a triangle ABC, let I be the incenter. The internal bisectors of angles A, B, 
C meet the opposite sides in A', B', C' respectively. Prove that:  

    1/4 < AI·BI·CI/(AA'·BB'·CC') ≤ 8/27.  
 

A2.  Let n > 6 be an integer and let a1, a2, ... , ak be all the positive integers less than n 
and relatively prime to n. If  

    a2 - a1 = a3 - a2 = ... = ak - ak-1 > 0,  

prove that n must be either a prime number or a power of 2.  

 

A3.  Let S = {1, 2, 3, ... 280}. Find the smallest integer n such that each n-element 
subset of S contains five numbers which are pairwise relatively prime.   

B1.  Suppose G is a connected graph with k edges. Prove that it is possible to label the 
edges 1, 2, ... , k in such a way that at each vertex which belongs to two or more 
edges, the greatest common divisor of the integers labeling those edges is 1.  

[A graph is a set of points, called vertices, together with a set of edges joining certain 
pairs of distinct vertices. Each pair of edges belongs to at most one edge. The graph is 
connected if for each pair of distinct vertices x, y there is some sequence of vertices x 
= v0, v1, ... , vm = y, such that each pair vi, vi+1 (0 ≤ i < m) is joined by an edge.]  

 

B2.  Let ABC be a triangle and X an interior point of ABC. Show that at least one of 
the angles XAB, XBC, XCA is less than or equal to 30o.  

 

B3.  Given any real number a > 1 construct a bounded infinite sequence x0, x1, x2, ... 
such that |xi - xj| |i - j|

a ≥ 1 for every pair of distinct i, j.  

[An infinite sequence x0, x1, x2, ... of real numbers is bounded if there is a constant C 
such that |xi| < C for all i.]  
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Problem A1  

Given a triangle ABC, let I be the incenter. The internal bisectors of angles A, B, C meet the 
opposite sides in A', B', C' respectively. Prove that:  

    1/4 < AI·BI·CI/(AA'·BB'·CC') ≤ 8/27.    

Solution  

Consider the areas of the three triangles ABI, BCI, CAI. Taking base BC we conclude that (area 
ABI + area CAI)/area ABC = AI/AA'. On the other hand, if r is the radius of the in-circle, then 
area ABI = AB.r/2 and similarly for the other two triangles. Hence AI/AA' = (CA + AB)/p, where 
p is the perimeter. Similarly BI/BB' = (AB + BC)/p and CI/CC' = (BC + CA)/p. But the 
arithmetic mean of (CA + AB)/p, (AB + BC)/p and (BC + CA)/p is 2/3. Hence their product is at 
most (2/3)3 = 8/27.  

Let AB + BC - CA = 2z, BC + CA - AB = 2x, CA + AB - BC = 2y. Then x, y, z are all positive 
and we have AB = y + z, BC = z + x, CA = x + y. Hence (AI/AA')(BI/BB')(CI/CC') = (1/2 + 
y/p)(1/2 + z/p)(1/2 + x/p) > 1/8 + (x+y+z)/(4p) = 1/8 + 1/8 = 1/4.  

IMO 1991 

  
Problem A2  

Let n > 6 be an integer and let a1, a2, ... , ak be all the positive integers less than n and 
relatively prime to n. If   a2 - a1 = a3 - a2 = ... = ak - ak-1 > 0, prove that n must be either a 
prime number or a power of 2.    

Solution  (by anon ) 

If n is odd, then 1 and 2 are prime to n, so all integers < n are prime to n, and hence is prime.  

If n = 4k, then 2k-1 and 2k+1 are prime to n, so all odd integers < n are prime to n, and hence n 
must be a power of 2.  

If n = 4k+2, then 2k+1 divides n, but 2k+3 and 2k+5 are prime to n. But if n > 6, then 2k+5 < n, 
so this cannot be a solution.  
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Problem A3  

Let S = {1, 2, 3, ... 280}. Find the smallest integer n such that each n-element subset of S 
contains five numbers which are pairwise relatively prime.    

Solution  

Answer: 217.  

Let A be the subset of all multiples of 2, 3, 5 or 7. Then A has 216 members and every 5-subset 
has 2 members with a common factor. [To show that |A| = 216, let an be the number of multiples 
of n in S. Then a2 = 140, a3 = 93, a5 = 56, a6 = 46, a10 = 28, a15 = 18, a30 = 9. Hence the number of 
multiples of 2, 3 or 5 = a2 + a3 + a5 - a6 - a10 - a15 + a30 = 206. There are ten additional multiples of 
7: 7, 49, 77, 91, 119, 133, 161, 203, 217, 259.]  

Let P be the set consisting of 1 and all the primes < 280. Define:  
A1 = {2·41, 3·37, 5·31, 7·29, 11·23, 13·19}  
A2 = {2·37, 3·31, 5·29, 7·23, 11·19, 13·17}  
A3 = {2··31, 3·29, 5·23, 7·19, 11·17, 13·13}  
B1 = {2·29, 3·23, 5·19, 7·17, 11·13}  
B2 = {2·23, 3·19, 5·17, 7·13, 11·11}  

Note that these 6 sets are disjoint subsets of S and the members of any one set are relatively prime 
in pairs. But P has 60 members, the three As have 6 each, and the two Bs have 5 each, a total of 
88. So any subset T of S with 217 elements must have at least 25 elements in common with their 
union. But 6·4 = 24 < 25, so T must have at least 5 elements in common with one of them. Those 
5 elements are the required subset of elements relatively prime in pairs.  
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Problem B1  

Suppose G is a connected graph with k edges. Prove that it is possible to label the edges 1, 2, 
... , k in such a way that at each vertex which belongs to two or more edges, the greatest 
common divisor of the integers labeling those edges is 1.  

[A graph is a set of points, called vertices, together with a set of edges joining certain pairs 
of distinct vertices. Each pair of edges belongs to at most one edge. The graph is connected 
if for each pair of distinct vertices x, y there is some sequence of vertices x = v0, v1, ... , vm = 
y, such that each pair vi, vi+1 (0 ≤ i < m) is joined by an edge.]    

Solution  

The basic idea is that consecutive numbers are relatively prime.  

We construct a labeling as follows. Pick any vertex A and take a path from A along unlabeled 
edges. Label the edges consecutively 1, 2, 3, ... as the path is constructed. Continue the path until 
it reaches a vertex with no unlabeled edges. Let B be the endpoint of the path. A is now 
guaranteed to have the gcd (= greatest common divisor) of its edges 1, because one of its edges is 
labeled 1. All the vertices between A and B are guaranteed to have gcd 1 because they have at 
least one pair of edges with consecutive numbers. Finally, either B has only one edge, in which 
case its gcd does not matter, or it is also one of the vertices between A and B, in which case its 
gcd is 1.  

Now take any vertex C with an unlabeled edge and repeat the process. The same argument shows 
that all the new vertices on the new path have gcd 1. The endpoint is fine, because either it has 
only one edge (in which case its gcd does not matter) or it has already got gcd 1.  

Repeat until all the edges are labeled.  
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Problem B2  

Let ABC be a triangle and X an interior point of ABC. Show that at least one of the angles 
XAB, XBC, XCA is less than or equal to 30o.    

Solution  

By Marcin Mazur, University of Illinois at Urbana-Champaign  

Let P, Q, R be the feet of the perpendiculars from X to BC, CA, AB respectively. Use A, B, C to 
denote the interior angles of the triangle (BAC, CBA, ACB). We have PX = BX sin XBC = CX 
sin(C - XCA), QX = CX sin XCA = AX sin(A - XAB), RX = AX sin XAB = BX sin(B - XBC). 
Multiplying: sin(A - XAB) sin(B - XBC) sin(C - XCA) = sin A sin B sin C.  

Now observe that sin(A - x)/sin x = sin A cot x - cos A is a strictly decreasing function of x (over 
the range 0 to π), so if XAB, XBC and XCA are all greater than 30, then sin(A - 30) sin(B - 30o) 
sin(C - 30o) > sin330o = 1/8.  

But sin(A - 30o) sin(B - 30o) = (cos(A - B) - cos(A + B - 60o))/2 ≤ (1 - cos(A + B - 60o))/2 = (1 - 
sin(C - 30o))/2, since (A - 30o) + (B - 30o) + (C - 30o) = 90o. Hence sin(A - 30o) sin(B - 30o) sin(C 
- 30o) ≤ 1/2 (1 - sin(C - 30o)) sin(C - 30o) = 1/2 (1/4 - (sin(C - 30o) - 1/2)2) ≤ 1/8. So XAB, XBC, 
XCA cannot all be greater than 30o.  

  
By Jean-Pierre Ehrmann  

P, Q, R as above. Area ABX + area BCX + area CAX = area ABC, so AB·XR + BC·XP + 
CA·XQ = 2 area ABC ≤ BC·AP ≤ BC(AX + XP). Hence AB·XR/AX + CA·XQ/AX ≤ BC.  

Squaring and using (λ + µ)2 ≥ 4 λµ, we have: BC2 ≥ 4 AB·CA. XR·XQ/AX2. Similarly: CA2 ≥ 4 
BC·AB·XP·XR/BX2, and AB2 ≥ 4 AB·BC·XQ·XP/CX2.  

Multiplying these three inequalities together gives: 1 ≥ 64 (XR/AX)2(XP/BX)2(XQ/CX)2, and 
hence: (XR/AX) (XP/BX) (XQ/CX) ≤ 1/8, or sin XAB sin XBC sin XCA ≤ 1/8. So not all XAB, 
XBC, XCA are greater than 30o.  

  
Gerard Gjonej noted that the result follows almost immediately from the Erdos-Mordell 
inequality: XA + XB + XC ≥ 2(XP + XQ + XR). [For if all the angles are greater than 30, then 
XR/XA, XP/XB, XQ/XC are all greater than sin 30o = 1/2.]. This result was notoriously hard to 
prove - Erdos hawked it around a large number of mathematicians before Mordell found a proof 
- but the proof now appears fairly innocuous, at least if you do not have to rediscover it:   

Let R1, Q1 be the feet of the perpendiculars from P to AB, CA respectively. Similarly, let P2, R2 
be the feet of the perpendiculars from Q to BC, AB, and Q3, P3 the feet of the perpendiculars from 
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R to CA, BC. Then P2P3 is the projection of QR onto BC, so P2P3/QR ≤ 1. Similarly, Q3Q1/RP ≤ 
1, and R1R2/PQ ≤ 1. Hence XA + XB + XC ≥ XA.P2P3/QR + XB·Q3Q1/RP + XC·R1R2/PQ  (*)  

Now BPXR is cyclic, because BPX and XRB are both right angles. Hence angle BXR = angle 
BPR = angle RPP3, so triangles XBR and PRP3 are similar. Hence PP3 = PR.XR/XB.  

Similarly, QQ1 = QP·XP/XC, RR2 = RQ·XQ/XA, and PP2 = PQ·XQ/XC, QQ3 = QR·XR/XA, RR1 
= RP·XP/XB. Substituting into (*), we obtain:  
XA + XB + XC ≥ XA( PQ/QR XQ/XC + PR/QR XR/XB ) + XB( QR/RP XR/XA + QP/RP 
XP/XC ) + XC( RP/PQ XP/XB + RQ/PQ XQ/XA ).  

On the right hand side, the terms involving XP are: XP( QP/RP XB/XC + RP/PQ XC/XB ), 
which has the form XP (x + 1/x) and hence is at least 2 XP. Similarly for the terms involving XQ 
and XR.  

IMO 1991 

 
Problem B3  

Given any real number a > 1 construct a bounded infinite sequence x0, x1, x2, ... such that |xn 
- xm| |n - m|a ≥ 1 for every pair of distinct n, m.  

[An infinite sequence x0, x1, x2, ... of real numbers is bounded if there is a constant C such 
that |xn| < C for all n.]    

Solution  

By Marcin Mazur, University of Illinois at Urbana-Champaign  

Let t = 1/2a. Define c = 1 - t/(1 - t). Since a > 1, c > 0. Now given any integer n > 0, take the 
binary expansion n = ∑i bi 2

i, and define xn = 1/c ∑bi>0 t
i. For example, taking n = 21 = 24 + 22 + 

20, we have x21 = (t4 + t2 + t0)/c. We show that for any unequal n, m, |xn - xm| |n - m|a ≥ 1. This 
solves the problem, since the xn are all positive and bounded by (∑ tn )/c = 1/(1 - 2t).  

Take k to be the highest power of 2 dividing both n and m. Then |n - m| ≥ 2k. Also, in the binary 
expansions for n and m, the coefficients of 20, 21, ... , 2k-1 agree, but the coefficients for 2k are 
different. Hence c |xn - xm| = tk + ∑i>k yi, where yi = 0, ti or - ti. Certainly ∑i>k yi > - ∑i>k t

i = tk+1/(1 
- t), so c |xn - xm| > tk(1 - t/(1 - t)) = c tk. Hence |xn - xm| |n - m|a > tk 2ak = 1.  
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31st IMO 1990 

 

  

A1.  Chords AB and CD of a circle intersect at a point E inside the circle. Let M be an 
interior point of the segment EB. The tangent at E to the circle through D, E and M 
intersects the lines BC and AC at F and G respectively. Find EF/EG in terms of t = 
AM/AB.  

 

A2.  Take n ≥ 3 and consider a set E of 2n-1 distinct points on a circle. Suppose that 
exactly k of these points are to be colored black. Such a coloring is "good" if there is 
at least one pair of black points such that the interior of one of the arcs between them 
contains exactly n points from E. Find the smallest value of k so that every such 
coloring of k points of E is good.  

 

A3.  Determine all integers greater than 1 such that (2n + 1)/n2 is an integer.  
 

B1.  Construct a function from the set of positive rational numbers into itself such that 
f(x f(y)) = f(x)/y for all x, y.  

 

B2.  Given an initial integer n0 > 1, two players A and B choose integers n1, n2, n3, ... 
alternately according to the following rules:  
Knowing n2k, A chooses any integer n2k+1 such that n2k ≤ n2k+1 ≤ n2k

2.  
Knowing n2k+1, B chooses any integer n2k+2 such that n2k+1/n2k+2 = pr for some prime p 
and integer r ≥ 1.  

Player A wins the game by choosing the number 1990; player B wins by choosing the 
number 1. For which n0 does  
(a)  A have a winning strategy?  
(b)  B have a winning strategy?  
(c)  Neither player have a winning strategy?  

 

B3.  Prove that there exists a convex 1990-gon such that all its angles are equal and 
the lengths of the sides are the numbers 12, 22, ... , 19902 in some order.  
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IMO 1990 

 
  
Problem A1  

Chords AB and CD of a circle intersect at a point E inside the circle. Let M be an interior 
point of the segment EB. The tangent at E to the circle through D, E and M intersects the 
lines BC and AC at F and G respectively. Find EF/EG in terms of t = AM/AB.    

Solution    By Theo Koupelis, University of Wisconsin, Marathon  ∠ECF = ∠DCB (same angle) = ∠DAB (ACBD is cyclic) = ∠MAD (same angle). Also ∠CEF 
= ∠EMD (GE tangent to circle EMD) = ∠AMD (same angle). So triangles CEF and AMD are 
similar.  ∠CEG = 180o - ∠CEF = 180o - ∠EMD = ∠BMD. Also ∠ECG = ∠ACD (same angle) = ∠ABD (BCAD is cyclic) = ∠MBD (same angle). So triangles CEG and BMD are similar.  

Hence EF/CE = MD/AM, EG/CE = MD/BM, and so dividing, EF/EG = BM/AM = (1- t)/t.  

IMO 1990 

 
Problem A2  

Take n ≥ 3 and consider a set E of 2n-1 distinct points on a circle. Suppose that exactly k of 
these points are to be colored black. Such a coloring is "good" if there is at least one pair of 
black points such that the interior of one of the arcs between them contains exactly n points 
from E. Find the smallest value of k so that every such coloring of k points of E is good.    

Solution  Answer: n for n = 0 or 1 (mod 3), n - 1 for n = 2 (mod 3).  

Label the points 1 to 2n - 1. Two points have exactly n points between them if their difference 
(mod 2n - 1) is n - 2 or n + 1. We consider separately the three cases n = 3m, 3m + 1 and 3m + 2.  

Let n = 3m. First, we exhibit a bad coloring with n - 1 black points. Take the black points to be 1, 
4, 7, ... , 6m - 2 (2m points) and 2, 5, 8, ... , 3m - 4 (m - 1 points). It is easy to check that this is 
bad. The two points which could pair with r to give n points between are r + 3m - 2 and r + 3m + 
1. Considering the first of these, 1, 4, 7, ... , 6m - 2 would pair with 3m - 1, 3m + 2, 3m + 5, ... , 
6m - 1, 3, 6, ... , 3m - 6, none of which are black. Considering the second, they would pair with 
3m + 2, 3m + 5, ... , 6m - 1, 3, ... , 3m - 3, none of which are black. Similarly, 2, 5, 8, ... , 3m - 4 
would pair with 3m, 3m + 3, ... , 6m - 3, none of which are black. So the set is bad.  

Now if we start with 1 and keep adding 3m - 2, reducing by 6m - 1 when necessary to keep the 
result in the range 1, ... , 6m - 1, we eventually get back to 1: 1, 3m - 1, 6m - 3, 3m - 4, 6m - 6, ... , 
2, 3m, 6m - 2, 3m - 3, 6m - 5, ... , 3, 3m + 1, 6m - 1, ... , 4, 3m + 2, 1. The sequence includes all 
6m - 1 numbers. Moreover a bad coloring cannot have any two consecutive numbers colored 
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black. But this means that at most n - 1 out of the 2n - 1 numbers in the sequence can be black. 
This establishes the result for n = 3m.  

Take n = 3m + 1. A bad coloring with n - 1 black points has the following black points: 1, 4, 7, ... 
, 3m - 2 (m points) and 2, 5, 8, ... , 6m - 1 (2m points). As before we add n - 2 repeatedly starting 
with 1 to get: 1, 3m, 6m - 1, 3m - 3, 6m - 4, ... , 3, 3m + 2, 6m + 1, 3m - 1, ... , 2, 3m + 1, 6m, 3m 
- 2, ... , 1. No two consecutive numbers can be black in a bad set, so a bad set can have at most n - 
1 points.  

Finally, take n = 3m + 2. A bad coloring with n - 2 points is 1, 2, ... , n - 2. This time when we 
add n - 2 = 3m repeatedly starting with 1, we get back to 1 after including only one-third of the 
numbers: 1, 3m + 1, 6m + 1, 3m - 2, ... , 4, 3m + 4, 1. The usual argument shows that at most m 
of these 2m + 1 numbers can be colored black in a bad set. Similarly, we may add 3m repeatedly 
starting with 2 to get another 2m + 1 numbers: 2, 3m + 2, 6m + 2, 3m - 1, ... , 3m + 5, 2. At most 
m of these can be black in a bad set. Similarly at most m of the 2m + 1 numbers: 3, 3m + 3, 6m + 
3, 3m, ... , 3m + 6, 3 can be black. So in total at most 3m = n - 2 can be black in a bad set.   

IMO 1990 

 
  
Problem A3  

Determine all integers greater than 1 such that (2n + 1)/n2 is an integer.    

Solution  by Gerhard Wöginger, Technical University, Graz  

Answer: n = 3.  

Since 2n + 1 is odd, n must also be odd. Let p be its smallest prime divisor. Let x be the smallest 
positive integer such that 2x = -1 (mod p), and let y be the smallest positive integer such that 2y = 
1 (mod p). y certainly exists and indeed y < p, since 2p-1 = 1 (mod p). x exists since 2n = -1 (mod 
p). Write n = ys + r, with 0 ≤ r < y. Then - 1 = 2n = (2y)s2r = 2r (mod p), so x ≤ r < y (r cannot be 
0, since - 1 is not 1 (mod p) ).  

Now write n = hx + k, with 0 ≤ k < x. Then -1 = 2n = (-1)h2k (mod p). Suppose k > 0. Then if h is 
odd we contradict the minimality of y, and if h is even we contradict the minimality of x. So k = 0 
and x divides n. But x < p and p is the smallest prime dividing n, so x = 1. Hence 2 = -1 (mod p) 
and so p = 3.  

Now suppose that 3m is the largest power of 3 dividing n. We show that m must be 1. Expand (3 - 
1)n + 1 by the binomial theorem, to get (since n is odd):   1 - 1 + n.3 - 1/2 n(n - 1) 32 + ... = 3n - (n 
- 1)/2 n 32 + ... . Evidently 3n is divisible by 3m+1, but not 3m+2. We show that the remaining terms 
are all divisible by 3m+2. It follows that 3m+1 is the highest power 3 dividing 2n + 1. But 2n + 1 is 
divisible by n2 and hence by 32m, so m must be 1.  

The general term is (3ma)Cb 3b, for b ≥ 3. The binomial coefficients are integral, so the term is 
certainly divisible by 3m+2 for b ≥ m+2. We may write the binomial coefficient as (3ma/b) (3m - 
1)/1 (3m - 2)/2 (3m - 3)/3 ... (3m - (b-1)) / (b - 1). For b not a multiple of 3, the first term has the 
form 3m c/d, where 3 does not divide c or d, and the remaining terms have the form c/d, where 3 
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does not divide c or d. So if b is not a multiple of 3, then the binomial coefficient is divisible by 
3m, since b > 3, this means that the whole term is divisible by at least 3m+3. Similarly, for b a 
multiple of 3, the whole term has the same maximum power of 3 dividing it as 3m 3b/b. But b is at 
least 3, so 3b/b is divisible by at least 9, and hence the whole term is divisible by at least 3m+2.  

We may check that n = 3 is a solution. If n > 3, let n = 3 t and let q be the smallest prime divisor 
of t. Let w be the smallest positive integer for which 2w = -1 (mod q), and v the smallest positive 
integer for which 2v = 1 (mod q). v certainly exists and < q since 2q-1 = 1 (mod q). 2n = -1 (mod 
q), so w exists and, as before, w < v. Also as before, we conclude that w divides n. But w < q, the 
smallest prime divisor of n, except 3. So w = 1 or 3. These do not work, because then 2 = -1 (mod 
q) and so q = 3, or 23 = -1 (mod q) and again q =3, whereas we know that q > 3.  

IMO 1990 

 
  
Problem B1  

Construct a function from the set of positive rational numbers into itself such that f(x f(y)) = 
f(x)/y for all x, y.    

Solution  

We show first that f(1) = 1. Taking x = y = 1, we have f(f(1)) = f(1). Hence f(1) = f(f(1)) = f(1 
f(f(1)) ) = f(1)/f(1) = 1.  

Next we show that f(xy) = f(x)f(y). For any y we have 1 = f(1) = f(1/f(y) f(y)) = f(1/f(y))/y, so if z 
= 1/f(y) then f(z) = y. Hence f(xy) = f(xf(z)) = f(x)/z = f(x) f(y).  

Finally, f(f(x)) = f(1 f(x)) = f(1)/x = 1/x.  

We are not required to find all functions, just one. So divide the primes into two infinite sets S = 
{p1, p2, ... } and T= {q1, q2, ... }. Define f(pn) = qn, and f(qn) = 1/pn. We extend this definition to 
all rationals using f(xy) = f(x) f(y): f(pi1pi2...qj1qj2.../(pk1...qm1...)) = pm1...qi1.../(pj1...qk1...). It is now 
trivial to verify that f(x f(y)) = f(x)/y.   
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IMO 1990 

 
  
Problem B2  

Given an initial integer n0 > 1, two players A and B choose integers n1, n2, n3, ... alternately 
according to the following rules:  
Knowing n2k, A chooses any integer n2k+1 such that n2k ≤ n2k+1 ≤ n2k

2.  
Knowing n2k+1, B chooses any integer n2k+2 such that n2k+1/n2k+2 = pr for some prime p and 
integer r ≥ 1.  

Player A wins the game by choosing the number 1990; player B wins by choosing the 
number 1. For which n0 does  
(a)  A have a winning strategy?  
(b)  B have a winning strategy?  
(c)  Neither player have a winning strategy?    

Solution  

Answer: if n0 = 2, 3, 4 or 5 then A loses; if n0 ≥ 8, then A wins; if n0 = 6 or 7 , then it is a draw.  

A's strategy given a number n is as follows:  
(1) if n ∈ [8, 11], pick 60  
(2) if n ∈ [12, 16], pick 140  
(3) if n ∈ [17, 22], pick 280  
(4) if n ∈ [23, 44], pick 504  
(5) if n ∈ [45, 1990], pick 1990  
(6) if n = 1991 = 11.181 (181 is prime), pick 1991  
(7) if n ∈ [11r181 + 1, 11r+1181] for some r > 0, pick 11r+1181.  

Clearly (5) wins immediately for A. After (4) B has 7.8.9 so must pick 56, 63, 72 or 168, which 
gives A an immediate win by (5). After (3) B must pick 35, 40, 56, 70 or 140, so A wins by (4) 
and (5). After (2) B must pick 20, 28, 35 or 70, so A wins by (3) - (5). After (1) B must pick 12, 
15, 20 or 30, so A wins by (2) - (5).  

If B is given 11r+1181, then B must pick 181, 11.181, ... , 11r.181 or 11r+1, all of which are ≤ 
11r.181. So if A is given a number n in (6) or (7) then after a turn each A is given a number < n 
(and >= 11), so after a finite number of turns A wins.  

If B gets a number less than 6, then he can pick 1 and win. Hence if A is given 2, he loses, 
because he must pick a number less than 5. Now if B gets a number of 11 or less, he wins by 
picking 1 or 2. Hence if A is given 3, he loses, because he must pick a number less than 10. Now 
if B gets a number of 19 or less, he can win by picking 1, 2 or 3. So if A is given 4 he loses. Now 
if B is given 29 or less, he can pick 1, 2, 3 or 4 and win. So if A is given 5 he loses.  

We now have to consider what happens if A gets 6 or 7. He must pick 30 or more, or B wins. If 
he picks 31, 32, 33, 34, 35 or 36, then B wins by picking (for example) 1, 1, 3, 2, 5, 4 
respectively. So his only hope given 6 is to pick 30. B also wins given any of 37, 38, 39, 40, 41, 
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43, 44, 45, 46, 47, 48, 49 (winning moves, for example, 37, 1; 38, 2; 39, 3; 40, 5; 41, 1; 43, 1; 44, 
4; 45, 5; 46, 3; 47, 1; 48, 3]. So A's only hope given 7 is to pick 30 or 42.  

If B is faced with 30=2·3·5, then he has a choice of 6, 10, 15. We have already established that 10 
and 15 will lose, so he must pick 6. Thus 6 is a draw: A must pick 30 or lose, and then B must 
pick 6 or lose.  

If B is faced with 42=2·3·7, then he has a choice of 6, 14 or 21. We have already established that 
14 and 21 lose, so he must pick 6. Thus 7 is also a draw: A must pick 30 or 42, and then B must 
pick 6.  

IMO 1990 

 
  
Problem B3  

Prove that there exists a convex 1990-gon such that all its angles are equal and the lengths 
of the sides are the numbers 12, 22, ... , 19902 in some order.    

Solution  

By Robin Chapman, Dept of Maths, Macquarie University, Australia  

In the complex plane we can represent the sides as pn
2wn, where pn is a permutation of (1, 2, ... , 

1990) and w is a primitive 1990th root of unity.  

The critical point is that 1990 is a product of more than 2 distinct primes: 1990 = 2·5·199. So we 
can write w = -1·a·b, where -1 is primitive 2nd root of unity, a is a primitive 5th root of unity, and 
b is a primitive 199th root of unity.  

Now given one of the 1990th roots we may write it as (-1)iajbk, where 0 < i < 2, 0 < j < 5, 0 < k < 
199 and hence associate it with the integer r(i,j,k) = 1 + 995i + 199j + k. This is a bijection onto 
(1, 2, ... , 1990). We have to show that the sum of r(i,j,k)2 (-1)iajbk is zero.  

We sum first over i. This gives -9952 x sum of ajbk which is zero, and - 1990 x sum s(j,k) ajbk, 
where s(j,k) = 1 + 199j + k. So it is sufficient to show that the sum of s(j,k) ajbk is zero. We now 
sum over j. The 1 + k part of s(j,k) immediately gives zero. The 199j part gives a constant times 
bk, which gives zero when summed over k.  
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30th IMO 1989 

 

  

A1.  Prove that the set {1, 2, ... , 1989} can be expressed as the disjoint union of 
subsets A1, A2, ... , A117 in such a way that each Ai contains 17 elements and the sum 
of the elements in each Ai is the same.   

A2.  In an acute-angled triangle ABC, the internal bisector of angle A meets the 
circumcircle again at A1. Points B1 and C1 are defined similarly. Let A0 be the point of 
intersection of the line AA1 with the external bisectors of angles B and C. Points B0 
and C0 are defined similarly. Prove that the area of the triangle A0B0C0 is twice the 
area of the hexagon AC1BA1CB1 and at least four times the area of the triangle ABC.  

 

A3.  Let n and k be positive integers, and let S be a set of n points in the plane such 
that no three points of S are collinear, and for any point P of S there are at least k 
points of S equidistant from P. Prove that k < 1/2 + √(2n).   

B1.  Let ABCD be a convex quadrilateral such that the sides AB, AD, BC satisfy AB 
= AD + BC. There exists a point P inside the quadrilateral at a distance h from the line 
CD such that AP = h + AD and BP = h + BC. Show that:  

    1/√h ≥ 1/√AD + 1/√BC.  
 

B2.  Prove that for each positive integer n there exist n consecutive positive integers 
none of which is a prime or a prime power.   

B3.  A permutation {x1, x2, ... , xm} of the set {1, 2, ... , 2n} where n is a positive 
integer is said to have property P if |xi - xi+1| = n for at least one i in {1, 2, ... , 2n-1}. 
Show that for each n there are more permutations with property P than without.  
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IMO 1989 

 
  
Problem A1  

Prove that the set {1, 2, ... , 1989} can be expressed as the disjoint union of subsets A1, A2, ... 
, A117 in such a way that each Ai contains 17 elements and the sum of the elements in each Ai 
is the same.    

Solution  

We construct 116 sets of three numbers. Each set sums to 3 x 995 = 2985. The 348 numbers 
involved form 174 pairs {r, 1990 - r}. At this point we are essentially done. We take a 117th set 
which has one {r, 1990 - r} pair and 995. The original 1989 numbers comprise 995 and 994 {r, 
1990 - r} pairs. We have used up 995 and 175 pairs, leaving just 819 pairs. We now add 7 pairs to 
each of our 117 sets, bringing the total of each set up to 2985 + 7.1990 = 1990 x 17/2.  

It remains to exhibit the 116 sets. There are many possibilities. We start with:  
301, 801, 1883 and the "complementary" set 1990 - 301 = 1689, 1990 - 801 = 1189, 1990 - 1883 
= 107. We then add one to each of the first two numbers to get:  
302, 802, 1881 and 1688, 1188, 109, and so on:  
303, 803, 1879 and 1687, 1187, 111,  
...  
358, 858, 1769 and 1632, 1132, 221.  
We can immediately see that these triples are all disjoint. So the construction is complete.  

IMO 1989 

 
  
Problem A2  

In an acute-angled triangle ABC, the internal bisector of angle A meets the circumcircle 
again at A1. Points B1 and C1 are defined similarly. Let A0 be the point of intersection of the 
line AA1 with the external bisectors of angles B and C. Points B0 and C0 are defined 
similarly. Prove that the area of the triangle A0B0C0 is twice the area of the hexagon 
AC1BA1CB1 and at least four times the area of the triangle ABC.    

Solution  By Marcin Mazur, University of Illinois at Urbana-Champaign  

Let I be the point of intersection of AA0, BB0, CC0 (the in-center). BIC = 180 - 1/2 ABC - 1/2 
BCA = 180 - 1/2 (180 - CAB) = 90 + 1/2 CAB. Hence CA1B = 180 - CAB [BA1CA is cyclic] = 
2(180 - BIC) = 2CA0B. But A1B = A1C, so A1 is the center of the circumcircle of BCA0. But I lies 
on this circumcircle (IBA0 = ICA0 = 90), and hence A1A0 = A1I.  



 94

Hence area IBA1 = area A0BA1 and area ICA1 = area A0CA1. Hence area IBA0C = 2 area IBA1C. 
Similarly, area ICB0A = 2 area ICB1A and area IAC0B = 2 area IAC1B. Hence area A0B0C0 = 2 
area hexagon AB1CA1BC1.  

A neat solution for the rest is as follows by Thomas Jäger  

Let H be the orthocentre of ABC. Let H1 be the reflection of H in BC, so H1 lies on the 
circumcircle. So area BCH = area BCH1 <= area BCA1. Adding to the two similar inequalities 
gives area ABC <= area hexagon - area ABC.  

Mazur's solution was as follows  

CAB = 180o - CA1B and A1B = A1C, so A1BC = 90o - 1/2 CA1B = 1/2 CAB. Hence the 
perpendicular from A1 to BC has length 1/2 BC tan(CAB/2) and area CA1B = 1/4 BC2 
tan(CAB/2).  

Put r = radius of in-circle of ABC, x = cot(CAB/2), y = cot(ABC/2), z = cot(BCA/2). Then BC = 
r(y + z) and area CA1B = r2(y + z)2/(4x). Also area BIC = 1/2 r BC. Similarly for the other 
triangles, so area ABC = area BIC + area CIA + area AIB = r2(x + y + z). We have to show that 
area ABC ≤ area CA1B + area AB1C + area BC1A, or (x + y + z) ≤ (y + z)2/(4x) + (z + x)2/(4y) + 
(x + y)2/(4z).  

Putting s = x + y + z, this is equivalent to: 4s ≤ (s - x)2/x + (s - y)2/y + (s - z)2/z, or 9s ≤ s2(1/x + 
1/y + 1/z), but this is just the statement that the arithmetic mean of x, y, z is not less than the 
harmonic mean.  

Note in passing that the requirement for ABC to be acute is unnecessary.  

IMO 1989 

 
   
Problem A3 

Let n and k be positive integers, and let S be a set of n points in the plane such that no three 
points of S are collinear, and for any point P of S there are at least k points of S equidistant 
from P. Prove that k < 1/2 + √(2n).    

Solution 

Three variants on a theme, all kindly supplied by others (I spent 2 hours failing to solve it). My 
favorite first.  By Eli Bachmutsky  

Consider the pairs P, {A, B}, where P, A, B are points of S, and P lies on the perpendicular 
bisector of AB. There are at least n k(k - 1)/2 such pairs, because for each point P, there are at 
least k points equidistant from P and hence at least k(k - 1)/2 pairs of points equidistant from P.  

If k ≥ 1/2 + √(2n), then k(k - 1) ≥ 2n - 1/4 > 2(n - 1), and so there are more than n(n - 1) pairs P, 
{A, B}. But there are only n(n - 1)/2 possible pairs {A, B}, so for some {A0, B0} we must be able 
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to find at least 3 points P on the perpendicular bisector of A0B0. But these points are collinear, 
contradicting the assumption in the question.  

 From an anonymous source  

Let the points be P1, P2, ... , Pn. Let Ci be a circle center Pi containing at least k points of S. There 
are at least nk pairs (Ci,Pj), where Pj lies on Ci. Hence there must a point P lying on at least k 
circles. Take k such circles Cα. For each such circle Cα, take a subset Sα comprising exactly k 
points of S ∩ Cα.  

We now count the points in ∪ Sα. Apart from P, there are k-1 points in each Sα. So we start with 
1 + k(k-1). But this counts some points more than once. Each pair (Sα, Sβ) (with α ≠ β) has at 
most one common point apart from P (because distinct circles have at most two common points). 
So we deduct 1 for each of the 1/2 k(k - 1) pairs (Sα, Sβ), giving 1 + k(k - 1) - 1/2 k(k - 1) (*).  

If Q (≠ P) is in exactly r sets Sα, then it is counted r times in the second term k(k - 1), and 
subtracted 1/2 r(r - 1) times in the third term. So it is counted 1/2 r(3 - r) times in all. That is 
correct for r = 0, 1 or 2 and too low for r > 2. So (*) is ≤ |∪ Sα|. Clearly |∪ Sα| ≤ n, so n ≥ 1 + k(k 
- 1)/2 = (k - 1/2)2/2 + 7/8 > (k - 1/2)2/2. Hence √(2n) + 1/2 > k.  

 By Thomas Jäger  

Define Pi and Si as above. Let g(i) be the number of Sa containing Pi, and let f(i, j) be |Si ∩ Sj|. Let 
h(x) = x(x - 1)/2. We count the number N of pairs i, {a, b}, where point i is in Sa and Sb.  

Point i is in g(i) sets Sj, from which we can choose Sa,Sb in h(g(i)) ways. Hence N = ∑ h(g(i)). But 
f(a, b) points are in Sa and Sb, so N = ∑ f(a, b). But, since distinct circles intersect in at most 2 
points, f(a, b) ≤ 2, so ∑ f(a, b) ≤ h(n) 2. We conclude that 2 h(n) ≥ ∑ h(g(i)).  

h is a convex function, so 1/n ∑ h(g(i)) ≥ h(1/n ∑ g(i)) = n h(1/n nk) = n h(k). Hence n - 1 ≥ h(k), 
which gives the result, as above.  

 IMO 1989 

 
 Problem B1  

Let ABCD be a convex quadrilateral such that the sides AB, AD, BC satisfy AB = AD + BC. 
There exists a point P inside the quadrilateral at a distance h from the line CD such that AP 
= h + AD and BP = h + BC. Show that:  

    1/√h ≥ 1/√AD + 1/√BC.    

Solution by Gerhard Wöginger, Technical University, Graz  

Let CA be the circle center A, radius AD, and CB the circle center B, radius BC. The circles touch 
on AB. Let CP the the circle center P, radius h. CP touches CA and CB and CD. Let t be the 
common tangent to CA and CB whose two points of contact are on the same side of AB as C and 
D. Then CP is confined inside the curvilinear triangle whose sides are segments of t, CA and CB. 
Evidently h attains its maximum value, for given lengths AB, AD, BC, when CP touches t, in 
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which case D must be the point at which t touches CA, and C the point at which it touches CB. 
Suppose E is the point at which t touches CP.  

Angles ADC and BCD are right angles, so CD2 = AB2 - (AD - BC)2 = 4 AD BC. Similarly, DE2 = 
4 h AD, and CE2 = 4 h BC. But CD = DE + CE, so 1/√h = 1/√AD + 1/√BC. This gives the 
maximum value of h, so in general we have the inequality stated.   

IMO 1989 

 
   
Problem B2  

Prove that for each positive integer n there exist n consecutive positive integers none of 
which is a prime or a prime power.    

Solution  

Consider (N!)2+2, (N!)2+3, ... , (N!)2+N. (N!)2+r is divisible by r, but ((N!)2+r)/r = N! (N!/r) + 1, 
which is greater than one, but relatively prime to r since N! (N!/r) is divisible by r. For each r we 
may take a prime pr dividing r, so (N!)2+r is divisible by pr, but is not a power of pr. Hence it is 
not a prime or a prime power. Taking N = n+1 gives n consecutive numbers as required.  

 IMO 1989 

   
Problem B3  

A permutation {x1, x2, ... , xm} of the set {1, 2, ... , 2n} where n is a positive integer is said to 
have property P if |xi - xi+1| = n for at least one i in {1, 2, ... , 2n-1}. Show that for each n 
there are more permutations with property P than without.    

Solution  

from Arthur Engel, Problem-Solving Strategies, Springer 1998 [Problem books in mathematics 
series], ISBN 0387982191. A rather good training book.  

Let Ak be the set of permutations with k and k+n in neighboring positions, and let A be the set of 
permutations with property P, so that A is the union of the Ak.  

Then |A| = Sumk |Ak| - Sumk<l |Ak∩A l| + Sumk<l<m |Ak∩A l∩Am| - ... . But this is an alternating 
sequence of monotonically decreasing terms, hence |A| ≥ ∑k |Ak| - Sumk<l |Ak∩A l|.  

But |Ak| = 2 (2n - 1)! (two orders for k, k+n and then (2n - 1)! ways of arranging the 2n - 1 items, 
treating k, k+n as a single item). Similarly, |Ak∩A l| = 4 (2n - 2)! So |A| ≥ (2n - 2)! [n.2(2n -1) - 
n(n - 1)/2 4] = 2n2 (2n - 2)! > (2n)!/2.  
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29th IMO 1988 

 

  

A1.  Consider two coplanar circles of radii R > r with the same center. Let P be a fixed 
point on the smaller circle and B a variable point on the larger circle. The line BP 
meets the larger circle again at C. The perpendicular to BP at P meets the smaller 
circle again at A (if it is tangent to the circle at P, then A = P).  

(i)  Find the set of values of AB2 + BC2 + CA2.  
(ii)  Find the locus of the midpoint of BC.  

 

A2.  Let n be a positive integer and let A1, A2, ... , A2n+1 be subsets of a set B. Suppose 
that:  
(i)  Each Ai has exactly 2n elements,  
(ii)  The intersection of every two distinct Ai contains exactly one element, and  
(iii)  Every element of B belongs to at least two of the Ai.  
For which values of n can one assign to every element of B one of the numbers 0 and 
1 in such a way that each Ai has 0 assigned to exactly n of its elements?  

 

A3.  A function f is defined on the positive integers by: f(1) = 1; f(3) = 3; f(2n) = f(n), 
f(4n + 1) = 2f(2n + 1) - f(n), and f(4n + 3) = 3f(2n + 1) - 2f(n) for all positive integers 
n. Determine the number of positive integers n less than or equal to 1988 for which 
f(n) = n.  

 

B1.  Show that the set of real numbers x which satisfy the inequality:  

  1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 70/(x - 70) ≥ 5/4  

is a union of disjoint intervals, the sum of whose lengths is 1988.  
 

B2.  ABC is a triangle, right-angled at A, and D is the foot of the altitude from A. The 
straight line joining the incenters of the triangles ABD and ACD intersects the sides 
AB, AC at K, L respectively. Show that the area of the triangle ABC is at least twice 
the area of the triangle AKL.  

 

B3.  Let a and b be positive integers such that ab + 1 divides a2 + b2. Show that (a2 + 
b2)/(ab + 1) is a perfect square.  
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Problem A1  

Consider two coplanar circles of radii R > r with the same center. Let P be a fixed point on 
the smaller circle and B a variable point on the larger circle. The line BP meets the larger 
circle again at C. The perpendicular to BP at P meets the smaller circle again at A (if it is 
tangent to the circle at P, then A = P).  

(i)  Find the set of values of AB2 + BC2 + CA2.  
(ii)  Find the locus of the midpoint of BC.    

Solution  

(i)  Let M be the midpoint of BC. Let PM = x. Let BC meet the small circle again at Q. Let O be 
the center of the circles. Since angle APQ = 90 degrees, AQ is a diameter of the small circle, so 
its length is 2r. Hence AP2 = 4r2 - 4x2. BM2 = R2 - OM2 = R2 - (r2 - x2). That is essentially all we 
need, because we now have: AB2 + AC2 + BC2 = (AP2 + (BM - x)2) + (AP2 + (BM + x)2) + 4BM2 
= 2AP2 + 6BM2 + 2x2 = 2(4r2 - 4x2) + 6(R2 - r2 + x2) + 2x2 = 6R2 + 2r2 , which is independent of 
x.  

(ii)  M is the midpoint of BC and PQ since the circles have a common center. If we shrink the 
small circle by a factor 2 with P as center, then Q moves to M, and hence the locus of M is the 
circle diameter OP.  

IMO 1988 

 
 Problem A2  

Let n be a positive integer and let A1, A2, ... , A2n+1 be subsets of a set B. Suppose that:  
(i)  Each Ai has exactly 2n elements,  
(ii)  The intersection of every two distinct Ai contains exactly one element, and  
(iii)  Every element of B belongs to at least two of the Ai.  
For which values of n can one assign to every element of B one of the numbers 0 and 1 in 
such a way that Ai has 0 assigned to exactly n of its elements?    

Solution  

Answer: n even.  

Each of the 2n elements of Ai belongs to at least one other Aj because of (iii). But given another 
A j it cannot contain more than one element of Ai because of (ii). There are just 2n other Aj 
available, so each must contain exactly one element of Ai. Hence we can strengthen (iii) to every 
element of B belongs to exactly two of the As.  
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This shows that the arrangement is essentially unique. We may call the element of B which 
belongs to Ai and Aj (i,j). Then Ai contains the 2n elements (i, j) with j not i.  

|B| = 1/2 x no. of As x size of each A = n(2n+1). If the labeling with 0s and 1s is possible, then if 
we list all the elements in each A, n(2n+1) out of the 2n(2n+1) elements have value 0. But each 
element appears twice in this list, so n(2n+1) must be even. Hence n must be even.  

Next part thanks to Stan Dolan  

Label (i,j) 0 if j = i-n/2, i-(n/2 - 1), ... , i-1, i+1, i+2, ... , i+n/2 (working mod 2n+1 when 
necessary). This clearly has the required property.  

My original solution was a pedestrian induction:  

We show by induction that a labeling is always possible for n even. If n = 2, there is certainly a 
labeling. For example, we may assign 0 to (1,2), (1,3), (2,4), (3,5), (4,5). Now suppose we have a 
labeling for n. For n + 2, we label (i , j) 0 if it was labeled 0 for n or if it is:  
    (i, 2n+2) or (i, 2n+3) for i = 1, 2, ... , n+1  
    (i, 2n+4) or (i, 2n+5) for i = n+2, n+3, ... , 2n+1  
    (2n+2, 2n+4), (2n+3, 2n+5), (2n+4,2n+5).  
For i = 1, 2, ... n+1, Ai has n elements (i, j) labeled zero with j ≤ 2n+1 and also (i, 2n+2) and (i, 
2n+3), giving n+2 in all. For i = n+2, n+3, ... , 2n+1, Ai has n elements (i, j) labeled zero with j ≤ 
2n+1 and also (i, 2n+4) and (i, 2n+5), giving n+2 in all. A2n+2 has the n+1 elements (i, 2n+2) with 
i <= n+1 and also (2n+2, 2n+4), giving n+2 in all. A2n+3 has the n+1 elements (i, 2n+3) for i ≤ n+1 
and also (2n+3, 2n+5), giving n+2 in all. A2n+4 has the n elements (i, 2n+4) with n+2 ≤ i ≤ 2n+1 
and also (2n+2, 2n+4) and (2n+4, 2n+5), giving n+2 in all. Finally A2n+5 has the n elements (i, 
2n+5) with n+2 ≤ i ≤ 2n+1 and also (2n+3, 2n+5) and (2n+4, 2n+5), giving n+2 in all.  

IMO 1988 

 
   
Problem A3  

A function f is defined on the positive integers by: f(1) = 1; f(3) = 3; f(2n) = f(n), f(4n + 1) = 
2f(2n + 1) - f(n), and f(4n + 3) = 3f(2n + 1) - 2f(n) for all positive integers n. Determine the 
number of positive integers n less than or equal to 1988 for which f(n) = n.   

Solution  

Answer: 92.  

f(n) is always odd. If n = br+1br...b2b1b0 in binary and n is odd, so that br+1 = b0 = 1, then f(n) = 
br+1b1b2...brb0. If n has r+2 binary digits with r > 0, then there are 2[(r+1)/2] numbers with the central 
r digits symmetrical, so that f(n) = n (because we can choose the central digit and those lying 
before it arbitarily, the rest are then determined). Also there is one number with 1 digit (1) and 
one number with two digits (3) satisfying f(n) = 1. So we find a total of 1 + 1 + 2 + 2 + 4 + 4 + 8 
+ 8 + 16 + 16 = 62 numbers in the range 1 to 1023 with f(n) = n. 1988 = 11111000011. So we 
also have all 32 numbers in the range 1023 to 2047 except for 11111111111 and 11111011111, 
giving another 30, or 92 in total.  
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It remains to prove the assertions above. f(n) odd follows by an easy induction. Next we show 
that if 2m < 2n+1 < 2m+1, then f(2n+1) = f(n) + 2m. Again we use induction. It is true for m = 1 
(f(3) = f(1) + 2). So suppose it is true for 1, 2, ... , m. Take 4n+1 so that 2m+1 < 4n+1 < 2m+2, then 
f(4n+1) = 2f(2n+1) - f(n) = 2(f(n) + 2m) - f(n) = f(n) + 2m+1 = f(2n) + 2m+1, so it is true for 4n+1. 
Similarly, if 4n+3 satisfies, 2m+1 < 4n+3 < 2m+2, then f(4n+3) = 3f(2n+1) - 2f(n) = f(2n+1) + 2(f(n) 
+ 2m) - 2f(n) = f(2n+1) + 2m+1, so it is true for 4n+3 and hence for m+1.  

Finally, we prove the formula for f(2n+1). Let 2n+1 = br+1br...b2b1b0 with b0 = br+1 = 1. We use 
induction on r. So assume it is true for smaller values. Say b1 = ... = bs = 0 and bs+1 = 1 (we may 
have s = 0, so that we have simply b1 = 1). Then n = br+1 ... b1 and f(n) = br+1bs+2bs+3...brbs+1 by 
induction. So f(n) + 2r+1 = br+10...0br+1bs+2...brbs+1, where there are s zeros. But we may write this 
as br+1b1...bsbs+1...brbr+1, since b1 = ... = bs = 0, and bs+1 = br+1 = 1. But that is the formula for 
f(2n+1), so we have completed the induction 

IMO 1988 

 
   
Problem B1  

Show that the set of real numbers x which satisfy the inequality:  

  1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 70/(x - 70) ≥ 5/4  

is a union of disjoint intervals, the sum of whose lengths is 1988.    

Solution  

Let f(x) = 1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 70/(x - 70). For any integer n, n/(x - n) is strictly 
monotonically decreasing except at x = n, where it is discontinuous. Hence f(x) is strictly 
monotonically decreasing except at x = 1, 2, ... , 70. For n = any of 1, 2, ... , 70, n/(x - n) tends to 
plus infinity as x tends to n from above, whilst the other terms m/(x - m) remain bounded. Hence 
f(x) tends to plus infinity as x tends to n from above. Similarly, f(x) tends to minus infinity as x 
tends to n from below. Thus in each of the intervals (n, n+1) for n = 1, ... , 69, f(x) decreases 
monotonically from plus infinity to minus infinity and hence f(x) = 5/4 has a single foot xn. Also 
f(x) ≥ 5/4 for x in (n, xn] and f(x) < 5/4 for x in (xn, n+1). If x < 0, then every term is negative and 
hence f(x) < 0 < 5/4. Finally, as x tends to infinity, every term tends to zero, so f(x) tends to zero. 
Hence f(x) decreases monotonically from plus infinity to zero over the range [70, infinity]. Hence 
f(x) = 5/4 has a single root x70 in this range and f(x) >= 5/4 for x in (70, x70] and f(x) < 5/4 for x > 
x70. Thus we have established that f(x) ≥ 5/4 for x in any of the disjoint intervals (1, x1], (2, x2], ... 
, (70, x70] and f(x) < 5/4 elsewhere.  

The total length of these intervals is (x1 - 1) + ... + (x70 - 70) = (x1 + ... + x70) - (1 + ... + 70). The 
xi are the roots of the 70th order polynomial obtained from 1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 
70/(x - 70) = 5/4 by multiplying both sides by (x - 1) ... (x - 70). The sum of the roots is minus the 
coefficient of x69 divided by the coefficient of x70. The coefficient of x70 is simply k, and the 
coefficient of x69 is - (1 + 2 + ... + 70)k - (1 + ... + 70). Hence the sum of the roots is (1 + ... + 
70)(1 + k)/k and the total length of the intervals is (1 + ... + 70)/k = 1/2 70·71 4/5 = 28·71 = 1988.  
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Problem 5  

ABC is a triangle, right-angled at A, and D is the foot of the altitude from A. The straight 
line joining the incenters of the triangles ABD and ACD intersects the sides AB, AC at K, L 
respectively. Show that the area of the triangle ABC is at least twice the area of the triangle 
AKL.    

Solution  

The key is to show that AK = AL = AD. We do this indirectly. Take K' on AB and L' on AC so 
that AK' = AL' = AD. Let the perpendicular to AB at K' meet the line AD at X. Then the triangles 
AK'X and ADB are congruent. Let J be the incenter of ADB and let r be the in-radius of ADB. 
Then J lies on the angle bisector of angle BAD a distance r from the line AD. Hence it is also the 
incenter of AK'X. Hence JK' bisects the right angle AK'X, so ∠AK'J = 45o and so J lies on K'L'. 
An exactly similar argument shows that I, the incenter of ADC, also lies on K'L'. Hence we can 
identify K and K', and L and L'.  

The area of AKL is AK·AL/2 = AD2/2, and the area of ABC is BC·AD/2, so we wish to show that 
2AD ≤ BC. Let M be the midpoint of BC. Then AM is the hypoteneuse of AMD, so AM ≥ AD 
with equality if and only if D = M. Hence 2AD ≤ 2AM = BC with equality if and only if AB = 
AC.   

IMO 1988 

 
   
Problem B3  

Let a and b be positive integers such that ab + 1 divides a2 + b2. Show that (a2 + b2)/(ab + 1) 
is a perfect square.    

Solution  

A little experimentation reveals the following solutions: a, a3 giving a2; a3, a5 - a giving a2; and the 
recursive a1 = 2, b1 = 8, an+1 = bn, bn+1 = 4bn - an giving 4. The latter may lead us to: if a2 + b2 = 
k(ab + 1), then take A = b, B = kb - a, and then A2 + B2 = k(AB + 1). Finally, we may notice that 
this can be used to go down as well as up.  

So starting again suppose that a, b, k is a solution in positive integers to a2 + b2 = k(ab + 1). If a = 
b, then 2a2 = k(a2 + 1). So a2 must divide k. But that implies that a = b = k = 1. Let us assume we 
do not have this trivial solution, so we may take a < b. We also show that a3 > b. For (b/a - 1/a)(ab 
+ 1) = b2 + b/a - b - 1/a < b2 < a2 + b2. So k > b/a - 1/a. But if a3 < b, then b/a (ab + 1) > b2 + a2, so 
k < b/a. But now b > ak and < ak + 1, which is impossible. It follows that k ≥ b/a.  
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Now define A = ka - b, B = a. Then we can easily verify that A, B, k also satisfies a2 + b2 = k(ab 
+ 1), and B and k are positive integers. Also a < b implies a2 + b2 < ab + b2 < ab + b2 + 1 + b/a = 
(ab + 1)(1 + b/a), and hence k < 1 + b/a, so ka - b < a. Finally, since k > b/a, ka - b ≥ 0. If ka - b > 
0, then we have another smaller solution, in which case we can repeat the process. But we cannot 
have an infinite sequence of decreasing numbers all greater than zero, so we must eventually get 
A = ka - b = 0. But now A2 + B2 = k(AB + 1), so k = B2. k was unchanged during the descent, so 
k is a perfect square.  

A slightly neater variation on this is due to Stan Dolan  

As above take a2 + b2 = k(ab + 1), so a, b, and k are all positive integers. Now fixing k take 
positive integers A, B such that A2 + B2 = k(AB + 1) (*) and min(A,B) is as small as possible. 
Assume B ≤ A. Regarding (*) as a quadratic for A, we see that the other root C satisfies A + C = 
kB, AC = B2 - k. The second equation implies that C = B2/A - k/A < B. So C cannot be a positive 
integer (or the solution C, B would have min(C,B) < min(A,B)). But we have (A+1)(C+1) = A+C 
+ AC + 1 = B2 + (B-1)k + 1 > 0, so C > -1. C = kB - A is an integer, so C = 0. Hence k = B2.  

Note that jumping straight to the minimal without the infinite descent avoids some of the 
verification needed in the infinite descent.  
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28th IMO 1987 

 

  

A1.  Let pn(k) be the number of permutations of the set {1, 2, 3, ... , n} which have 
exactly k fixed points. Prove that the sum from k = 0 to n of (k pn(k) ) is n!.  

[A permutation f of a set S is a one-to-one mapping of S onto itself. An element i of S 
is called a fixed point if f(i) = i.]  

 

A2.  In an acute-angled triangle ABC the interior bisector of angle A meets BC at L 
and meets the circumcircle of ABC again at N. From L perpendiculars are drawn to 
AB and AC, with feet K and M respectively. Prove that the quadrilateral AKNM and 
the triangle ABC have equal areas.  

 

A3.  Let x1, x2, ... , xn be real numbers satisfying x1
2 + x2

2 + ... + xn
2 = 1. Prove that for 

every integer k ≥ 2 there are integers a1, a2, ... , an, not all zero, such that |ai| ≤ k - 1 for 
all i, and |a1x1 + a2x2 + ... + anxn| ≤ (k - 1)√n/(kn - 1).   

B1.  Prove that there is no function f from the set of non-negative integers into itself 
such that f(f(n)) = n + 1987 for all n.   

B2.  Let n be an integer greater than or equal to 3. Prove that there is a set of n points 
in the plane such that the distance between any two points is irrational and each set of 
3 points determines a non-degenerate triangle with rational area.   

B3.  Let n be an integer greater than or equal to 2. Prove that if k2 + k + n is prime for 
all integers k such that 0 ≤ k ≤ √(n/3), then k2 + k + n is prime for all integers k such 
that 0 ≤ k ≤ n-2.  
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Problem A1 

 Let pn(k) be the number of permutations of the set {1, 2, 3, ... , n} which have exactly k fixed 
points. Prove ∑0

n (k pn(k) ) = n!.    

First Solution 

We show first that the number of permutations of n objects with no fixed points is n!(1/0! - 1/1! + 
1/2! - ... + (-1)n/n!). This follows immediately from the law of inclusion and exclusion: let Ni be 
the number which fix i, Nij the number which fix i and j, and so on. Then N0, the number with no 
fixed points, is n! - all Ni + all Nij - ... + (-1)nN1...n. But Ni = (n-1)!, Nij = (n-2)! and so on. So N0 = 
n! ( 1 - 1/1! + ... + (-1)r(n-r)!/(r! (n-r)!) + ... + (-1)n/n!) = n! (1/0! - 1/1! + ... + (-1)n/n!).  

Hence the number of permutations of n objects with exactly r fixed points = no. of ways of 
choosing the r fixed points x no. of perms of the remaining n - r points with no fixed points = 
n!/(r! (n-r)!) x (n-r)! (1/0! - 1/1! + ... + (-1)n-r/(n-r)! ). Thus we wish to prove that the sum from r = 
1 to n of 1/(r-1)! (1/0! - 1/1! + ... + (-1)n-r/(n-r)! ) is 1. We use induction on n. It is true for n = 1. 
Suppose it is true for n. Then the sum for n+1 less the sum for n is: 1/0! (-1)n/n! + 1/1! (-1)n-1/(n-
1)! + ... + 1/n! 1/0! = 1/n! (1 - 1)n = 0. Hence it is true for n + 1, and hence for all n.  

Comment  

This is a plodding solution. If you happen to know the result for no fixed points (which many 
people do), then it is essentially a routine induction.  

 
Second solution  

Count all pairs (x, s) where s is a permutation with x a fixed point of x. Clearly, if we fix x, then 
there are (n-1)! possible permutations s. So the total count is n!. But if we count the number of 
permutations s with exactly k fixed points, then we get the sum in the question.  

Comment  

This much more elegant solution is due to Gerhard Wöginger (email 24 Aug 99).   
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Problem A2  

In an acute-angled triangle ABC the interior bisector of angle A meets BC at L and meets 
the circumcircle of ABC again at N. From L perpendiculars are drawn to AB and AC, with 
feet K and M respectively. Prove that the quadrilateral AKNM and the triangle ABC have 
equal areas.    

Solution  by Gerhard Wöginger  

AKL and AML are congruent, so KM is perpendicular to AN and area AKNM = KM.AN/2.  
AKLM is cyclic (2 opposite right angles), so angle AKM = angle ALM and hence KM/sin BAC 
= AM/sin AKM (sine rule) = AM/sin ALM = AL.  
ABL and ANC are similar, so AB.AC = AN.AL. Hence area ABC = 1/2 AB.AC sin BAC = 1/2 
AN.AL sin BAC = 1/2 AN.KM = area AKNM.   

IMO 1987 

 
   
Problem A3  

Let x1, x2, ... , xn be real numbers satisfying x1
2 + x2

2 + ... + xn
2 = 1. Prove that for every 

integer k ≥ 2 there are integers a1, a2, ... , an, not all zero, such that |ai| ≤ k - 1 for all i, and 
|a1x1 + a2x2 + ... + anxn| ≤ (k - 1)√n/(kn - 1).    

Solution  

This is an application of the pigeon-hole principle.  

Assume first that all xi are non-negative. Observe that the sum of the xi is at most √n. [This is a 
well-known variant, (∑1≤i≤n xi)

2 ≤ n ∑1≤i≤n xi
2, of the AM-GM result. See, for example, Arthur 

Engel, Problem Solving Strategies, Springer 1998, p163, ISBN 0387982191].  

Consider the kn possible values of ∑1≤i≤n bixi, where each bi is an integer in the range [0,k-1]. Each 
value must lie in the interval [0, k-1 √n]. Divide this into kn-1 equal subintervals. Two values 
must lie in the same subinterval. Take their difference. Its coefficients are the required ai. Finally, 
if any xi are negative, solve for the absolute values and then flip signs in the ai.  
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Problem B1  

Prove that there is no function f from the set of non-negative integers into itself such that 
f(f(n)) = n + 1987 for all n.    

Solution  

We prove that if f(f(n)) = n + k for all n, where k is a fixed positive integer, then k must be even. 
If k = 2h, then we may take f(n) = n + h.  

Suppose f(m) = n with m = n (mod k). Then by an easy induction on r we find f(m + kr) = n + kr, 
f(n + kr) = m + k(r+1). We show this leads to a contradiction. Suppose m < n, so n = m + ks for 
some s > 0. Then f(n) = f(m + ks) = n + ks. But f(n) = m + k, so m = n + k(s - 1) ≥ n. 
Contradiction. So we must have m ≥ n, so m = n + ks for some s ≥ 0. But now f(m + k) = f(n + 
k(s+1)) = m + k(s + 2). But f(m + k) = n + k, so n = m + k(s + 1) > n. Contradiction.  

So if f(m) = n, then m and n have different residues mod k. Suppose they have r1 and r2 
respectively. Then the same induction shows that all sufficiently large s = r1 (mod k) have f(s) = 
r2 (mod k), and that all sufficiently large s = r2 (mod k) have f(s) = r1 (mod k). Hence if m has a 
different residue r mod k, then f(m) cannot have residue r1 or r2. For if f(m) had residue r1, then 
the same argument would show that all sufficiently large numbers with residue r1 had f(m) = r 
(mod k). Thus the residues form pairs, so that if a number is congruent to a particular residue, 
then f of the number is congruent to the pair of the residue. But this is impossible for k odd.  

A better solution by Sawa Pavlov is as follows  

Let N be the set of non-negative integers. Put A = N - f(N) (the set of all n such that we cannot 
find m with f(m) = n). Put B = f(A).  

Note that f is injective because if f(n) = f(m), then f(f(n)) = f(f(m)) so m = n. We claim that B = 
f(N) - f( f(N) ). Obviously B is a subset of f(N) and if k belongs to B, then it does not belong to f( 
f(N) ) since f is injective. Similarly, a member of f( f(N) ) cannot belong to B.  

Clearly A and B are disjoint. They have union N - f( f(N) ) which is {0, 1, 2, ... , 1986}. But since 
f is injective they have the same number of elements, which is impossible since {0, 1, ... , 1986} 
has an odd number of elements.  
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Problem B2  

Let n be an integer greater than or equal to 3. Prove that there is a set of n points in the 
plane such that the distance between any two points is irrational and each set of 3 points 
determines a non-degenerate triangle with rational area.    

Solution  

Let xn be the point with coordinates (n, n2) for n = 1, 2, 3, ... . We show that the distance between 
any two points is irrational and that the triangle determined by any 3 points has non-zero rational 
area.  

Take n > m. |xn - xm| is the hypoteneuse of a triangle with sides n - m and n2 - m2 = (n - m)(n + 
m). So |xn - xm| = (n - m)√(1 + (n+m)2). Now (n + m)2 < (n + m)2 + 1 < (n + m + 1)2 = (n + m)2 + 
1 + 2(n + m), so (n + m)2 + 1 is not a perfect square. Hence its square root is irrational. [For this 
we may use the classical argument. Let N' be a non-square and suppose √N' is rational. Since N' 
is a non-square we must be able to find a prime p such that p2a+1 divides N' but p2a+2 does not 
divide N' for some a ≥ 0. Define N = N'/p2a. Then √N = (√N')/pa, which is also rational. So we 
have a prime p such that p divides N, but p2 does not divide N. Take √N = r/s with r and s 
relatively prime. So s2N = r2. Now p must divide r, hence p2 divides r2 and so p divides s2. Hence 
p divides s. So r and s have a common factor. Contradiction. Hence non-squares have irrational 
square roots.]  

Now take a < b < c. Let B be the point (b, a2), C the point (c, a2), and D the point (c, b2). Area 
xaxbxc = area xaxcC - area xaxbB - area xbxcD - area xbDCB = (c - a)(c2 - a2)/2 - (b - a)(b2 - a2)/2 - 
(c - b)(c2 - b2)/2 - (c - b)(b2 - a2) which is rational.  
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Problem B3  

Let n be an integer greater than or equal to 2. Prove that if k2 + k + n is prime for all 
integers k such that 0 ≤ k ≤ √(n/3), then k2 + k + n is prime for all integers k such that 0 ≤ k 
≤ n - 2.    

Solution  

First observe that if m is relatively prime to b + 1, b + 2, ... , 2b - 1, 2b, then it is not divisible by 
any number less than 2b. For if c <= b, then take the largest j ≥ 0 such that 2jc ≤ b. Then 2j+1c lies 
in the range b + 1, ... , 2b, so it is relatively prime to m. Hence c is also. If we also have that (2b + 
1)2 > m, then we can conclude that m must be prime, since if it were composite it would have a 
factor ≤ √m.  

Let n = 3r2 + h, where 0 ≤ h < 6r + 3, so that r is the greatest integer less than or equal to √(n/3). 
We also take r ≥ 1. That excludes the value n = 2, but for n = 2, the result is vacuous, so nothing 
is lost.  

Assume that n + k(k+1) is prime for k = 0, 1, ... , r. We show by induction that N = n + (r + s)(r + 
s + 1) is prime for s = 1, 2, ... , n - r - 2. By the observation above, it is sufficient to show that (2r 
+ 2s + 1)2 > N, and that N is relatively prime to all of r + s + 1, r + s + 2, ... , 2r + 2s. We have (2r 
+ 2s + 1)2 = 4r2 + 8rs + 4s2 + 4r + 4s + 1. Since r, s ≥ 1, we have 4s + 1 > s + 2, 4s2 > s2, and 6rs > 
3r. Hence (2r + 2s + 1)2 > 4r2 + 2rs + s2 + 7r + s + 2 = 3r2 + 6r + 2 + (r + s)(r + s + 1) >= N.  

Now if N has a factor which divides 2r - i with i in the range -2s to r - s - 1, then so does N - (i + 
2s + 1)(2r - i) = n + (r - i - s - 1)(r - i - s) which has the form n + s'(s'+1) with s' in the range 0 to r 
+ s - 1. But n + s'(s' + 1) is prime by induction (or absolutely for s = 1), so the only way it can 
have a factor in common with 2r - i is if it divides 2r - i. But 2r - i ≤ 2r + 2s ≤ 2n - 4 < 2n and n + 
s'(s' + 1) ≥ n, so if n + s'(s' + 1) has a factor in common with 2r - i, then it equals 2r - i = s + r + 1 
+ s'. Hence s'2 = s - (n - r - 1) < 0, which is not possible. So we can conclude that N is relatively 
prime to all of r + s + 1, ... , 2r + 2s and hence prime.    
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27th IMO 1986 

 

  

A1.  Let d be any positive integer not equal to 2, 5 or 13. Show that one can find 
distinct a, b in the set {2, 5, 13, d} such that ab - 1 is not a perfect square.  

 

A2.  Given a point P0 in the plane of the triangle A1A2A3. Define As = As-3 for all s >= 
4. Construct a set of points P1, P2, P3, ... such that Pk+1 is the image of Pk under a 
rotation center Ak+1 through an angle 120o clockwise for k = 0, 1, 2, ... . Prove that if 
P1986 = P0, then the triangle A1A2A3 is equilateral.  

 

A3.  To each vertex of a regular pentagon an integer is assigned, so that the sum of all 
five numbers is positive. If three consecutive vertices are assigned the numbers x, y, z 
respectively, and y < 0, then the following operation is allowed: x, y, z are replaced by 
x + y, -y, z + y respectively. Such an operation is performed repeatedly as long as at 
least one of the five numbers is negative. Determine whether this procedure 
necessarily comes to an end after a finite number of steps.  

 

B1.  Let A, B be adjacent vertices of a regular n-gon (n ≥ 5) with center O. A triangle 
XYZ, which is congruent to and initially coincides with OAB, moves in the plane in 
such a way that Y and Z each trace out the whole boundary of the polygon, with X 
remaining inside the polygon. Find the locus of X.  

 

B2.  Find all functions f defined on the non-negative reals and taking non-negative 
real values such that: f(2) = 0, f(x) ≠ 0 for 0 ≤ x < 2, and f(xf(y)) f(y) = f(x + y) for all 
x, y.   

B3.  Given a finite set of points in the plane, each with integer coordinates, is it always 
possible to color the points red or white so that for any straight line L parallel to one 
of the coordinate axes the difference (in absolute value) between the numbers of white 
and red points on L is not greater than 1?  
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Problem A1  

Let d be any positive integer not equal to 2, 5 or 13. Show that one can find distinct a, b in 
the set {2, 5, 13, d} such that ab - 1 is not a perfect square.    

Solution  

Consider residues mod 16. A perfect square must be 0, 1, 4 or 9 (mod 16). d must be 1, 5, 9, or 13 
for 2d - 1 to have one of these values. However, if d is 1 or 13, then 13d - 1 is not one of these 
values. If d is 5 or 9, then 5d - 1 is not one of these values. So we cannot have all three of 2d - 1, 
5d - 1, 13d - 1 perfect squares.  

Alternative solution from Marco Dalai  

Suppose 2d-1, 5d-1, 13d-1 are all squares. Squares mod 4 must be 0 or 1, considering 2d-1, so d 
must be odd. Put d = 2k+1. Then 10k+4 = b2. So b must be even, so k must be even. Put k = 2h, 
then 5k+1 is a square. Similarly, 52h+12 is a square, so 13h+3 is a square. Hence (13h+3)-(5h+1) 
= 8h+2 is a difference of two squares, which is impossible (a difference of two squares must be 0, 
1, or 3 mod 4).  

IMO 1986 

 
   
Problem A2  

Given a point P0 in the plane of the triangle A1A2A3. Define As = As-3 for all s ≥ 4. Construct 
a set of points P1, P2, P3, ... such that Pk+1 is the image of Pk under a rotation center Ak+1 
through 120o clockwise for k = 0, 1, 2, ... . Prove that if P1986 = P0, then the triangle A1A2A3 is 
equilateral.   

Solution  

The product of three successive rotations about the three vertices of a triangle must be a 
translation (see below). But that means that P1986 (which is the result of 662 such operations, since 
1986 = 3 x 662) can only be P0 if it is the identity, for a translation by a non-zero amount would 
keep moving the point further away. It is now easy to show that it can only be the identity if the 
triangle is equilateral. Take a circle center A1, radius A1A2 and take P on the circle so that a 120o 
clockwise rotation about A1 brings P to A2. Take a circle center A3, radius A3A2 and take Q on the 
circle so that a 120o clockwise rotation about A3 takes A2 to Q. Then successive 120o clockwise 
rotations about A1, A2, A3 take P to Q. So if these three are equivalent to the identity we must 
have P = Q. Hence ∠A1A2A3 = ∠A1A2P + ∠A3A2P = 30o + 30o = 60o. Also A2P = 2A1A2cos 30o 
and = 2A2A3cos 30o. Hence A1A2 = A2A3. So A1A2A2 is equilateral. Note in passing that it is not 
sufficient for the triangle to be equilateral. We also have to take the rotations in the right order. If 
we move around the vertices the opposite way, then we get a net translation.  
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It remains to show that the three rotations give a translation. Define rectangular coordinates (x, y) 
by taking A1 to be the origin and A2 to be (a, b). Let A3 be (c, d). A clockwise rotation through 
120 degrees about the origin takes (x, y) to (-x/2 + y√3/2, -x√3/2 - y/2). A clockwise rotation 
through 120 degrees about some other point (e, f) is obtained by subtracting (e, f) to get (x - e, y - 
f), the coordinates relative to (e, f), then rotating, then adding (e, f) to get the coordinates relative 
to (0, 0). Thus after the three rotations we will end up with a linear combination of x's, y's, a's, b's, 
c's and d's for each coordinate. But the linear combination of x's and y's must be just x for the x-
coordinate and y for the y-coordinate, since three successive 120 degree rotations about the same 
point is the identity. Hence we end up with simply (x + constant, y + constant), in other words, a 
translation.  

[Of course, there is nothing to stop you actually carrying out the computation. It makes things 
slightly easier to take the triangle to be (0, 0), (1, 0), (a, b). The net result turns out to be (x, y) 
goes to (x + 3a/2 - b√3/2, y - √3 + a√3/2 + 3b/2). For this to be the identity requires a = 1/2, b = 
√3/2. So the third vertex must make the triangle equilateral (and it must be on the correct side of 
the line joining the other two). This approach avoids the need for the argument in the first 
paragraph above, but is rather harder work.]    

IMO 1986 

 
  
Problem A3  

To each vertex of a regular pentagon an integer is assigned, so that the sum of all five 
numbers is positive. If three consecutive vertices are assigned the numbers x, y, z 
respectively, and y < 0, then the following operation is allowed: x, y, z are replaced by x + y, 
-y, z + y respectively. Such an operation is performed repeatedly as long as at least one of 
the five numbers is negative. Determine whether this procedure necessarily comes to an end 
after a finite number of steps.    

Solution  

Let S be the sum of the absolute value of each set of adjacent vertices, so if the integers are a, b, 
c, d, e, then S = |a| + |b| + |c| + |d| + |e| + |a + b| + |b + c| + |c + d| + |d + e| + |e + a| + |a + b + c| + |b 
+ c + d| + |c + d + e| + |d + e + a| + |e + a + b| + |a + b + c + d| + |b + c + d + e| + |c + d + e + a| + 
|d + e + a + b| + |e + a + b + c| + |a + b + c + d + e|. Then the operation reduces S, but S is a 
greater than zero, so the process must terminate in a finite number of steps. So see that S is 
reduced, we can simply write out all the terms. Suppose the integers are a, b, c, d, e before the 
operation, and a+b, -b, b+c, d, e after it. We find that we mostly get the same terms before and 
after (although not in the same order), so that the sum S' after the operation is S - |a + c + d + e| + 
|a + 2b + c + d + e|. Certainly a + c + d + e > a + 2b + c + d + e since b is negative, and a + c + d + 
e > -(a + 2b+ c + d + e) because a + b + c + d + e > 0.  

S is not the only expression we can use. If we take T = (a - c)2 + (b - d)2 + (c - e)2 + (d - a)2 +(e - 
b)2, then after replacing a, b, c by a+b, -b, b+c, we get T' = T + 2b(a + b + c + d + e) < T. 
Thanks to Demetres Chrisofides for T  
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 Problem B1  

Let A, B be adjacent vertices of a regular n-gon (n ≥ 5) with center O. A triangle XYZ, 
which is congruent to and initially coincides with OAB, moves in the plane in such a way 
that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the 
polygon. Find the locus of X.    

Solution  

Take AB = 2 and let M be the midpoint of AB. Take coordinates with origin at A, x-axis as AB 
and y-axis directed inside the n-gon. Let Z move along AB from B towards A. Let ∠YZA be t. 
Let the coordinates of X be (x, y). ∠YZX = π/2 - π/n, so XZ = 1/sin π/n and y = XZ sin(t + π/2 - 
π/n) = sin t + cot π/n cos t.  

BY sin 2π/n = YZ sin t = 2 sin t. MX = cot π/n. So x = MY cos t - BY cos 2π/n + MX sin t = cos t 
+ (cot π/n - 2 cot 2π/n) sin t = cos t + tan π/n sin t = y tan π/n. Thus the locus of X is a star formed 
of n lines segments emanating from O. X moves out from O to the tip of a line segement and then 
back to O, then out along the next segment and so on. x2 + y2 = (1/sin2π/n + 1/cos2π/n) cos2(t + 
π/n). Thus the length of each segment is (1 - cos π/n)/(sin π/n cos π/n).  

IMO 1986 

  
Problem B2  

Find all functions f defined on the non-negative reals and taking non-negative real values 
such that: f(2) = 0, f(x) ≠ 0 for 0 ≤ x < 2, and f(xf(y)) f(y) = f(x + y) for all x, y.   

Solution  

f(x+2) = f(xf(2)) f(2) = 0. So f(x) = 0 for all x ≥ 2.  

f(y) f((2-y)f(y)) = f(2) = 0. So if y < 2, then f((2-y) f(y)) = 0 and hence (2 - y) f(y) ≥ 2, or f(y) ≥ 
2/(2 - y).  

Suppose that for some y0 we have f(y0) > 2/(2 - y0), then we can find y1 > y0 (and y1 < 2) so that 
f(y0) = 2/(2 - y1). Now let x1 = 2 - y1. Then f(x1f(y0)) = f(2) = 0, so f(x1 + y0) = 0. But x1 + y0 < 2. 
Contradiction. So we must have f(x) = 2/(2 - x) for all x < 2.  

We have thus established that if a function f meets the conditions then it must be defined as 
above. It remains to prove that with this definition f does meet the conditions. Clearly f(2) = 0 
and f(x) is non-zero for 0 ≤ x < 2. f(xf(y)) = f(2x/(2 - y)). If 2x/(2 - y) ≥ 2, then f(xf(y)) = 0. But it 
also follows that x + y ≥ 2, and so f(x + y) = 0 and hence f(xf(y)) f(y) = f(x + y) as required. If 
2x/(2 - y) < 2, then f(xf(y)) f(y) = 2/(2 - 2x/(2-y)) 2/(2 - y) = 2/(2 - x - y) = f(x + y). So the unique 
function satisfying the conditions is:       f(x) = 0 for x ≥ 2, and 2/(2 - x) for 0 ≤ x < 2.  
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Problem B3  

Given a finite set of points in the plane, each with integer coordinates, is it always possible 
to color the points red or white so that for any straight line L parallel to one of the 
coordinate axes the difference (in absolute value) between the numbers of white and red 
points on L is not greater than 1?    

Solution  

Answer: yes.  

We prove the result by induction on the number n of points. It is clearly true for n = 1. Suppose it 
is true for all numbers less than n. Pick an arbitrary point P and color it red. Now take a point in 
the same row and color it white. Take a point in the same column as the new point and color it 
red. Continue until either you run out of eligible points or you pick a point in the same column as 
P. The process must terminate because there are only finitely many points. Suppose the last point 
picked is Q. Let S be the set of points picked.  

If Q is in the same column as P, then it is colored white (because the "same row" points are all 
white, and the "same column" points are all red). Now every row and column contains an equal 
number of red points of S and of white points of S. By induction we can color the points 
excluding those in S, then the difference between the numbers of red and white points in each row 
and column will be unaffected by adding the points in S and so we will have a coloring for the 
whole set. This completes the induction for the case where Q is in the same column as P.  

If it is not, then continue the path backwards from P. In other words, pick a point in the same 
column as P and color it white. Then pick a point in the same row as the new point and color it 
red and so on. Continue until either you run out of eligible points or you pick a point to pair with 
Q. If Q was picked as being in the same row as its predecessor, this means a point in the same 
column as Q; if Q was picked as being in the same column as its predecessor, this means a point 
in the same row as Q. Again the process must terminate. Suppose the last point picked is R. Let S 
be the set of all points picked.  

If R pairs with Q, then we can complete the coloring by induction as before. Suppose S does not 
pair with Q. Then there is a line (meaning a row or column) containing Q and no uncolored 
points. There is also a line containing R and no uncolored points. These two lines have an excess 
of one red or one white. All other lines contain equal number of red and white points of S. Now 
color the points outside S by induction. This gives a coloring for the whole set, because no line 
with a color excess in S has any points outside S. So we have completed the induction.  
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26th IMO 1985 

 

  

A1.  A circle has center on the side AB of the cyclic quadrilateral ABCD. The other 
three sides are tangent to the circle. Prove that AD + BC = AB.  

 

A2.  Let n and k be relatively prime positive integers with k < n. Each number in the 
set M = {1, 2, 3, ... , n-1} is colored either blue or white. For each i in M, both i and n-
i have the same color. For each i in M not equal to k, both i and |i-k| have the same 
color. Prove that all numbers in M must have the same color.  

 

A3.  For any polynomial P(x) = a0 + a1x + ... + akx
k with integer coefficients, the 

number of odd coefficients is denoted by o(P). For i = 0, 1, 2, ... let Qi(x) = (1 + x)i. 
Prove that if i1, i2, ... , in are integers satisfying 0 ≤ i1 < i2 < ... < in, then:  

    o(Qi1 + Qi2 + ... + Qin) ≥ o(Qi1).  
 

B1.  Given a set M of 1985 distinct positive integers, none of which has a prime 
divisor greater than 23, prove that M contains a subset of 4 elements whose product is 
the 4th power of an integer.   

B2.  A circle center O passes through the vertices A and C of the triangle ABC and 
intersects the segments AB and BC again at distinct points K and N respectively. The 
circumcircles of ABC and KBN intersect at exactly two distinct points B and M. 
Prove that ∠OMB is a right angle.  

 

B3.  For every real number x1, construct the sequence x1, x2, ... by setting:  

        xn+1 = xn(xn + 1/n).  

Prove that there exists exactly one value of x1 which gives 0 < xn < xn+1 < 1 for all n.  
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Problem A1 

A circle has center on the side AB of the cyclic quadrilateral ABCD. The other three sides 
are tangent to the circle. Prove that AD + BC = AB.    

Solution 

Let the circle touch AD, CD, BC at L, M, N respectively. Take X on the line AD on the same side 
of A as D, so that AX = AO, where O is the center of the circle. Now the triangles OLX and 
OMC are congruent: OL = OM = radius of circle, ∠OLX = ∠OMC = 90o, and ∠OXL = 90o - 
A/2 = (180o - A)/2 = C/2 (since ABCD is cyclic) = ∠OCM. Hence LX = MC. So OA = AL + 
MC. Similarly, OB = BN + MD. But MC = CN and MD = DL (tangents have equal length), so 
AB = OA + OB = AL + LD + CN + NB = AD + BC.  

IMO 1985 

 
   
Problem A2  

Let n and k be relatively prime positive integers with k < n. Each number in the set M = {1, 
2, 3, ... , n-1} is colored either blue or white. For each i in M, both i and n-i have the same 
color. For each i in M not equal to k, both i and |i-k| have the same color. Prove that all 
numbers in M must have the same color.    

Solution  

n and k are relatively prime, so 0, k, 2k, ... , (n-1)k form a complete set of residues mod n. So k, 
2k, ... , (n-1)k are congruent to the numbers 1, 2, ... , n-1 in some order. Suppose ik is congruent 
to r and (i+1)k is congruent to s. Then either s = r + k, or s = r + k - n. If s = r + k, then we have 
immediately that r = s - k and s have the same color. If s = r + k - n, then r = n - (k - s), so r has 
the same color as k - s, and k - s has the same color as s. So in any case r and s have the same 
color. By giving i values from 1 to n-2 this establishes that all the numbers have the same color.  
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Problem A3  

For any polynomial P(x) = a0 + a1x + ... + akx
k with integer coefficients, the number of odd 

coefficients is denoted by o(P). For i = 0, 1, 2, ... let Qi(x) = (1 + x)i. Prove that if i1, i2, ... , in 
are integers satisfying 0 ≤ i1 < i2 < ... < in, then:  

    o(Qi1 + Qi2 + ... + Qin) ≥ o(Qi1).    

Solution  

If i is a power of 2, then all coefficients of Qi are even except the first and last. [There are various 
ways to prove this. Let iCr denote the rth coefficient, so iCr = i!/(r!(i-r)!). Suppose 0 < r < i. Then 
iCr = i-1Cr-1 i/r, but i-1Cr-1 is an integer and i is divisible by a higher power of 2 than r, hence 
iCr is even.]  

Let Q = Qi1 + ... + Qin. We use induction on in. If in = 1, then we must have n = 2, i1 = 0, and i2 = 
1, so Q = 2 + x, which has the same number of odd coefficients as Qi1 = 1. So suppose it is true 
for smaller values of in. Take m a power of 2 so that m ≤ in < 2m. We consider two cases i1 ≥ m 
and i1 < m.  

Consider first i1 ≥ m. Then Qi1 = (1 + x)mA, Q = (1 + x)mB, where A and B have degree less than 
m. Moreover, A and B are of the same form as Qi1 and Q, (all the ijs are reduced by m, so we 
have o(A) ≤ o(B) by induction. Also o(Qi1) = o((1 + x)mA) = o(A + xmA) = 2o(A) ≤ 2o(B) = o(B 
+ xmB) = o((1 + x)mB) = o(Q), which establishes the result for in.  

It remains to consider the case i1 < m. Take r so that ir < m, ir+1 > m. Set A = Qi1 + ... + Qir, (1 + 
x)mB = Qir+1 + ... + Qin, so that A and B have degree < m. Then o(Q) = o(A + (1 + x)mB) = o(A + 
B + xmB) = o(A + B) + o(B). Now o(A - B) + o(B) >= o(A - B + B) = o(A), because a coefficient 
of A is only odd if just one of the corresponding coefficients of A - B and B is odd. But o(A - B) 
= o(A + B), because corresponding coefficients of A - B and A + B are either equal or of the 
same parity. Hence o(A + B) + o(B) ≥ o(A). But o(A) ≥ o(Qii) by induction. So we have 
established the result for in.    
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Problem B1  

Given a set M of 1985 distinct positive integers, none of which has a prime divisor greater 
than 23, prove that M contains a subset of 4 elements whose product is the 4th power of an 
integer.    

Solution  

Suppose we have a set of at least 3.2n+1 numbers whose prime divisors are all taken from a set of 
n. So each number can be written as p1

r
1...pn

r
n for some non-negative integers ri, where pi is the set 

of prime factors common to all the numbers. We classify each ri as even or odd. That gives 2n 
possibilities. But there are more than 2n + 1 numbers, so two numbers have the same 
classification and hence their product is a square. Remove those two and look at the remaining 
numbers. There are still more than 2n + 1, so we can find another pair. We may repeat to find 2n + 
1 pairs with a square product. [After removing 2n pairs, there are still 2n + 1 numbers left, which 
is just enough to find the final pair.] But we may now classify these pairs according to whether 
each exponent in the square root of their product is odd or even. We must find two pairs with the 
same classification. The product of these four numbers is now a fourth power.  

Applying this to the case given, there are 9 primes less than or equal to 23 (2, 3, 5, 7, 11, 13, 17, 
19, 23), so we need at least 3.512 + 1 = 1537 numbers for the argument to work (and we have 
1985).  

The key is to find the 4th power in two stages, by first finding lots of squares. If we try to go 
directly to a 4th power, this type of argument does not work (we certainly need more than 5 
numbers to be sure of finding four which sum to 0 mod 4, and 59 is far too big).   

IMO 1985 

   
Problem B2  

A circle center O passes through the vertices A and C of the triangle ABC and intersects the 
segments AB and BC again at distinct points K and N respectively. The circumcircles of 
ABC and KBN intersect at exactly two distinct points B and M. Prove that angle OMB is a 
right angle.    

Solution  

The three radical axes of the three circles taken in pairs, BM, NK and AC are concurrent. Let X 
be the point of intersection. [They cannot all be parallel or B and M would coincide.] The first 
step is to show that XMNC is cyclic. The argument depends slightly on how the points are 
arranged. We may have: ∠XMN = 180o - ∠BMN = ∠BKN = 180o - ∠AKN = ∠ACN = 180o - 
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∠XCN, or we may have ∠XMN = 180o - ∠BMN = 180o - ∠BKN = ∠AKN = 180o - ∠ACN = 
180o - ∠XCN.  

Now XM.XB = XK.XN = XO2 - ON2. BM·BX = BN·BC = BO2 - ON2, so XM·XB - BM·BX = 
XO2 - BO2. But XM·XB - BM·BX = XB(XM - BM) = (XM + BM)(XM - BM) = XM 2 - BM2. So 
XO2 - BO2 = XM2 - BM2. Hence OM is perpendicular to XB, or ∠OMB = 90o.   

IMO 1985 

 
 Problem B3  

For every real number x1, construct the sequence x1, x2, ... by setting:  

        xn+1 = xn(xn + 1/n).  

Prove that there exists exactly one value of x1 which gives 0 < xn < xn+1 < 1 for all n.    

Solution  

Define S0(x) = x, Sn(x) = Sn-1(x) (Sn-1(x) + 1/n). The motivation for this is that xn = Sn-1(x1).  

Sn(0) = 0 and Sn(1) > 1 for all n > 1. Also Sn(x) has non-negative coefficients, so it is strictly 
increasing in the range [0,1]. Hence we can find (unique) solutions an, bn to Sn(an) = 1 - 1/n, Sn(bn) 
= 1.  

Sn+1(an) = Sn(an) (Sn(an) + 1/n) = 1 - 1/n > 1 - 1/(n+1), so an < an+1. Similarly, Sn+1(bn) = Sn(bn) 
(Sn(bn) + 1/n) = 1 + 1/n > 1, so bn > bn+1. Thus an is an increasing sequence and bn is a decreasing 
sequence with all an less than all bn. So we can certainly find at least one point x1 which is greater 
than all the an and less than all the bn. Hence 1 - 1/n < Sn(x1) < 1 for all n. But Sn(x1) = xn+1. So 
xn+1 < 1 for all n. Also xn > 1 - 1/n implies that xn+1 = xn(xn + 1/n) > xn. Finally, we obviously have 
xn > 0. So the resulting series xn satisfies all the required conditions.  

It remains to consider uniqueness. Suppose that there is an x1 satisfying the conditions given. 
Then we must have Sn(x1) lying in the range 1 - 1/n, 1 for all n. [The lower limit follows from xn+1 
= xn(xn + 1/n).] Hence we must have an < x1 < bn for all n. We show uniqueness by showing that 
bn - an tends to zero as n tends to infinity. Since all the coefficients of Sn(x) are non-negative, it is 
has increasing derivative. Sn(0) = 0 and Sn(bn) = 1, so for any x in the range 0, bn we have Sn(x) ≤ 
x/bn. In particular, 1 - 1/n < an/bn. Hence bn - an ≤ bn - bn(1 - 1/n) = bn/n < 1/n, which tends to zero.  
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25th IMO 1984 

 

  

A1.  Prove that 0 ≤ yz + zx + xy - 2xyz ≤ 7/27, where x, y and z are non-negative real 
numbers satisfying x + y + z = 1.  

 

A2.  Find one pair of positive integers a, b such that ab(a+b) is not divisible by 7, but 
(a+b)7 - a7 - b7 is divisible by 77.   

A3.  Given points O and A in the plane. Every point in the plane is colored with one of 
a finite number of colors. Given a point X in the plane, the circle C(X) has center O 
and radius OX + ∠AOX/OX, where ∠AOX is measured in radians in the range [0, 
2π). Prove that we can find a point X, not on OA, such that its color appears on the 
circumference of the circle C(X).  

 

B1.  Let ABCD be a convex quadrilateral with the line CD tangent to the circle on 
diameter AB. Prove that the line AB is tangent to the circle on diameter CD if and 
only if BC and AD are parallel.   

B2.  Let d be the sum of the lengths of all the diagonals of a plane convex polygon 
with n > 3 vertices. Let p be its perimeter. Prove that:  

    n - 3 < 2d/p < [n/2] [(n+1)/2] - 2, where [x] denotes the greatest integer not 
exceeding x.  

 

B3.  Let a, b, c, d be odd integers such that 0 < a < b < c < d and ad = bc. Prove that if 
a + d = 2k and b + c = 2m for some integers k and m, then a = 1.  
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IMO 1984 

 
  
Problem A1 

Prove that 0 ≤ yz + zx + xy - 2xyz ≤ 7/27, where x, y and z are non-negative real numbers 
satisfying x + y + z = 1.    

Solution 

(1 - 2x)(1 - 2y)(1 - 2z) = 1 - 2(x + y + z) + 4(yz + zx + xy) - 8xyz = 4(yz + zx + xy) - 8xyz - 1. 
Hence yz + zx + xy - 2xyz = 1/4 (1 - 2x)(1 - 2y)(1 - 2z) + 1/4. By the arithmetic/geometric mean 
theorem (1 - 2x)(1 - 2y)(1 - 2z) ≤ ((1 - 2x + 1 - 2y + 1 - 2z)/3)3 = 1/27. So yz + zx + xy - 2xyz ≤ 
1/4 28/27 = 7/27.  

 IMO 1984 

 
   
Problem A2  

Find one pair of positive integers a, b such that ab(a+b) is not divisible by 7, but (a+b)7 - a7 - 
b7 is divisible by 77.    

Solution  

We find that (a + b)7 - a7 - b7 = 7ab(a + b)(a2 + ab + b2)2. So we must find a, b such that a2 + ab + 
b2 is divisible by 73.  

At this point I found a = 18, b = 1 by trial and error.  

A more systematic argument turns on noticing that a2 + ab + b2 = (a3 - b3)/(a - b), so we are 
looking for a, b with a3 = b3 (mod 73). We now remember that aφ(m) = 1 (mod m). But φ(73) = 
2·3·49, so a3 = 1 (mod 343) if a = n98. We find 298 = 18 (343), which gives the solution 18, 1.  

This approach does not give a flood of solutions. n98 = 0, 1, 18, or 324. So the only solutions we 
get are 1, 18; 18, 324; 1, 324.  
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 IMO 1984 

 
   
Problem A3  

Given points O and A in the plane. Every point in the plane is colored with one of a finite 
number of colors. Given a point X in the plane, the circle C(X) has center O and radius OX 
+ (∠∠∠∠AOX)/OX, where ∠∠∠∠AOX is measured in radians in the range [0, 2π). Prove that we 
can find a point X, not on OA, such that its color appears on the circumference of the circle 
C(X).    

Solution  

Suppose the result is false. Let C1 be any circle center O. Then the locus of points X such that 
C(X) = C1 is a spiral from O to the point of intersection of OA and C1. Every point of this spiral 
must be a different color from all points of the circle C1. Hence every circle center O with radius 
smaller than C1 must include a point of different color to those on C1. Suppose there are n colors. 
Then by taking successively smaller circles C2, C3, ... , Cn+1 we reach a contradiction, since each 
circle includes a point of different color to those on any of the larger circles.  

 IMO 1984 

 
  
Problem B1  

Let ABCD be a convex quadrilateral with the line CD tangent to the circle on diameter AB. 
Prove that the line AB is tangent to the circle on diameter CD if and only if BC and AD are 
parallel.    

Solution  

If AB and CD are parallel, then AB is tangent to the circle on diameter CD if and only if AB = 
CD and hence if and only if ABCD is a parallelogram. So the result is true.  

Suppose then that AB and DC meet at O. Let M be the midpoint of AB and N the midpoint of 
CD. Let S be the foot of the perpendicular from N to AB, and T the foot of the perpendicular 
fromM to CD. We are given that MT = MA. OMT, ONS are similar, so OM/MT = ON/NS and 
hence OB/OA = (ON - NS)/(ON + NS). So AB is tangent to the circle on diameter CD if and only 
if OB/OA = OC/OD which is the condition for BC to be parallel to AD.  
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IMO 1984 

  
Problem B2  

Let d be the sum of the lengths of all the diagonals of a plane convex polygon with n > 3 
vertices. Let p be its perimeter. Prove that:     n - 3 < 2d/p < [n/2] [(n+1)/2] - 2, where [x] 
denotes the greatest integer not exceeding x.  

 Solution  

Given any diagonal AX, let B be the next vertex counterclockwise from A, and Y the next vertex 
counterclockwise from X. Then the diagonals AX and BY intersect at K. AK + KB > AB and XK 
+ KY > XY, so AX + BY > AB + XY. Keeping A fixed and summing over X gives n - 3 cases. 
So if we then sum over A we get every diagonal appearing four times on the lhs and every side 
appearing 2(n-3) times on the rhs, giving 4d > 2(n-3)p.  

Denote the vertices as A0, ... , An-1 and take subscripts mod n. The ends of a diagonal AX are 
connected by r sides and n-r sides. The idea of the upper limit is that its length is less than the 
sum of the shorter number of sides. Evaluating it is slightly awkward.  

We consider n odd and n even separately. Let n = 2m+1. For the diagonal AiA i+r with r ≤ m, we 
have AiA i+r ≤ AiA i+2 + ... + AiA i+r. Summing from r = 2 to m gives for the rhs (m-1)AiA i+1 + (m-
1)Ai+1A i+2 + (m-2)Ai+2A i+3 + (m-3)Ai+3A i+4 + ... + 1.Ai+m-1A i+m. Now summing over i gives d for 
the lhs and p( (m-1) + (1 + 2 + ... + m-1) ) = p( (m2 + m - 2)/2 ) for the rhs. So we get 2d/p ≤ m2 + 
m - 2 = [n/2] [(n+1)/2] - 2.  

Let n = 2m. As before we have AiA i+r <= AiA i+2 + ... + AiA i+r for 2 ≤ r ≤ m-1. We may also take 
A iA i+m ≤ p/2. Summing as in the even case we get 2d/p = m2 - 2 = [n/2] [(n+1)/2] - 2.  

IMO 1984 

Problem B3  

Let a, b, c, d be odd integers such that 0 < a < b < c < d and ad = bc. Prove that if a + d = 2k 
and b + c = 2m for some integers k and m, then a = 1.    

Solution  

a < c, so a(d - c) < c (d - c) and hence bc - ac < c(d - c). So b - a < d - c, or a + d > b + c, so k > m.  

bc = ad, so b(2m - b) = a(2k - a). Hence b2 - a2 = 2m(b - 2k-ma). But b2 - a2 = (b + a)(b - a), and (b + 
a) and (b - a) cannot both be divisible by 4 (since a and b are odd), so 2m-1 must divide b + a or b - 
a. But if it divides b - a, then b - a ≥ 2m-1, so b and c > 2m-1 and b + c > 2m. Contradiction. Hence 
2m-1 divides b + a. If b + a ≥ 2m = b + c, then a ≥ c. Contradiction. Hence b + a = 2m-1.  

So we have b = 2m-1 - a, c = 2m-1 + a, d = 2k - a. Now using bc = ad gives: 2ka = 22m-2. But a is odd, 
so a = 1.  
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24th IMO 1983 

 

  

A1.  Find all functions f defined on the set of positive reals which take positive real 
values and satisfy:  

  f(x(f(y)) = yf(x) for all x, y; and f(x) → 0 as x → ∞.  
 

A2.  Let A be one of the two distinct points of intersection of two unequal coplanar 
circles C1 and C2 with centers O1 and O2 respectively. One of the common tangents to 
the circles touches C1 at P1 and C2 at P2, while the other touches C1 at Q1 and C2 at Q2. 
Let M1 be the midpoint of P1Q1 and M2 the midpoint of P2Q2. Prove that ∠O1AO2 = ∠M1AM 2.  

 

A3.  Let a , b and c be positive integers, no two of which have a common divisor 
greater than 1. Show that 2abc - ab - bc - ca is the largest integer which cannot be 
expressed in the form xbc + yca + zab, where x, y, z are non-negative integers.   

B1.  Let ABC be an equilateral triangle and E the set of all points contained in the 
three segments AB, BC and CA (including A, B and C). Determine whether, for every 
partition of E into two disjoint subsets, at least one of the two subsets contains the 
vertices of a right-angled triangle.  

 

B2.  Is it possible to choose 1983 distinct positive integers, all less than or equal to 
105, no three of which are consecutive terms of an arithmetic progression?  

 

B3.  Let a, b and c be the lengths of the sides of a triangle. Prove that  

    a2b(a - b) + b2c(b - c) + c2a(c - a) ≥ 0.  

Determine when equality occurs.  
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IMO 1983 

  
Problem A1  

Find all functions f defined on the set of positive reals which take positive real values and 
satisfy:   f(x(f(y)) = yf(x) for all x, y; and f(x) → 0 as x → ∞.   

Solution  

If f(k) = 1, then f(x) = f(xf(k)) = kf(x), so k =1. Let y = 1/f(x) and set k = xf(y), then f(k) = 
f(xf(y)) = yf(x) = 1. Hence f(1) = 1 and f(1/f(x)) = 1/x. Also f(f(y)) = f(1f(y)) = y. Hence f(1/x) = 
1/f(x). Finally, let z = f(y), so that f(z) = y. Then f(xy) = f(xf(z)) = zf(x) = f(x)f(y).  

Now notice that f(xf(x)) = xf(x). Let k = xf(x). We show that k = 1. f(k2) = f(k)f(k) = k2 and by a 
simple induction f(kn) = kn, so we cannot have k > 1, or f(x) would not tend to 0 as x tends to 
infinity. But f(1/k) = 1/k and the same argument shows that we cannot have 1/k > 1. Hence k = 1.  

So the only such function f is f(x) = 1/x.  

IMO 1983 

 
  
Problem A2  

Let A be one of the two distinct points of intersection of two unequal coplanar circles C1 and 
C2 with centers O1 and O2 respectively. One of the common tangents to the circles touches 
C1 at P1 and C2 at P2, while the other touches C1 at Q1 and C2 at Q2. Let M1 be the midpoint 
of P1Q1 and M2 the midpoint of P2Q2. Prove that ∠∠∠∠O1AO2 = ∠∠∠∠M 1AM 2.    

Solution  

Let P1P2 and O1O2 meet at O. Let OA meet C2 again at A2. O is the center of similitude for C1 and 
C2 so ∠M1AO1 = ∠M2A2O2. Hence if we can show that ∠M2AO2 = ∠M2A2O2, then we are 
home.  

Let X be the other point of intersection of the two circles. The key is to show that A2, M2 and X 
are collinear, for then ∠M2AO2 = ∠M2XO2 (by reflection) and O2A2X is isosceles.  

But since O is the center of similitude, M2A2 is parallel to M1A, and by reflection ∠XM 2O = ∠AM 2O, so we need to show that triangle AM1M2 is isosceles. Extend XA to meet P1P2 at Y. 
Then YP1

2 = YA.YX = YP2
2, so YX is the perpendicular bisector of M1M2, and hence AM1 = 

AM 2 as required.  
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Problem A3  

Let a , b and c be positive integers, no two of which have a common divisor greater than 1. 
Show that 2abc - ab - bc - ca is the largest integer which cannot be expressed in the form 
xbc + yca + zab, where x, y, z are non-negative integers.    

Solution  

We start with the lemma that bc - b - c is the largest number which cannot be written as mb + nc 
with m and n non-negative. [Proof: 0, c, 2c, ... , (b-1)c is a complete set of residues mod b. If r > 
(b-1)c - b, then r = nc (mod b) for some 0 ≤ n ≤ b-1. But r > nc - b, so r = nc + mb for some m ≥ 
0. That proves that every number larger than bc - b - c can be written as mb + nc with m and n 
non-negative. Now consider bc - b - c. It is (b-1)c (mod b), and not congruent to any nc with 0 ≤ n 
< b-1. So if bc - b - c = mb + nc, then n ≥ b-1. Hence mb + nc ≥ nc ≥ (b-1)c > bc - b - c. 
Contradiction.]  

0, bc, 2bc, ... , (a-1)bc is a complete set of residues mod a. So given N > 2abc - ab - bc - ca we 
may take xbc = N (mod a) with 0 <= x < a. But N - xbc > 2abc - ab - bc - ca - (a-1)bc = abc - ab - 
ca = a(bc - b - c). So N - xbc = ka, with k > bc - b - c. Hence we can find non-negative y, z so that 
k = zb + yc. Hence N = xbc + yca + zab.  

Finally, we show that for N = 2abc - ab - bc - ca we cannot find non-negative x, y, z so that N = 
xbc + yca + zab. N = -bc (mod a), so we must have x = -1 (mod a) and hence x ≥ a-1. Similarly, y 
≥ b-1, and z ≥ c-1. Hence xbc + yca + zab ≥ 3abc - ab - bc - ca > N. Contradiction.   

IMO 1983 

 
 Problem B1  

Let ABC be an equilateral triangle and E the set of all points contained in the three 
segments AB, BC and CA (including A, B and C). Determine whether, for every partition of 
E into two disjoint subsets, at least one of the two subsets contains the vertices of a right-
angled triangle.    

Solution  Answer:   It does.  

Suppose otherwise, that E is the disjoint union of e and e' with no right-angled triangles in either 
set. Take points X, Y, Z two-thirds of the way along BC, CA, AB respectively (so that BX/BC = 
2/3 etc). Then two of X, Y, Z must be in the same set. Suppose X and Y are in e. Now YX is 
perpendicular to BC, so all points of BC apart from X must be in e'. Take W to be the foot of the 
perpendicular from Z to BC. Then B and W are in e', so Z must be in e. ZY is perpendicular to 
AC, so all points of AC apart from Y must be in e'. e' is now far too big. For example let M be the 
midpoint of BC, then AMC is in e' and right-angled.  
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IMO 1983 

  
Problem B2  

Is it possible to choose 1983 distinct positive integers, all less than or equal to 105, no three 
of which are consecutive terms of an arithmetic progression?    

Solution  

We may notice that an efficient way to build up a set with no APs length 3 is as follows. Having 
found 2n numbers in {1, 2, ... , un} we add the same pattern starting at 2un, thus giving 2n+1 
numbers in {1, 2, ... , 3un-1}. If x is in the first part and y, z in the second part, then 2y is at least 
4un, whereas x + z is less than 4un, so x, y, z cannot be an AP length 3. If x and y are in the first 
part, and z in the second part, then 2y is at most 2un, but x + z is more than 2un, so x, y, z cannot 
be an AP length 3. To start the process off, we have the 4 numbers 1, 2, 4, 5 in {1, 2, 3, 4, 5}. So 
u2 = 5. This gives u11 = 88574, in other words we can find 2048 numbers in the first 88574 with 
no AP length 3.  

If we are lucky, we may notice that if we reduce each number in the set we have constructed by 1 
we get the numbers which have no 2 when written base 3. This provides a neater approach. Take 
x, y, z with no 2 when written in base 3. Then 2y has only 0s and 2s when written base 3. But x + 
z only has no 1s if x = z. So x, y, z cannot form an AP length 3. Also there are 211 = 2048 
numbers of this type with 11 digits or less and hence ≤ 111111111113 = 88573.  

IMO 1983 

  
Problem B3  

Let a, b and c be the lengths of the sides of a triangle. Prove that  

    a2b(a - b) + b2c(b - c) + c2a(c - a) ≥ 0.  

Determine when equality occurs.    

Solution  

Put a = y + z, b = z + x, c = x + y. Then the triangle condition becomes simply x, y, z > 0. The 
inequality becomes (after some manipulation):  

    xy3 + yz3 + zx3 ≥ xyz(x + y + z).  

Applying Cauchy's inequality we get (xy3 + yz3 + zx3)(z + x + y) ≥ xyz(y + z + x)2 with equality 
iff xy 3/z = yz3/x = zx3/y. So the inequality holds with equality iff x = y = z. Thus the original 
inequality holds with equality iff the triangle is equilateral.  
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23rd IMO 1982 

 

A1.  The function f(n) is defined on the positive integers and takes non-negative 
integer values. f(2) = 0, f(3) > 0, f(9999) = 3333 and for all m, n:  

      f(m+n) - f(m) - f(n) = 0 or 1.  

Determine f(1982).  

 

A2.  A non-isosceles triangle A1A2A3 has sides a1, a2, a3 with ai opposite Ai. Mi is the 
midpoint of side ai and Ti is the point where the incircle touches side ai. Denote by Si 
the reflection of Ti in the interior bisector of angle Ai. Prove that the lines M1S1, M2S2 
and M3S3 are concurrent.  

 

A3.  Consider infinite sequences {xn} of positive reals such that x0 = 1 and x0 ≥ x1 ≥ x2 
≥ ... .  

(a)  Prove that for every such sequence there is an n ≥ 1 such that:  

      x0
2/x1 + x1

2/x2 + ... + xn-1
2/xn ≥ 3.999.  

(b)  Find such a sequence for which:  

      x0
2/x1 + x1

2/x2 + ... + xn-1
2/xn < 4   for all n.  

 

B1.  Prove that if n is a positive integer such that the equation  

      x3 - 3xy2 + y3 = n  

has a solution in integers x, y, then it has at least three such solutions. Show that the 
equation has no solutions in integers for n = 2891.  

 

B2.  The diagonals AC and CE of the regular hexagon ABCDEF are divided by inner 
points M and N respectively, so that:  

      AM/AC = CN/CE = r.  

Determine r if B, M and N are collinear.  

 

B3.  Let S be a square with sides length 100. Let L be a path within S which does not 
meet itself and which is composed of line segments A0A1, A1A2, A2A3, ... , An-1An with 
A0 = An. Suppose that for every point P on the boundary of S there is a point of L at a 
distance from P no greater than 1/2. Prove that there are two points X and Y of L such 
that the distance between X and Y is not greater than 1 and the length of the part of L 
which lies between X and Y is not smaller than 198.  
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Problem A1  

The function f(n) is defined on the positive integers and takes non-negative integer values. 
f(2) = 0, f(3) > 0, f(9999) = 3333 and for all m, n:  

      f(m+n) - f(m) - f(n) = 0 or 1.  

Determine f(1982).    

Solution  

We show that f(n) = [n/3] for n <= 9999, where [ ] denotes the integral part.  

We show first that f(3) = 1. f(1) must be 0, otherwise f(2) - f(1) - f(1) would be negative. Hence 
f(3) = f(2) + f(1) + 0 or 1 = 0 or 1. But we are told f(3) > 0, so f(3) = 1. It follows by induction 
that f(3n) ≥ n. For f(3n+3) = f(3) + f(3n) + 0 or 1 = f(3n) + 1 or 2. Moreover if we ever get f(3n) > 
n, then the same argument shows that f(3m) > m for all m > n. But f(3.3333) = 3333, so f(3n) = n 
for all n <= 3333.  

Now f(3n+1) = f(3n) + f(1) + 0 or 1 = n or n + 1. But 3n+1 = f(9n+3) ≥ f(6n+2) + f(3n+1) ≥ 
3f(3n+1), so f(3n+1) < n+1. Hence f(3n+1) = n. Similarly, f(3n+2) = n. In particular f(1982) = 
660.  

 IMO 1982 

 
  
Problem A2 

A non-isosceles triangle A1A2A3 has sides a1, a2, a3 with ai opposite Ai. M i is the midpoint of 
side ai and Ti is the point where the incircle touches side ai. Denote by Si the reflection of Ti 
in the interior bisector of ∠∠∠∠A i. Prove that the lines M1S1, M2S2 and M3S3 are concurrent.  

 Solution 

Let Bi be the point of intersection of the interior angle bisector of the angle at Ai with the opposite 
side. The first step is to figure out which side of Bi Ti lies. Let A1 be the largest angle, followed by 
A2. Then T2 lies between A1 and B2, T3 lies between A1 and B3, and T1 lies between A2 and B1. 
For ∠OB2A1 = 180o - A1 - A2/2 = A3 + A2/2. But A3 + A2/2 < A1 + A2/2 and their sum is 180o, so 
A3 + A2/2 < 90o. Hence T2 lies between A1 and B2. Similarly for the others.  

Let O be the center of the incircle. Then ∠T1OS2 = ∠T1OT2 - 2 ∠T2OB2 = 180o - A3 - 2(90o - ∠OB2T2) = 2(A3 + A2/2) - A3 = A2 + A3. A similar argument shows ∠T1OS3 = A2 + A3. Hence 
S2S3 is parallel to A2A3.  
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Now ∠T3OS2 = 360o - ∠T3OT1 - ∠T1OS2 = 360o - (180o - A2) - (A2 + A3) = 180o - A3 = A1 + 
A2. ∠T3OS1 = ∠T3OT1 + 2 ∠T1OB1 = (180o - A2) + 2(90o - ∠OB1T1) = 360o - A2 - 2(A3 + 
A1/2) = 2(A1 + A2 + A3) - A2 - 2A3 - A1 = A1 + A2 = ∠T3OS2. So S1S2 is parallel to A1A2. 
Similarly we can show that S1S3 is parallel to A1A3.  

So S1S2S3 is similar to A1A2A3 and turned through 180o. But M1M2M3 is also similar to A1A2A3 
and turned through 180o. So S1S2S3 and M1M2M3 are similar and similarly oriented. Hence the 
lines through corresponding vertices are concurrent.  

 IMO 1982 

 
  
Problem A3  

Consider infinite sequences {xn} of positive reals such that x0 = 1 and x0 ≥= x1 ≥ x2 ≥ ... .  

(a)  Prove that for every such sequence there is an n ≥ 1 such that:  

      x0
2/x1 + x1

2/x2 + ... + xn-1
2/xn ≥ 3.999.  

(b)  Find such a sequence for which:  

      x0
2/x1 + x1

2/x2 + ... + xn-1
2/xn < 4   for all n.  

  Solution  

(a)  It is sufficient to show that the sum of the (infinite) sequence is at least 4. Let k be the 
greatest lower bound of the limits of all such sequences. Clearly k ≥ 1. Given any ε > 0, we can 
find a sequence {xn} with sum less than k + ε. But we may write the sum as:  

x0
2/x1 + x1( (x1/x1)

2/(x2/x1) + (x2/x1)
2/(x3/x1) + ... + (xn/x1)

2/(xn+1/x1) + ... ).  

The term in brackets is another sum of the same type, so it is at least k. Hence k + ε > 1/x1 + x1k. 
This holds for all ε > 0, and so k ≥ 1/x1 + x1k. But 1/x1 + x1k ≥ 2√k, so k ≥ 4.  

(b)  Let xn = 1/2n. Then x0
2/x1 + x1

2/x2 + ... + xn-1
2/xn = 2 + 1 + 1/2 + ... + 1/2n-2 = 4 - 1/2n-2 < 4.  
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Problem B1  

Prove that if n is a positive integer such that the equation  

      x3 - 3xy2 + y3 = n  

has a solution in integers x, y, then it has at least three such solutions. Show that the 
equation has no solutions in integers for n = 2891.    

Solution  

If x, y is a solution then so is y-x, -x. Hence also -y, x-y. If the first two are the same, then y = -x, 
and x = y-x = -2x, so x = y = 0, which is impossible, since n > 0. Similarly, if any other pair are 
the same.  

2891 = 2 (mod 9) and there is no solution to x3 - 3xy2 + y3 = 2 (mod 9). The two cubes are each -
1, 0 or 1, and the other term is 0, 3 or 6, so the only solution is to have the cubes congruent to 1 
and -1 and the other term congruent to 0. But the other term cannot be congruent to 0, unless one 
of x, y is a multiple of 3, in which case its cube is congruent to 0, not 1 or -1.   

IMO 1982 

  
Problem B2  

The diagonals AC and CE of the regular hexagon ABCDEF are divided by inner points M 
and N respectively, so that:  

      AM/AC = CN/CE = r.  

Determine r if B, M and N are collinear.    

Solution  

For an inelegant solution one can use coordinates. The advantage of this type of approach is that 
it is quick and guaranteed to work! Take A as (0,√3), B as (1,√3), C as (3/2,√3/2, D as (1,0). Take 
the point X, coordinates (x,0), on ED. We find where the line BX cuts AC and CE. The general 
point on BX is (k + (1-k)x,k√3). If this is also the point M with AM/AC = r then we have: k + (1-
k)x = 3r/2, k√3 = (1-r)√3 + r√3/2. Hence k = 1 - r/2, r = 2/(4-x). Similarly, if it is the point N with 
CN/CE = r, then k + (1-k)x = 3(1-r)/2, k√3 = (1-r)√3/2. Hence k = (1-r)/2 and r = (2-x)/(2+x). 
Hence for the ratios to be equal we require 2/(4-x) = (2-x)/(2+x), so x2 - 8x + 4 = 0. We also have 
x < 1, so x = 4 - √12. This gives r = 1/√3.  

A more elegant solution uses the ratio theorem for the triangle EBC. We have CM/MX XB/BE 
EN/NC = -1. Hence (1-r)/(r - 1/2) (-1/4) (1-r)/r = -1. So r = 1/√3.  
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IMO 1982 

 
  
Problem B3  

Let S be a square with sides length 100. Let L be a path within S which does not meet itself 
and which is composed of line segments A0A1, A1A2, A2A3, ... , An-1An with A 0 = An. Suppose 
that for every point P on the boundary of S there is a point of L at a distance from P no 
greater than 1/2. Prove that there are two points X and Y of L such that the distance 
between X and Y is not greater than 1 and the length of the part of L which lies between X 
and Y is not smaller than 198.   

Solution  

Let the square be A'B'C'D'. The idea is to find points of L close to a particular point of A'D' but 
either side of an excursion to B'.  

We say L approaches a point P' on the boundary of the square if there is a point P on L with PP' ≤ 
1/2. We say L approaches P' before Q' if there is a point P on L which is nearer to A0 (the starting 
point of L) than any point Q with QQ' ≤ 1/2.  

Let A' be the first vertex of the square approached by L. L must subsequently approach both B' 
and D'. Suppose it approaches B' first. Let B be the first point on L with BB' ≤ 1/2. We can now 
divide L into two parts L1, the path from A0 to B, and L2, the path from B to An.  

Take X' to be the point on A'D' closest to D' which is approached by L1. Let X be the 
corresponding point on L1. Now every point on X'D' must be approached by L2 (and X'D' is non-
empty, because we know that D' is approached by L but not by L1). So by compactness X' itself 
must be approached by L2. Take Y to be the corresponding point on L2. XY ≤ XX' + X'Y ≤ 1/2 + 
1/2 = 1. Also BB' ≤ 1/2, so XB ≥ X'B' - XX' - BB' ≥ X'B' - 1 ≥ A'B' - 1 = 99. Similarly YB ≥ 99, 
so the path XY ≥ 198.  
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22nd IMO 1981 

 

  

A1.  P is a point inside the triangle ABC. D, E, F are the feet of the perpendiculars 
from P to the lines BC, CA, AB respectively. Find all P which minimise:  

        BC/PD + CA/PE + AB/PF.  
 

A2.  Take r such that 1 ≤ r ≤ n, and consider all subsets of r elements of the set {1, 2, 
... , n}. Each subset has a smallest element. Let F(n,r) be the arithmetic mean of these 
smallest elements. Prove that:  

        F(n,r) = (n+1)/(r+1).  
 

A3.  Determine the maximum value of m2 + n2, where m and n are integers in the 
range 1, 2, ... , 1981 satisfying (n2 - mn - m2)2 = 1.  

 

B1. (a)  For which n > 2 is there a set of n consecutive positive integers such that the 
largest number in the set is a divisor of the least common multiple of the remaining n - 
1 numbers?  

(b)  For which n > 2 is there exactly one set having this property?  
 

B2.  Three circles of equal radius have a common point O and lie inside a given 
triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and 
the circumcenter of the triangle are collinear with the point O.   

B3.  The function f(x,y) satisfies: f(0,y) = y + 1, f(x+1,0) = f(x,1), f(x+1,y+1) = 
f(x,f(x+1,y)) for all non-negative integers x, y. Find f(4, 1981).  
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IMO 1981 

 
Problem A1  

P is a point inside the triangle ABC. D, E, F are the feet of the perpendiculars from P to the 
lines BC, CA, AB respectively. Find all P which minimise:  

        BC/PD + CA/PE + AB/PF.    

Solution  

We have PD.BC + PE.CA + PF.AB = 2 area of triangle. Now use Cauchy's inequality with x1 = 
√(PD·BC), x2 = √(PE·CA), x3 = √(PF·AB), and y1 = √(BC/PD), y2 = √(CA/PE), y3 = √(AB/PF). 
We get that (BC + CA + AB)2 < 2 x area of triangle x (BC/PD + CA/PE + AB/PF) with equality 
only if xi/yi = const, ie PD = PE = PF. So the unique minimum position for P is the incenter.   

IMO 1981 

  
Problem A2  

Take r such that 1 ≤ r ≤ n, and consider all subsets of r elements of the set {1, 2, ... , n}. Each 
subset has a smallest element. Let F(n,r) be the arithmetic mean of these smallest elements. 
Prove that:  

        F(n,r) = (n+1)/(r+1).    

Solution  

Denote the binomial coefficient n!/(r!(n-r)!) by nCr.  

Evidently nCr F(n,r) = 1 (n-1)C(r-1) + 2 (n-2)C(r-1) + ... + (n-r+1) (r-1)C(r-1). [The first term 
denotes the contribution from subsets with smallest element 1, the second term smallest element 2 
and so on.]  

Let the rhs be g(n,r). Then, using the relation (n-i)C(r-1) - (n-i-1)C(r-2) = (n-i-1)C(r-1), we find 
that g(n,r) - g(n-1,r-1) = g(n-1,r), and we can extend this relation to r=1 by taking g(n,0) = n+1 = 
(n+1)C1. But g(n,1) = 1 + 2 + ... + n = n(n+1)/2 = (n+1)C2. So it now follows by an easy 
induction that g(n,r) = (n+1)C(r+1) = nCr (n+1)/(r+1). Hence F(n,r) = (n+1)/(r+1).  

A more elegant solution by Oliver Nash is as follows  

Let k be the smallest element. We want to evaluate g(n, r) = ∑k=1 to n-r+1 k   (n-k)C(r-1). Consider 
the subsets with r+1 elements taken from 1, 2, 3, ... , n+1. Suppose k+1 is the second smallest 
element. Then there are k   (n-k)C(r-1) possible subsets. So g(n, r) = (n+1)C(r+1). Hence F(n, r) = 
(n+1)C(r+1) / nCr = (n+1)/(r+1), as required.  
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IMO 1981 

 
 Problem A3  

Determine the maximum value of m2 + n2, where m and n are integers in the range 1, 2, ... , 
1981 satisfying (n2 - mn - m2)2 = 1.    

Solution  

Experimenting with small values suggests that the solutions of n2 - mn - m2 = 1 or -1 are 
successive Fibonacci numbers. So suppose n > m is a solution. This suggests trying m+n, n: 
(m+n)2 - (m+n)n - n2 = m2 + mn - n2 = -(n2 - mn - m2) = 1 or -1. So if n > m is a solution, then 
m+n, n is another solution. Running this forward from 2,1 gives 3,2; 5,3; 8,5; 13,8; 21,13; 34,21; 
55,34; 89,55; 144,89; 233,144; 377,233; 610,377; 987,610; 1597,987; 2584,1597.  

But how do we know that there are no other solutions? The trick is to run the recurrence the other 
way. For suppose n > m is a solution, then try m, n-m: m2 - m(n-m) - (n-m)2 = m2 + mn - n2 = -(n2 
- mn - m2) = 1 or -1, so that also satisfies the equation. Also if m > 1, then m > n-m (for if not, 
then n >= 2m, so n(n - m) >= 2m2, so n2 - nm - m2 >= m2 > 1). So given a solution n > m with m 
> 1, we have a smaller solution m > n-m. This process must eventually terminate, so it must finish 
at a solution n, 1 with n > 1. But the only such solution is 2, 1. Hence the starting solution must 
have been in the forward sequence from 2, 1.  

Hence the solution to the problem stated is 15972 + 9872.  

IMO 1981 

  
Problem B1  

(a)  For which n > 2 is there a set of n consecutive positive integers such that the largest 
number in the set is a divisor of the least common multiple of the remaining n - 1 numbers?  

(b)  For which n > 2 is there exactly one set having this property?    

Solution  

(a)  n = 3 is not possible. For suppose x was the largest number in the set. Then x cannot be 
divisible by 3 or any larger prime, so it must be a power of 2. But it cannot be a power of 2, 
because 2m - 1 is odd and 2m - 2 is not a positive integer divisible by 2m.  

For k ≥ 2, the set 2k-1, 2k , ... , 4k-2 gives n = 2k. For k ≥ 3, so does the set 2k-5, 2k-4, ... , 4k-6. 
For k ≥ 2, the set 2k-2, 2k-3, ... , 4k-2 gives n = 2k+1. For k ≥ 4 so does the set 2k-6,2k-5, ... , 4k-
6. So we have at least one set for every n ≥ 4, which answers (a).  
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(b)  We also have at least two sets for every n ≥ 4 except possibly n = 4, 5, 7. For 5 we may take 
as a second set: 8, 9, 10, 11, 12, and for 7 we may take 6, 7, 8, 9 ,10, 11, 12. That leaves n = 4. 
Suppose x is the largest number in a set with n =4. x cannot be divisible by 5 or any larger prime, 
because x-1, x-2, x-3 will not be. Moreover, x cannot be divisible by 4, because then x-1 and x-3 
will be odd, and x-2 only divisible by 2 (not 4). Similarly, it cannot be divisible by 9. So the only 
possibilities are 1, 2, 3, 6. But we also require x ≥ 4, which eliminates the first three. So the only 
solution for n = 4 is the one we have already found: 3, 4, 5, 6.  

IMO 1981 

Problem B2  

Three circles of equal radius have a common point O and lie inside a given triangle. Each 
circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of 
the triangle are collinear with the point O.    

Solution  

Let the triangle be ABC. Let the center of the circle touching AB and AC be D, the center of the 
circle touching AB and BC be E, and the center of the circle touching AC and BC be F. Because 
the circles center D and E have the same radius the perpendiculars from D and E to AB have the 
same length, so DE is parallel to AB. Similarly EF is parallel to BC and FD is parallel to CA. 
Hence DEF is similar and similarly oriented to ABC. Moreover D must lie on the angle bisector 
of A since the circle center D touches AB and AC. Similarly E lies on the angle bisector of B and 
F lies on the angle bisector of C. Hence the incenter I of ABC is also the incenter of DEF and acts 
as a center of symmetry so that corresponding points P of ABC and P' of DEF lie on a line 
through I with PI/P'I having a fixed ratio. But OD = OE = OF since the three circles have equal 
radii, so O is the circumcenter of DEF. Hence it lies on a line with I and the circumcenter of 
ABC.  

 IMO 1981 

 Problem B3  

The function f(x,y) satisfies: f(0,y) = y + 1, f(x+1,0) = f(x,1), f(x+1,y+1) = f(x,f(x+1,y)) for all 
non-negative integers x, y. Find f(4, 1981).   

Solution  

f(1,n) = f(0,f(1,n-1)) = 1 + f(1,n-1). So f(1,n) = n + f(1,0) = n + f(0,1) = n + 2.  

f(2,n) = f(1,f(2,n-1)) = f(2,n-1) + 2. So f(2,n) = 2n + f(2,0) = 2n + f(1,1) = 2n + 3.  

f(3,n) = f(2,f(3,n-1)) = 2f(3,n-1) + 3. Let un = f(3,n) + 3, then un = 2un-1. Also u0 = f(3,0) + 3 = 
f(2,1) + 3 = 8. So un = 2n+3, and f(3,n) = 2n+3 - 3.  

f(4,n) = f(3,f(4,n-1)) = 2f(4,n-1)+3 - 3. f(4,0) = f(3,1) = 24 - 3 = 13. We calculate two more terms to 
see the pattern: f(4,1) = 224 - 3, f(4,2) = 2224 - 3. In fact it looks neater if we replace 4 by 22, so 
that f(4,n) is a tower of n+3 2s less 3.  
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21st IMO 1979 (no IMO in 1980) 

 

A1.  Let m and n be positive integers such that:  

      m/n = 1 - 1/2 + 1/3 - 1/4 + ... - 1/1318 + 1/1319.  

Prove that m is divisible by 1979.  
 

A2.  A prism with pentagons A1A2A3A4A5 and B1B2B3B4B5 as the top and bottom 
faces is given. Each side of the two pentagons and each of the 25 segments AiBj is 
colored red or green. Every triangle whose vertices are vertices of the prism and 
whose sides have all been colored has two sides of a different color. Prove that all 10 
sides of the top and bottom faces have the same color.  

 

A3.  Two circles in a plane intersect. A is one of the points of intersection. Starting 
simultaneously from A two points move with constant speed, each traveling along its 
own circle in the same sense. The two points return to A simultaneously after one 
revolution. Prove that there is a fixed point P in the plane such that the two points are 
always equidistant from P.  

 

B1.  Given a plane k, a point P in the plane and a point Q not in the plane, find all 
points R in k such that the ratio (QP + PR)/QR is a maximum.  

 

B2.  Find all real numbers a for which there exist non-negative real numbers x1, x2, x3, 
x4, x5 satisfying:  

  x1 + 2x2 + 3x3 + 4x4 + 5x5 = a,  
  x1 + 23x2 + 33x3 + 43x4 + 53x5 = a2,  
  x1 + 25x2 + 35x3 + 45x4 + 55x5 = a3.  

 

B3.  Let A and E be opposite vertices of an octagon. A frog starts at vertex A. From 
any vertex except E it jumps to one of the two adjacent vertices. When it reaches E it 
stops. Let an be the number of distinct paths of exactly n jumps ending at E. Prove 
that:  

      a2n-1 = 0  
      a2n = (2 + √2)n-1/√2 - (2 - √2)n-1/√2.  
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IMO 1979 

  
Problem A1 

Let m and n be positive integers such that:  

      m/m = 1 - 1/2 + 1/3 - 1/4 + ... - 1/1318 + 1/1319.  

Prove that m is divisible by 1979.    

Solution 

This is difficult.  

The obvious step of combining adjacent terms to give 1/(n(n+1) is unhelpful. The trick is to 
separate out the negative terms:  

    1 - 1/2 + 1/3 - 1/4 + ... - 1/1318 + 1/1319 = 1 + 1/2 + 1/3 + ... + 1/1319 - 2(1/2 + 1/4 + ... + 
1/1318) = 1/660 + 1/661 + ... + 1/1319.  

and to notice that 660 + 1319 = 1979. Combine terms in pairs from the outside:  

    1/660 + 1/1319 = 1979/(660.1319); 1/661 + 1/1318 = 1979/(661.1318) etc.  

There are an even number of terms, so this gives us a sum of terms 1979/m with m not divisible 
by 1979 (since 1979 is prime and so does not divide any product of smaller numbers). Hence the 
sum of the 1/m gives a rational number with denominator not divisible by 1979 and we are done.  

 IMO 1979 

 
   
Problem A2  

A prism with pentagons A1A2A3A4A5 and B1B2B3B4B5 as the top and bottom faces is given. 
Each side of the two pentagons and each of the 25 segments AiBj is colored red or green. 
Every triangle whose vertices are vertices of the prism and whose sides have all been 
colored has two sides of a different color. Prove that all 10 sides of the top and bottom faces 
have the same color.    

Solution  

We show first that the Ai are all the same color. If not then, there is a vertex, call it A1, with edges 
A1A2, A1A5 of opposite color. Now consider the five edges A1Bi. At least three of them must be 
the same color. Suppose it is green and that A1A2 is also green. Take the three edges to be A1Bi, 
A1Bj, A1Bk. Then considering the triangles A1A2Bi, A1A2Bj, A1A2Bk, the three edges A2Bi, A2Bj, 
A2Bk must all be red. Two of Bi, Bj, Bk must be adjacent, but if the resulting edge is red then we 
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have an all red triangle with A2, whilst if it is green we have an all green triangle with A1. 
Contradiction. So the Ai are all the same color. Similarly, the Bi are all the same color. It remains 
to show that they are the same color. Suppose otherwise, so that the Ai are green and the Bi are 
red.  

Now we argue as before that 3 of the 5 edges A1Bi must be the same color. If it is red, then as 
before 2 of the 3 Bi must be adjacent and that gives an all red triangle with A1. So 3 of the 5 edges 
A1Bi must be green. Similarly, 3 of the 5 edges A2Bi must be green. But there must be a Bi 
featuring in both sets and it forms an all green triangle with A1 and A2. Contradiction. So the Ai 
and the Bi are all the same color.  

IMO 1979 

 
   
Problem A3  

Two circles in a plane intersect. A is one of the points of intersection. Starting 
simultaneously from A two points move with constant speed, each traveling along its own 
circle in the same sense. The two points return to A simultaneously after one revolution. 
Prove that there is a fixed point P in the plane such that the two points are always 
equidistant from P.    

Solution  

 

Let the circles have centers O, O' and let the moving points by X, X. Let P be the reflection of A 
in the perpendicular bisector of OO'. We show that triangles POX, X'O'P are congruent. We have 
OX = OA (pts on circle) = O'P (reflection). Also OP = O'A (reflection) = O'X' (pts on circle). 
Also ∠AOX = ∠AO'X' (X and X' circle at same rate), and ∠AOP = ∠AO'P (reflection), so ∠POX = ∠PO'X'. So the triangles are congruent. Hence PX = PX'.  

Another approach is to show that XX' passes through the other point of intersection of the two 
circles, but that involves looking at many different cases depending on the relative positions of 
the moving points.  
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Problem B1  

Given a plane k, a point P in the plane and a point Q not in the plane, find all points R in k 
such that the ratio (QP + PR)/QR is a maximum.    

Solution  

Consider the points R on a circle center P. Let X be the foot of the perpendicular from Q to k. 
Assume P is distinct from X, then we minimise QR (and hence maximise (QP + PR)/QR) for 
points R on the circle by taking R on the line PX. Moreover, R must lie on the same side of P as 
X. Hence if we allow R to vary over k, the points maximising (QP + PR)/QR must lie on the ray 
PX. Take S on the line PX on the opposite side of P from X so that PS = PQ. Then for points R 
on the ray PX we have (QP + PR)/QR = SR/QR = sin RQS/sin QSR. But sin QSR is fixed for 
points on the ray, so we maximise the ratio by taking ∠RQS = 90o. Thus there is a single point 
maximising the ratio.  

If P = X, then we still require ∠RQS = 90o, but R is no longer restricted to a line, so it can be 
anywhere on a circle center P.  

IMO 1979 

  
  
Problem B2  

Find all real numbers a for which there exist non-negative real numbers x1, x2, x3, x4, x5 
satisfying:  

  x1 + 2x2 + 3x3 + 4x4 + 5x5 = a,  
  x1 + 23x2 + 33x3 + 43x4 + 53x5 = a2,  
  x1 + 25x2 + 35x3 + 45x4 + 55x5 = a3.    

Solution  

Take a2 x 1st equ - 2a x 2nd equ + 3rd equ. The rhs is 0. On the lhs the coefficient of xn is a2n - 
2an3 + n5 = n(a - n2)2. So the lhs is a sum of non-negative terms. Hence each term must be zero 
separately, so for each n either xn = 0 or a = n2. So there are just 5 solutions, corresponding to a = 
1, 4, 9, 16, 25. We can check that each of these gives a solution. [For a = n2, xn = n and the other 
xi are zero.]  
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Problem B3  

Let A and E be opposite vertices of an octagon. A frog starts at vertex A. From any vertex 
except E it jumps to one of the two adjacent vertices. When it reaches E it stops. Let an be 
the number of distinct paths of exactly n jumps ending at E. Prove that:  

      a2n-1 = 0  
      a2n = (2 + √2)n-1/√2 - (2 - √2)n-1/√2.    

Solution  

Each jump changes the parity of the shortest distance to E. The parity is initially even, so an odd 
number of jumps cannot end at E. Hence a2n-1 = 0.  

We derive a recurrence relation for a2n. This is not easy to do directly, so we introduce bn which is 
the number of paths length n from C to E. Then we have immediately:  

    a2n = 2a2n-2 + 2b2n-2 for n > 1  
    b2n = 2b2n-2 + a2n-2 for n > 1  

Hence, using the first equation: a2n - 2a2n-2 = 2a2n-2 - 4a2n-4 + 2b2n-2 - 4b2n-4 for n > 2. Using the 
second equation, this leads to: a2n = 4a2n-2 - 2a2n-4 for n > 2. This is a linear recurrence relation 
with the general solution: a2n = a(2 + √2)n-1 + b(2 - √2)n-1. But we easily see directly that a4 = 2, a6 
= 8 and we can now solve for the coefficients to get the solution given.  

   

 

 

 

 

 

 

 

 

 



 141

 

20th IMO 1978 

 

  

A1.  m and n are positive integers with m < n. The last three decimal digits of 1978m 
are the same as the last three decimal digits of 1978n. Find m and n such that m + n 
has the least possible value.   

A2.  P is a point inside a sphere. Three mutually perpendicular rays from P intersect 
the sphere at points U, V and W. Q denotes the vertex diagonally opposite P in the 
parallelepiped determined by PU, PV, PW. Find the locus of Q for all possible sets of 
such rays from P.  

 

A3.  The set of all positive integers is the union of two disjoint subsets {f(1), f(2), f(3), 
... }, {g(1), g(2), g(3), ... }, where f(1) < f(2) < f(3) < ..., and g(1) < g(2) < g(3) < ... , 
and g(n) = f(f(n)) + 1 for n = 1, 2, 3, ... . Determine f(240).   

B1.  In the triangle ABC, AB = AC. A circle is tangent internally to the circumcircle 
of the triangle and also to AB, AC at P, Q respectively. Prove that the midpoint of PQ 
is the center of the incircle of the triangle.   

B2.  {ak} is a sequence of distinct positive integers. Prove that for all positive integers 
n, ∑1≤k≤n ak/k

2 ≥ ∑1≤k≤n 1/k.  
 

B3.  An international society has its members from six different countries. The list of 
members has 1978 names, numbered 1, 2, ... , 1978. Prove that there is at least one 
member whose number is the sum of the numbers of two members from his own 
country, or twice the number of a member from his own country.  
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Problem A1  

m and n are positive integers with m < n. The last three decimal digits of 1978m are the same 
as the last three decimal digits of 1978n. Find m and n such that m + n has the least possible 
value.    

Solution  

We require 1978m(1978n-m - 1) to be a multiple of 1000=8·125. So we must have 8 divides 1978m, 
and hence m ≥ 3, and 125 divides 1978n-m - 1.  

By Euler's theorem, 1978φ(125) = 1 (mod 125). φ(125) = 125 - 25 = 100, so 1978100 = 1 (mod 125). 
Hence the smallest r such that 1978r = 1 (mod 125) must be a divisor of 100 (because if it was 
not, then the remainder on dividing it into 100 would give a smaller r). That leaves 9 possibilities 
to check: 1, 2, 4, 5, 10, 20, 25, 50, 100. To reduce the work we quickly find that the smallest s 
such that 1978s = 1 (mod 5) is 4 and hence r must be a multiple of 4. That leaves 4, 20, 100 to 
examine.  

We find 9782 = 109 (mod 125), and hence 9784 = 6 (mod 125). Hence 97820 = 65 = 36·91 = 26 
(mod 125). So the smallest r is 100 and hence the solution to the problem is 3, 103.  

IMO 1978 

  
Problem A2  

P is a point inside a sphere. Three mutually perpendicular rays from P intersect the sphere 
at points U, V and W. Q denotes the vertex diagonally opposite P in the parallelepiped 
determined by PU, PV, PW. Find the locus of Q for all possible sets of such rays from P.    

Solution  

Suppose ABCD is a rectangle and X any point inside, then XA2 + XC2 = XB2 + XD2. This is most 
easily proved using coordinates. Take the origin O as the center of the rectangle and take OA to 
be the vector a, and OB to be b. Since it is a rectangle, |a| = |b|. Then OC is -a and OD is -b. Let 
OX be c. Then XA2 + XC2 = (a - c)2 + (a + c)2 = 2a2 + 2c2 = 2b2 + 2c2 = XB2 + XD2.  

Let us fix U. Then the plane k perpendicular to PU through P cuts the sphere in a circle center C. 
V and W must lie on this circle. Take R so that PVRW is a rectangle. By the result just proved 
CR2 = 2CV2 - CP2. OC is also perpendicular to the plane k. Extend it to X, so that CX = PU. Then 
extend XU to Y so that YR is perpendicular to k. Now OY2 = OX2 + XY2 = OX2 + CR2 = OX2 + 
2CV2 - CP2 = OU2 - UX2 + 2CV2 - CP2 = OU2 - CP2 + 2(OV2 - OC2) - CP2 = 3OU2 - 2OP2. Thus 
the locus of Y is a sphere.  
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Problem A3  

The set of all positive integers is the union of two disjoint subsets {f(1), f(2), f(3), ... }, {g(1), 
g(2), g(3), ... }, where f(1) < f(2) < f(3) < ..., and g(1) < g(2) < g(3) < ... , and g(n) = f(f(n)) + 1 
for n = 1, 2, 3, ... . Determine f(240).   

Solution  

Let F = {f(1), f(2), f(3), ... }, G = {g(1), g(2), g(3), ... }, Nn = {1, 2, 3, ... , n}. f(1) ≥ 1, so f(f(1)) ≥ 
1 and hence g(1) ≥ 2. So 1 is not in G, and hence must be in F. It must be the smallest element of 
F and so f(1) = 1. Hence g(1) = 2. We can never have two successive integers n and n+1 in G, 
because if g(m) = n+1, then f(something) = n and so n is in F and G. Contradiction. In particular, 
3 must be in F, and so f(2) = 3.  

Suppose f(n) = k. Then g(n) = f(k) + 1. So |Nf(k)+1 ∩ G| = n. But |Nf(k)+1 ∩ F| = k, so n + k = f(k) + 
1, or f(k) = n + k - 1. Hence g(n) = n + k. So n + k + 1 must be in F and hence f(k+1) = n + k + 1. 
This so given the value of f for n we can find it for k and k+1.  

Using k+1 each time, we get, successively, f(2) = 3, f(4) = 6, f(7) = 11, f(12) = 19, f(20) = 32, 
f(33) = 53, f(54) = 87, f(88) = 142, f(143) = 231, f(232) = 375, which is not much help. Trying 
again with k, we get: f(3) = 4, f(4) = 6, f(6) = 9, f(9) = 14, f(14) = 22, f(22) = 35, f(35) = 56, f(56) 
= 90, f(90) = 145, f(145) = 234. Still not right, but we can try backing up slightly and using k+1: 
f(146) = 236. Still not right, we need to back up further: f(91) = 147, f(148) = 239, f(240) = 388.  

IMO 1978 

 
 Problem B1  

In the triangle ABC, AB = AC. A circle is tangent internally to the circumcircle of the 
triangle and also to AB, AC at P, Q respectively. Prove that the midpoint of PQ is the center 
of the incircle of the triangle.   

Solution  

It is not a good idea to get bogged down in complicated formulae for the various radii. The 
solution is actually simple.  

By symmetry the midpoint, M, is already on the angle bisector of A, so it is sufficient to show it 
is on the angle bisector of B. Let the angle bisector of A meet the circumcircle again at R. AP is a 
tangent to the circle touching AB at P, so ∠PRQ = ∠APQ = ∠ABC. Now the quadrilateral 
PBRM is cyclic because the angles PBR, PMR are both 90o. Hence ∠PBM = ∠PRM = 
(∠PRQ)/2, so BM does indeed bisect angle B as claimed.  
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Problem B2  

{ak} is a sequence of distinct positive integers. Prove that for all positive integers n, ∑1
n ak/k

2 
≥ ∑1

n 1/k.    

Solution  

We use the general rearrangement result: given b1 ≥ b2 ≥ ... ≥ bn, and c1 ≤ c2 ≤ ... ≤ cn, if {a i} is a 
permutation of {ci}, then ∑ aibi ≥ ∑ cibi. To prove it, suppose that i < j, but ai > aj. Then 
interchanging ai and aj does not increase the sum, because (ai - aj)(bi - bj) ≥ 0, and hence aibi + ajbj 
≥ ajbi + aibj. By a series of such interchanges we transform {ai} into {c i} (for example, first swap 
c1 into first place, then c2 into second place and so on).  

Hence we do not increase the sum by permuting {ai} so that it is in increasing order. But now we 
have ai > i, so we do not increase the sum by replacing ai by i and that gives the sum from 1 to n 
of 1/k.   

IMO 1978 

   
Problem B3  

An international society has its members from six different countries. The list of members 
has 1978 names, numbered 1, 2, ... , 1978. Prove that there is at least one member whose 
number is the sum of the numbers of two members from his own country, or twice the 
number of a member from his own country.    

Solution  

The trick is to use differences.  

At least 6.329 = 1974, so at least 330 members come from the same country, call it C1. Let their 
numbers be a1 < a2 < ... < a330. Now take the 329 differences a2 - a1, a3 - a1, ... , a330 - a1. If any of 
them are in C1, then we are home, so suppose they are all in the other five countries.  

At least 66 must come from the same country, call it C2. Write the 66 as b1 < b2 < ... < b66. Now 
form the 65 differences b2 - b1, b3 - b1, ... , b66 - b1. If any of them are in C2, then we are home. 
But each difference equals the difference of two of the original ais, so if it is in C1 we are also 
home.  

So suppose they are all in the other four countries. At least 17 must come from the same country, 
call it C3. Write the 17 as c1 < c2 < ... < c17. Now form the 16 differences c2 - c1, c3 - c1, ... , c17 - 
c1. If any of them are in C3, we are home. Each difference equals the difference of two bis, so if 
any of them are in C2 we are home. [For example, consider ci - c1. Suppose ci = bn - b1 and c1 = 
bm - b1, then ci - c1 = bn - bm, as claimed.]. Each difference also equals the difference of two ais, so 
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if any of them are in C1, we are also home. [For example, consider ci - c1, as before. Suppose bn = 
aj - a1, bm = ak - a1, then ci - c1 = bn - bm = aj - ak, as claimed.]  

So suppose they are all in the other three countries. At least 6 must come from the same country, 
call it C4. We look at the 5 differences and conclude in the same way that at least 3 must come 
from C5. Now the 2 differences must both be in C6 and their difference must be in one of the C1, 
... , C6 giving us the required sum.  
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19th IMO 1977 

 

  

A1.  Construct equilateral triangles ABK, BCL, CDM, DAN on the inside of the 
square ABCD. Show that the midpoints of KL, LM, MN, NK and the midpoints of 
AK, BK, BL, CL, CM, DM, DN, AN form a regular dodecahedron.   

A2.  In a finite sequence of real numbers the sum of any seven successive terms is 
negative, and the sum of any eleven successive terms is positive. Determine the 
maximum number of terms in the sequence.   

A3.  Given an integer n > 2, let Vn be the set of integers 1 + kn for k a positive integer. 
A number m in Vn is called indecomposable if it cannot be expressed as the product of 
two members of Vn. Prove that there is a number in Vn which can be expressed as the 
product of indecomposable members of Vn in more than one way (decompositions 
which differ solely in the order of factors are not regarded as different).  

 

B1.  Define f(x) = 1 - a cos x - b sin x - A cos 2x - B sin 2x, where a, b, A, B are real 
constants. Suppose that f(x) ≥ 0 for all real x. Prove that a2 + b2 ≤ 2 and A2 + B2 ≤ 1.   

B2.  Let a and b be positive integers. When a2 + b2 is divided by a + b, the quotient is 
q and the remainder is r. Find all pairs a, b such that q2 + r = 1977.   

B3.  The function f is defined on the set of positive integers and its values are positive 
integers. Given that f(n+1) > f(f(n)) for all n, prove that f(n) = n for all n.  
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Problem A1  

Construct equilateral triangles ABK, BCL, CDM, DAN on the inside of the square ABCD. 
Show that the midpoints of KL, LM, MN, NK and the midpoints of AK, BK, BL, CL, CM, 
DM, DN, AN form a regular dodecahedron.    

Solution  

The most straightforward approach is to use coordinates. Take A, B, C, D to be (1,1), (-1,1), (-1,-
1), (1,-1). Then K, L, M, N are (0, -2k), (2k, 0), (0, 2k), (-2k, 0), where k = (√3 - 1)/2. The 
midpoints of KL, LM, MN, NK are (k, -k), (k, k), (-k, k), (-k, -k). These are all a distance k√2 
from the origin, at angles 315, 45, 135, 225 respectively. The midpoints of AK, BK, BL, CL, CM, 
DM, DN, AN are (h, j), (-h, j), (-j, h), (-j, -h), (-h, -j), (h, -j), (j, -h), (j, h), where h = 1/2, j = (1 - 
1/2 √3). These are also at a distance k√2 from the origin, at angles 15, 165, 105, 255, 195, 345, 
285, 75 respectively. For this we need to consider the right-angled triangle sides k, h, j. The angle 
x between h and k has sin x = j/k and cos x = h/k. So sin 2x = 2 sin x cos x = 2hj/k2 = 1/2. Hence 
x = 15.  

So the 12 points are all at the same distance from the origin and at angles 15 + 30n, for n = 0, 1, 
2, ... , 11. Hence they form a regular dodecagon.  

IMO 1977 

  
Problem A2  

In a finite sequence of real numbers the sum of any seven successive terms is negative, and 
the sum of any eleven successive terms is positive. Determine the maximum number of 
terms in the sequence.    

Solution  

Answer: 16.  

x1 + ... + x7 < 0, x8 + ... + x14 < 0, so x1 + ... + x14 < 0. But x4 + ... + x14 > 0, so x1 + x2 + x3 < 0. 
Also x5 + ... + x11 < 0 and x1 + ... + x11 > 0, so x4 > 0. If there are 17 or more elements then the 
same argument shows that x5, x6, x7 > 0. But x1 + ... + x7 < 0, and x5 + ... + x11 < 0, whereas x1 + 
... + x11 > 0, so x5 + x6 + x7 < 0. Contradiction.  

If we assume that there is a solution for n = 16 and that the sum of 7 consecutive terms is -1 and 
that the sum of 11 consecutive terms is 1, then we can easily solve the equations to get: 5, 5, -13, 
5, 5, 5, -13, 5, 5, -13, 5, 5, 5, -13, 5, 5 and we can check that this works for 16.  
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 Problem A3  

Given an integer n > 2, let Vn be the set of integers 1 + kn for k a positive integer. A number 
m in Vn is called indecomposable if it cannot be expressed as the product of two members of 
Vn. Prove that there is a number in Vn which can be expressed as the product of 
indecomposable members of Vn in more than one way (decompositions which differ solely in 
the order of factors are not regarded as different).    

Solution  

Take a, b, c, d = -1 (mod n). The idea is to take abcd which factorizes as ab.cd or ac.bd. The hope 
is that ab, cd, ac, bd will not factorize in Vn. But a little care is needed, since this is not 
necessarily true.  

Try taking a = b = n - 1, c = d = 2n -1. a2 must be indecomposable because it is less than the 
square of the smallest element in Vn. If ac = 2n2 - 3n + 1 is decomposable, then we have kk'n + k 
+ k' = 2n - 3 for some k, k' >= 1. But neither of k or k' can be 2 or more, because then the lhs is 
too big, and k = k' = 1 does not work unless n = 5. Similarly, if c2 is decomposable, then we have 
kk'n + k + k' = 4n - 4. k = k' = 1 only works for n = 2, but we are told n > 2. k = 1, k' = 2 does not 
work (it would require n = 7/2). k = 1, k' = 3 only works for n = 8. Other possibilities make the 
lhs too big.  

So if n is not 5 or 8, then we can take the number to be (n - 1)2(2n - 1)2, which factors as (n - 1)2 x 
(2n - 1)2 or as (n - 1)(2n - 1) x (n - 1)(2n - 1). This does not work for 5 or 8: 16·81 = 36·36, but 36 
decomposes as 6·6; 49·225 = 105·105, but 225 decomposes as 9·25.  

For n = 5, we can use 3136 = 16·196 = 56·56. For n = 8, we can use 25921 = 49·529 = 161·161.  

 IMO 1977 

   
Problem B1  

Define f(x) = 1 - a cos x - b sin x - A cos 2x - B sin 2x, where a, b, A, B are real constants. 
Suppose that f(x) ≥ 0 for all real x. Prove that a2 + b2 ≤ 2 and A2 + B2 ≤ 1.    

Solution  

Take y so that cos y = a/√(a2 + b2), sin y = b/√(a2 + b2), and z so that cos 2z = A/√(A2 + B2), sin 2z 
= B/√(A2 + B2). Then f(x) = 1 - c cos(x - y) - C cos2(x - z), where c = √(a2 + b2), C = √(A2 + B2).  

f(z) + f(π + z) ≥ 0 gives C ≤ 1. f(y + π/4) + f(y - π/4) ≥ 0 gives c ≤ √2.  
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 Problem B2  

Let a and b be positive integers. When a2 + b2 is divided by a + b, the quotient is q and the 
remainder is r. Find all pairs a, b such that q2 + r = 1977.    

Solution  

a2 + b2 >= (a + b)2/2, so q ≥ (a + b)/2. Hence r < 2q. The largest square less than 1977 is 1936 = 
442. 1977 = 442 + 41. The next largest gives 1977 = 432 + 128. But 128 > 2.43. So we must have 
q = 44, r = 41. Hence a2 + b2 = 44(a + b) + 41, so (a - 22)2 + (b - 22)2 = 1009. By trial, we find 
that the only squares with sum 1009 are 282 and 152. This gives two solutions 50, 37 or 50, 7.   

IMO 1977 

 
 Problem B3  

The function f is defined on the set of positive integers and its values are positive integers. 
Given that f(n+1) > f(f(n)) for all n, prove that f(n) = n for all n.    

Solution  

The first step is to show that f(1) < f(2) < f(3) < ... . We do this by induction on n. We take Sn to 
be the statement that f(n) is the unique smallest element of { f(n), f(n+1), f(n+2), ... }.  

For m > 1, f(m) > f(s) where s = f(m-1), so f(m) is not the smallest member of the set {f(1), f(2), 
f(3), ... }. But the set is bounded below by zero, so it must have a smallest member. Hence the 
unique smallest member is f(1). So S1 is true.  

Suppose Sn is true. Take m > n+1. Then m-1 > n, so by Sn, f(m-1) > f(n). But Sn also tells us that 
f(n) > f(n-1) > ... > f(1), so f(n) ≥ n - 1 + f(1) ≥ n. Hence f(m-1) ≥ n+1. So f(m-1) belongs to { 
n+1, n+2, n+3, .. }. But we are given that f(m) > f(f(m-1)), so f(m) is not the smallest element of { 
f(n+1), f(n+2), f(n+3), ... }. But there must be a smallest element, so f(n+1) must be the unique 
smallest member, which establishes Sn+1. So, Sn is true for all n.  

So n ≤ m implies f(n) <= f(m). Suppose for some m, f(m) ≥ m+1, then f(f(m)) ≥ f(m+1). 
Contradiction. Hence f(m) ≤ m for all m. But since f(1) ≥1 and f(m) > f(m-1) > ... > f(1), we also 
have f(m) ≥ m. Hence f(m) = m for all m.  
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18th IMO 1976 

 

  

A1.  A plane convex quadrilateral has area 32, and the sum of two opposite sides and a 
diagonal is 16. Determine all possible lengths for the other diagonal.  

 

A2.  Let P1(x) = x2 - 2, and Pi+1 = P1(Pi(x)) for i = 1, 2, 3, ... . Show that the roots of 
Pn(x) = x are real and distinct for all n.   

A3.  A rectangular box can be completely filled with unit cubes. If one places as many 
cubes as possible, each with volume 2, in the box, with their edges parallel to the 
edges of the box, one can fill exactly 40% of the box. Determine the possible 
dimensions of the box.  

 

B1.  Determine the largest number which is the product of positive integers with sum 
1976.  

 

B2.  n is a positive integer and m = 2n. aij = 0, 1 or -1 for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The m 
unknowns x1, x2, ... , xm satisfy the n equations:  

      ai1x1 + ai2x2 + ... + aimxm = 0,  

for i = 1, 2, ... , n. Prove that the system has a solution in integers of absolute value at 
most m, not all zero.  

 

B3.  The sequence u0, u1, u2, ... is defined by: u0= 2, u1 = 5/2, un+1 = un(un-1
2 - 2) - u1 for 

n = 1, 2, ... . Prove that [un] = 2(2n - (-1)n)/3, where [x] denotes the greatest integer less 
than or equal to x.   
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Problem A1  

A plane convex quadrilateral has area 32, and the sum of two opposite sides and a diagonal 
is 16. Determine all possible lengths for the other diagonal.    

Solution  

At first sight, the length of the other diagonal appears unlikely to be significantly constrained. 
However, a little experimentation shows that it is hard to get such a low value as 16. This 
suggests that 16 may be the smallest possible value.  

If the diagonal which is part of the 16 has length x, then the area is the sum of the areas of two 
triangles base x, which is xy/2, where y is the sum of the altitudes of the two triangles. y must be 
at most (16 - x), with equality only if the two triangles are right-angled. But x(16 - x)/2 = (64 - (x 
- 8)2)/2 ≤ 32 with equality only iff x = 8. Thus the only way we can achieve the values given is 
with one diagonal length 8 and two sides perpendicular to this diagonal with lengths totalling 8. 
But in this case the other diagonal has length 8√2.   

IMO 1976 

 
 
Problem A2  

Let P1(x) = x2 - 2, and Pi+1 = P1(Pi(x)) for i = 1, 2, 3, ... . Show that the roots of Pn(x) = x are 
real and distinct for all n.    

Solution  

We show that the graph of Pn can be divided into 2n lines each joining the top and bottom edges 
of the square side 4 centered on the origin (vertices (2,2), (-2,2), (-2,-2), (-2,2) ). We are then 
home because the upward sloping diagonal of the square, which represents the graph of y = x, 
must cut each of these lines and hence give 2n distinct real roots of Pn(x) = x in the range [-2,2]. 
But Pn is a polynomial of degree 2n, so it has exactly 2n roots. Hence all its roots are real and 
distinct.  

We prove the result about the graph by induction. It is true for n = 1: the first line is the graph 
from x = -2 to 0, and the second line is the graph from 0 to 2. So suppose it is true for n. Then P1 
turns each of the 2n lines for Pn into two lines for Pn+1, so the result is true for n+1.  

Put x = 2 cos t (so we are restricting attention to -2 ≤ x ≤ 2). Then we find Pn(x) = 2 cos 2nt, so the 
equation Pn(x) = x becomes cos 2nt = cos t. By inspection, has the 2n solutions t = 2kπ/(2n - 1) and 
t = 2kπ/(2n + 1), giving 2n distinct solutions in x.   
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Problem A3 

A rectangular box can be completely filled with unit cubes. If one places as many cubes as 
possible, each with volume 2, in the box, with their edges parallel to the edges of the box, 
one can fill exactly 40% of the box. Determine the possible dimensions of the box.    

Solution 

Answer: 2 x 3 x 5 or 2 x 5 x 6.  

This is somewhat messy. The basic idea is that the sides cannot be too long, because then the ratio 
becomes too big. Let k denote the (real) cube root of 2. Given any integer n, let n' denote the least 
integer such that n'k <= n. Let the sides of the box be a ≤ b ≤ c. So we require 5a'b'c' = abc (*).  

It is useful to derive n' for small n: 1' = 0, 2' = 1, 3' = 2, 4' = 3, 5' = 3, 6' = 4, 7' = 5, 8' = 6, 9' = 7, 
10' = 7.  

Clearly n'k ≥ n-2. But 63 > 0.4 83, and hence (n'k)3 ≥ (n - 2)3 > 0.4 n3 for all n ≥ 8. We can check 
directly that (n'k)3 > 0.4 n3 for n = 3, 4, 5, 6, 7. So we must have a = 2 (we cannot have a = 1, 
because 1' = 0).  

From (*) we require b or c to be divisible by 5. Suppose we take it to be 5. Then since 5' = 3, the 
third side n must satisfy: n' = 2/3 n. We can easily check that 2k/3 < 6/7 and hence (2/3 nk + 1 ) < 
n for n ≥ 7, so n' > 2/3 n for n ≥ 7. This just leaves the values n = 3 and n = 6 to check (since n' = 
2/3 n is integral so n must be a multiple of 3). Referring to the values above, both these work. So 
this gives us two possible boxes: 2 x 3 x 5 and 2 x 5 x 6.  

The only remaining possibility is that the multiple of 5 is at least 10. But then it is easy to check 
that if it is m then m'/m ≥ 7/10. It follows from (*) that the third side r must satisfy r'/r <= 4/7. But 
using the limit above and referring to the small values above, this implies that r must be 2. So a = 
b = 2. But now c must satisfy c' = 4/5 c. However, that is impossible because 4/5 k > 1.  

IMO 1976 

  
Problem B1  

Determine the largest number which is the product of positive integers with sum 1976.    

Solution  

Answer: 2·3658.  

There cannot be any integers larger than 4 in the maximal product, because for n > 4, we can 
replace n by 3 and n - 3 to get a larger product. There cannot be any 1s, because there must be an 
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integer r > 1 (otherwise the product would be 1) and r + 1 > 1.r. We can also replace any 4s by 
two 2s leaving the product unchanged. Finally, there cannot be more than two 2s, because we can 
replace three 2s by two 3s to get a larger product. Thus the product must consist of 3s, and either 
zero, one or two 2s. The number of 2s is determined by the remainder on dividing the number 
1976 by 3.  

1976 = 3·658 + 2, so there must be just one 2, giving the product 2·3658.   

IMO 1976 

  
Problem B2  

n is a positive integer and m = 2n. aij  = 0, 1 or -1 for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The m unknowns x1, 
x2, ... , xm satisfy the n equations:  

      ai1x1 + ai2x2 + ... + aimxm = 0,  

for i = 1, 2, ... , n. Prove that the system has a solution in integers of absolute value at most 
m, not all zero.    

Solution  

We use a counting argument. If the modulus of each xi is at most n, then each of the linear 
combinations has a value between -2n2 and 2n2, so there are at most (4n2 + 1) possible values for 
each linear combination and at most (2n2 + 1)n possible sets of values. But there are 2n+1 values 
for each xi with modulus at most n, and hence (2n+1)2n = (4n2+4n+1)n sets of values. So two 
distinct sets must give the same set of values for the linear combinations. But now if these sets are 
xi and xi', then the values xi-xi' give zero for each linear combination, and have modulus at most 
2n. Moreover they are not all zero, since the two sets of values were distinct.  

IMO 1976 

 
 Problem B3  

The sequence u0, u1, u2, ... is defined by: u0= 2, u1 = 5/2, un+1 = un(un-1
2 - 2) - u1 for n = 1, 2, ... . 

Prove that [un] = 2(2n - (-1)n)/3, where [x] denotes the greatest integer less than or equal to x.    

Solution  

Experience with recurrence relations suggests that the solution is probably the value given for [un] 
plus its inverse. It is straightforward to verify this guess by induction.  

Squaring un-1 gives the sum of positive power of 2, its inverse and 2. So un-1 - 2 = the sum of a 
positive power of 2 and its inverse. Multiplying this by un gives a positive power of 2 + its inverse 
+ 2 + 1/2, and we can check that the power of 2 is correct for un+1.  
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17th IMO 1975 

 

  

A1.  Let x1 ≥ x2 ≥ ... ≥ xn, and y1 ≥ y2 ≥ ... ≥ yn be real numbers. Prove that if zi is any 
permutation of the yi, then:  

      ∑1≤i≤n (xi - yi)
2 ≤ ∑1≤i≤n (xi - zi)

2.  
 

A2.  Let a1 < a2 < a3 < ... be positive integers. Prove that for every i ≥ 1, there are 
infinitely many an that can be written in the form an = rai + saj, with r, s positive 
integers and j > i.   

A3.  Given any triangle ABC, construct external triangles ABR, BCP, CAQ on the 
sides, so that ∠PBC = 45o, ∠PCB = 30o, ∠QAC = 45o, ∠QCA = 30o, ∠RAB = 15o, ∠RBA = 15o. Prove that ∠QRP = 90o and QR = RP.   

B1.  Let A be the sum of the decimal digits of 44444444, and B be the sum of the 
decimal digits of A. Find the sum of the decimal digits of B.  

 

B2.  Find 1975 points on the circumference of a unit circle such that the distance 
between each pair is rational, or prove it impossible.  

 

B3.  Find all polynomials P(x, y) in two variables such that:  

(1)  P(tx, ty) = tnP(x, y) for some positive integer n and all real t, x, y;  

(2)  for all real x, y, z: P(y + z, x) + P(z + x, y) + P(x + y, z) = 0;  

(3)  P(1, 0) = 1.  
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IMO 1975 

 
Problem A1  

Let x1 ≥ x2 ≥ ... ≥ xn, and y1 ≥ y2 ≥ ... ≥ yn be real numbers. Prove that if zi is any permutation 
of the yi, then:  

      ∑1
n (xi - yi)

2 ≤ ∑1
n (xi - zi)

2.    

Solution  

If x ≥ x' and y ≥ y', then (x - y)2 + (x' - y')2 ≤ (x - y')2 + (x' - y)2. Hence if i < j, but zi ≤ zj, then 
swapping zi and zj reduces the sum of the squares. But we can return the order of the zi to yi by a 
sequence of swaps of this type: first swap 1 to the 1st place, then 2 to the 2nd place and so on.  

 IMO 1975 

 
 Problem A2  

Let a1 < a2 < a3 < ... be positive integers. Prove that for every i >= 1, there are infinitely 
many an that can be written in the form an = rai + saj, with r, s positive integers and j > i.    

Solution  

We must be able to find a set S of infinitely many an in some residue class mod ai. Take aj to be a 
member of S. Then for any an in S satisfying an > aj, we have an = aj + a multiple of ai.  

 IMO 1975 

 
Problem A3  

Given any triangle ABC, construct external triangles ABR, BCP, CAQ on the sides, so that ∠∠∠∠PBC = 45o, ∠∠∠∠PCB = 30o, ∠∠∠∠QAC = 45o, ∠∠∠∠QCA = 30o, ∠∠∠∠RAB = 15o, ∠∠∠∠RBA = 15o. Prove 
that ∠∠∠∠QRP = 90o and QR = RP.    

Solution  

Trigonometry provides a routine solution. Let BC = a, CA = b, AB = c. Then, by the sine rule 
applied to AQC, AQ = b/(2 sin 105o) = b/(2 cos 15o). Similarly, PB = a/(2 cos 15). Also AR = RB 
= c/(2 cos 15o). So by the cosine rule RP2 = (a2 + c2 - 2ac cos(B+60o))/(4 cos215o), and RQ2 = (b2 
+ c2 - 2bc cos(A+60o))/(4 cos215o). So RP = RQ is equivalent to: a2 - 2ac cos(60o+B) = b2 - 2bc 
cos(60o+A) and hence to a2 - ac cos B + √3 ac sin B = b2 - bc cos A + √3 bc sin A. By the sine 
rule, the sine terms cancel. Also b - b cos A = a cos C, and a - c cos B = b cos C, so the last 
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equality is true and hence RP = RQ. We get an exactly similar expression for PQ2 and show that it 
equals 2 RP2 in the same way.  

A more elegant solution is to construct S on the outside of AB so that ABS is equilateral. Then 
we find that CAS and QAR are similar and that CBS and PBR are similar. So QR/CS = PR/CS. 
The ratio of the sides is the same in each case (CA/QA = CB/PB since CQA and CPB are 
similar), so QR = PR. Also there is a 45o rotation between QAR and CAS and another 45o 
rotation between CBS and PBR, hence QR and PR are at 90o.  

IMO 1975 

 
 Problem B1  

Let A be the sum of the decimal digits of 44444444, and B be the sum of the decimal digits of 
A. Find the sum of the decimal digits of B.    

Solution  

Let X = 44444444.Then X has less than 4.4444 = 17776 digits, so A is at most 9.17776 = 159984. 
Hence B is at most 6.9 = 54. But all these numbers are congruent mod 9. 4444 = -2 (mod 9), so X 
= (-2)4444 (mod 9). But (-2)3 = 1 (mod 9), and 4444 = 1 (mod 3), so X = -2 = 7 (mod 9). But any 
number less than 55 and congruent to 7 has digit sum 7 (possibilities are 7, 16, 25, 34, 43, 52). 
Hence the answer is 7.  

IMO 1975 

 
 Problem B2  

Find 1975 points on the circumference of a unit circle such that the distance between each 
pair is rational, or prove it impossible.    

Solution  

Let x be the angle cos-14/5, so that cos x = 4/5, sin x = 3/5. Take points on the unit circle at angles 
2nx for n integral. Then the distance between the points at angles 2nx and 2mx is 2 sin(n - m)x. 
The usual formula, giving sin(n - m)x in terms of sin x and cos x, shows that sin(n - m)x is 
rational. So it only remains to show that this process generates arbitarily many distinct points, in 
other words that x is not a rational multiple of π.  

This is quite hard. There is an elegant argument in sections 5 and 8 of Hadwiger et al, 
Combinatorial geometry in the Plane. But we can avoid it by observing that there are only finitely 
many numbers with are nth roots of unity for n ≤ 2 x 1975, whereas there are infinitely many 
Pythagorean triples, so we simply pick a triple which is not such a root of unity.  
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Problem B3  

Find all polynomials P(x, y) in two variables such that:  

(1)  P(tx, ty) = tnP(x, y) for some positive integer n and all real t, x, y;  

(2)  for all real x, y, z: P(y + z, x) + P(z + x, y) + P(x + y, z) = 0;  

(3)  P(1, 0) = 1.    

Solution  

(1) means that P is homogeneous of degree n for some n. Experimenting with low n, shows that 
the only solutions for n = 1, 2, 3 are (x - 2y), (x + y)(x - 2y), (x + y)2(x - 2y). It then obvious by 
inspection that (x + y)n(x - 2y) is a solution for any n. Taking x = y = z in (2) shows that P(2x,x) = 
0, so (x - 2y) is always a factor. Taking x = y = 1, z = -2 gives P(1,-1) (2n - 2) = 0, so (x + y) is a 
factor for n > 1. All this suggests (but does not prove) that the general solution is (x + y)n(x - 2y).  

Take y = 1 - x, z = 0 in (2) and we get: P(x, 1-x) = -1 - P(1-x, x). In particular, P(0,1) = -2. Now 
take z = 1 - x - y and we get: P(1-x, x) + P(1-y, y) + P(x+y, 1-x-y) = 0 and hence f(x+y) = f(x) + 
f(y), where f(x) = P(1-x, x) - 1. By induction we conclude that, for any integer m and real x, f(mx) 
= mf(x). Hence f(1/s) = 1/s f(1) and f(r/s) = r/s f(1) for any integers r, s. But P(0,1) = -2, so f(1) = 
-3. So f(x) = -3x for all rational x. But f is continuous, so f(x) = -3x for all x. So set x = b/(a+b), 
where a and b are arbitrary reals (with a+b non-zero). Then P(a,b) = (a+b)nP(1-x, x) = (a+b)n(-
3b/(a+b) + 1) = (a+b)n-1(a-2b), as claimed. [For a+b = 0, we appeal to continuity, or use the 
already derived fact that for n > 1, P(a,b) = 0.]  
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16th IMO 1974 

 

  

A1.  Three players play the following game. There are three cards each with a 
different positive integer. In each round the cards are randomly dealt to the players 
and each receives the number of counters on his card. After two or more rounds, one 
player has received 20, another 10 and the third 9 counters. In the last round the player 
with 10 received the largest number of counters. Who received the middle number on 
the first round?  

 

A2.  Prove that there is a point D on the side AB of the triangle ABC, such that CD is 
the geometric mean of AD and DB if and only if sin A sin B ≤ sin2(C/2).   

A3.  Prove that the sum from k = 0 to n of (2n+1)C(2k+1) 23k is not divisible by 5 for 
any non-negative integer n. [rCs denotes the binomial coefficient r!/(s!(r-s)!) .]   

B1.  An 8 x 8 chessboard is divided into p disjoint rectangles (along the lines between 
squares), so that each rectangle has the same number of white squares as black 
squares, and each rectangle has a different number of squares. Find the maximum 
possible value of p and all possible sets of rectangle sizes.  

 

B2.  Determine all possible values of a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d) 
for positive reals a, b, c, d.  

 

B3.  Let P(x) be a polynomial with integer coefficients of degree d > 0. Let n be the 
number of distinct integer roots to P(x) = 1 or -1. Prove that n ≤ d + 2.  
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IMO 1974 

 
Problem A1  

Three players play the following game. There are three cards each with a different positive 
integer. In each round the cards are randomly dealt to the players and each receives the 
number of counters on his card. After two or more rounds, one player has received 20, 
another 10 and the third 9 counters. In the last round the player with 10 received the largest 
number of counters. Who received the middle number on the first round?    

Solution  

The player with 9 counters.  

The total of the scores, 39, must equal the number of rounds times the total of the cards. But 39 
has no factors except 1, 3, 13 and 39, the total of the cards must be at least 1 + 2 + 3 = 6, and the 
number of rounds is at least 2. Hence there were 3 rounds and the cards total 13.  

The highest score was 20, so the highest card is at least 7. The score of 10 included at least one 
highest card, so the highest card is at most 8. The lowest card is at most 2, because if it was 
higher then the highest card would be at most 13 - 3 - 4 = 6, whereas we know it is at least 7. 
Thus the possibilities for the cards are: 2, 3, 8; 2, 4, 7; 1, 4, 8; 1, 5, 7. But the only one of these 
that allows a score of 20 is 1, 4, 8. Thus the scores were made up: 8 + 8 + 4 = 20, 8 + 1 + 1 = 10, 
4 + 4 + 1 = 9. The last round must have been 4 to the player with 20, 8 to the player with 10 and 1 
to the player with 9. Hence on each of the other two rounds the cards must have been 8 to the 
player with 20, 1 to the player with 10 and 4 to the player with 9.  

IMO 1974 

  
Problem A2  

Prove that there is a point D on the side AB of the triangle ABC, such that CD is the 
geometric mean of AD and DB if and only if sin A sin B ≤ sin2(C/2)    

Solution  

Extend CD to meet the circumcircle of ABC at E. Then CD·DE = AD·DB, so CD is the geometric 
mean of AD and DB iff CD = DE. So we can find such a point iff the distance of C from AB is 
less than the distance of AB from the furthest point of the arc AB on the opposite side of AB to C. 
The furthest point F is evidently the midpoint of the arc AB. F lies on the angle bisector of C. So ∠FAB = ∠FAC = ∠C/2. Hence distance of F from AB is c/2 tan C/2 (as usual we set c = AB, b 
= CA, a = BC). The distance of C from AB is a sin B. So a necessary and sufficient condition is 
c/2 tan C/2 ≥ a sin B. But by the sine rule, a = c sin A/sin C, so the condition becomes (sin C/2 sin 
C)/(2 cos C/2) ≥ sin A sin B. But sin C = 2 sin C/2 cos C/2, so we obtain the condition quoted in 
the question.  
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IMO 1974 

 
  
Problem A3  

Prove that the sum from k = 0 to n of (2n+1)C(2k+1) 23k is not divisible by 5 for any non-
negative integer n. [rCs denotes the binomial coefficient r!/(s!(r-s)!) .]    

Solution  

Let k = √8. Then (1 + k)2n+1 = a + bk, where b is the sum given in the question. Similarly, (1 - 
k)2n+1 = a - bk. This looks like a dead end, because eliminating a gives an unhelpful expression for 
b. The trick is to multiply the two expressions to get 72n+1 = 8b2 - a2. This still looks unhelpful, but 
happens to work, because we soon find that 72n+1 ≠ ±2 (mod 5). So if b was a multiple of 5 then 
we would have a square congruent to ±2 (mod 5) which is impossible.  

IMO 1974 

 
  
Problem B1  

An 8 x 8 chessboard is divided into p disjoint rectangles (along the lines between squares), 
so that each rectangle has the same number of white squares as black squares, and each 
rectangle has a different number of squares. Find the maximum possible value of p and all 
possible sets of rectangle sizes.    

Solution  

The requirement that the number of black and white squares be equal is equivalent to requiring 
that the each rectangle has an even number of squares. 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 = 72 > 
64, so p < 8. There are 5 possible divisions of 64 into 7 unequal even numbers: 2 + 4 + 6 + 8 + 10 
+ 12 + 22; 2 + 4 + 6 + 8 + 10 + 16 + 18; 2 + 4 + 6 + 8 + 12 + 14 + 18; 2 + 4 + 6 + 10 + 12 + 14 + 
16. The first is ruled out because a rectangle with 22 squares would have more than 8 squares on 
its longest side. The others are all possible.  
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1 1 1 1 1 5 5 4   1 1 1 1 1 1 5 5 
 
1 1 1 1 1 5 5 4   1 1 1 1 1 1 5 5 
 
1 1 1 1 1 5 5 4   1 1 1 1 1 1 5 5 
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5 5 5 5 5 5 6 6   4 4 4 4 4 5 5 5 

IMO 1974 

 
  
  
Problem B2  

Determine all possible values of a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d) for positive 
reals a, b, c, d.    

Solution  

We show first that the sum must lie between 1 and 2. If we replace each denominator by a+b+c+d 
then we reduce each term and get 1. Hence the sum is more than 1. Suppose a is the largest of the 
four reals. Then the first term is less than 1. The second and fourth terms have denominators 
greater than b+c+d, so the terms are increased if we replace the denominators by b+c+d. But then 
the last three terms sum to 1. Thus the sum of the last three terms is less than 1. Hence the sum is 
less than 2.  

If we set a = c = 1 and make b and d small, then the first and third terms can be made arbitarily 
close to 1 and the other two terms arbitarily close to 0, so we can make the sum arbitarily close to 
2. If we set a = 1, c = d and make b and c/b arbitarily small, then the first term is arbitarily close 
to 1 and the last three terms are all arbitarily small, so we can make the sum arbitarily close to 1. 
Hence, by continuity, we can achieve any value in the open interval (1,2).  
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Problem B3 

Let P(x) be a polynomial with integer coefficients of degree d > 0. Let n be the number of 
distinct integer roots to P(x) = 1 or -1. Prove that n ≤ d + 2.    

Solution 

Suppose that A(x) and B(x) are two polynomials with integer coefficients which are identical 
except for their constant terms, which differ by 2. Suppose A(r) = 0, and B(s) =0 with r and s 
integers. Then subtracting we get 2 plus a sum of terms a(ri - si). Each of these terms is divisible 
by (r - s), so 2 must be divisible by (r - s). Hence r and s differ by 0, 1 or 2.  

Now let r be the smallest root of P(x) = 1 and P(x) = -1. The polynomial with r as a root can have 
at most d distinct roots and hence at most d distinct integer roots. If s is a root of the other 
equation then s must differ from r by 0, 1, or 2. But s ≥ r, so s = r, r+1 or r+2. Hence the other 
equation adds at most 2 distinct integer roots.  
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15th IMO 1973 

 

  

A1.  OP1, OP2, ... , OP2n+1 are unit vectors in a plane. P1, P2, ... , P2n+1 all lie on the 
same side of a line through O. Prove that |OP1 + ... + OP2n+1| ≥ 1.  

 

A2.  Can we find a finite set of non-coplanar points, such that given any two points, A 
and B, there are two others, C and D, with the lines AB and CD parallel and distinct?   

A3.  a and b are real numbers for which the equation x4 + ax3 + bx2 + ax + 1 = 0 has at 
least one real solution. Find the least possible value of a2 + b2.  

 

B1.  A soldier needs to sweep a region with the shape of an equilateral triangle for 
mines. The detector has an effective radius equal to half the altitude of the triangle. He 
starts at a vertex of the triangle. What path should he follow in order to travel the least 
distance and still sweep the whole region?  

 

B2.  G is a set of non-constant functions f. Each f is defined on the real line and has 
the form f(x) = ax + b for some real a, b. If f and g are in G, then so is fg, where fg is 
defined by fg(x) = f(g(x)). If f is in G, then so is the inverse f-1. If f(x) = ax + b, then f-
1(x) = x/a - b/a. Every f in G has a fixed point (in other words we can find xf such that 
f(x f) = xf. Prove that all the functions in G have a common fixed point.  

 

B3.  a1, a2, ... , an are positive reals, and q satisfies 0 < q < 1. Find b1, b2, ... , bn such 
that:  

(a)  ai < bi for i = 1, 2, ... , n,  

(b)  q < bi+1/bi < 1/q for i = 1, 2, ... , n-1,  

(c)  b1 + b2 + ... + bn < (a1 + a2 + ... + an)(1 + q)/(1 - q).  
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Problem A1 

OP1, OP2, ... , OP2n+1 are unit vectors in a plane. P1, P2, ... , P2n+1 all lie on the same side of a 
line through O. Prove that |OP1 + ... + OP2n+1| ≥ 1.    

Solution 

We proceed by induction on n. It is clearly true for n = 1. Assume it is true for 2n-1. Given OPi 
for 2n+1, reorder them so that all OPi lie between OP2n and OP2n+1. Then u = OP2n + OP2n+1 lies 
along the angle bisector of angle P2nOP2n+1 and hence makes an angle less than 90o with v = OP1 
+ OP2 + ... + OP2n-1 (which must lie between OP1 and OP2n-1 and hence between OP2n and OP2n+1. 
By induction |v| ≥ 1. But |u + v| ≥ |v| (use the cosine formula). Hence the result is true for 2n+1.  

It is clearly best possible: take OP1 = ... = OPn = -OPn+1 = ... = -OP2n, and OP2n+1 in an arbitrary 
direction 

IMO 1973 

 
Problem A2 

Can we find a finite set of non-coplanar points, such that given any two points, A and B, 
there are two others, C and D, with the lines AB and CD parallel and distinct?    

Solution 

To warm up, we may notice that a regular hexagon is a planar set satisfying the condition.  

Take two regular hexagons with a common long diagonal and their planes perpendicular. Now if 
we take A, B in the same hexagon, then we can find C, D in the same hexagon. If we take A in 
one and B in the other, then we may take C at the opposite end of a long diagonal from A, and D 
at the opposite end of a long diagonal from B.   
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IMO 1973 

  
Problem A3 

a and b are real numbers for which the equation x4 + ax3 + bx2 + ax + 1 = 0 has at least one 
real solution. Find the least possible value of a2 + b2.    

Solution 

Put y = x + 1/x and the equation becomes y2 + ay + b - 2 = 0, which has solutions y = -a/2 ±√(a2 + 
8 - 2b)/2. We require |y| ≥ 2 for the original equation to have a real root and hence we need |a| + 
√(a2 + 8 - 4b) ≥ 4. Squaring gives 2|a| - b ≥ 2. Hence a2 + b2 ≥ a2 + (2 - 2|a|)2 = 5a2 - 8|a| + 4 = 5(|a| 
- 4/5)2 + 4/5. So the least possible value of a2 + b2 is 4/5, achieved when a = 4/5, b = -2/5. In this 
case, the original equation is x4 + 4/5 x3 - 2/5 x2 + 4/5 x + 1 = (x + 1)2(x2 - 6/5 x + 1).  

IMO 1973 

 
 Problem B1 

A soldier needs to sweep a region with the shape of an equilateral triangle for mines. The 
detector has an effective radius equal to half the altitude of the triangle. He starts at a 
vertex of the triangle. What path should he follow in order to travel the least distance and 
still sweep the whole region?    

Solution 

In particular he must sweep the other two vertices. Let us take the triangle to be ABC, with side 1 
and assume the soldier starts at A. So the path must intersect the circles radius √3/4 centered on 
the other two vertices. Let us look for the shortest path of this type. Suppose it intersects the circle 
center B at X and the circle center C at Y, and goes first to X and then to Y. Clearly the path from 
A to X must be a straight line and the path from X to Y must be a straight line. Moreover the 
shortest path from X to the circle center C follows the line XC and has length AX + XC - √3/4. 
So we are looking for the point X which minimises AX + XC.  

Consider the point P where the altitude intersects the circle. By the usual reflection argument the 
distance AP + PC is shorter than the distance AP' + P'C for any other point P' on the line 
perpendicular to the altitude through P. Moreover for any point X on the circle, take AX to cut the 
line at P'. Then AX + XC > AP' + P'C > AP + PC.  

It remains to check that the three circles center A, X, Y cover the triangle. In fact the circle center 
X covers the whole triangle except for a small portion near A and a small portion near C, which 
are covered by the triangles center A and Y.  
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Problem B2  

G is a set of non-constant functions f. Each f is defined on the real line and has the form f(x) 
= ax + b for some real a, b. If f and g are in G, then so is fg, where fg is defined by fg(x) = 
f(g(x)). If f is in G, then so is the inverse f-1. If f(x) = ax + b, then f-1(x) = x/a - b/a. Every f in 
G has a fixed point (in other words we can find xf such that f(xf) = xf. Prove that all the 
functions in G have a common fixed point.    

Solution  

f(x) = ax + b has fixed point b/(1-a). If a = 1, then b must be 0, and any point is a fixed point. So 
suppose f(x) = ax + b and g(x) = ax + b' are in G. Then h the inverse of f is given by h(x) = x/a - 
b/a, and hg(x) = x + b'/a - b/a. This is in G, so we must have b' = b.  

Suppose f(x) = ax + b, and g(x) = cx + d are in G. Then fg(x) = acx + (ad + b), and gf(x) = acx + 
(bc + d). We must have ad + b = bc + d and hence b/(1-a) = c/(1-d), in other words f and g have 
the same fixed point.  

IMO 1973 

  
Problem B3  

a1, a2, ... , an are positive reals, and q satisfies 0 < q < 1. Find b1, b2, ... , bn such that:  

(a)  ai < bi for i = 1, 2, ... , n,  

(b)  q < bi+1/bi < 1/q for i = 1, 2, ... , n-1,  

(c)  b1 + b2 + ... + bn < (a1 + a2 + ... + an)(1 + q)/(1 - q).    

Solution  

We notice that the constraints are linear, in the sense that if bi is a solution for ai, q, and bi' is a 
solution for ai', q, then for any k, k' > 0 a solution for kai + k'ai', q is kbi + k'bi'. Also a "near" 
solution for ah = 1, other ai = 0 is b1 = qh-1, b2 = qh-2, ... , bh-1 = q, bh = 1, bh+1 = q, ... , bn = qn-h. 
"Near" because the inequalities in (a) and (b) are not strict.  

However, we might reasonably hope that the inequalities would become strict in the linear 
combination, and indeed that is true. Define br = qr-1a1 + qr-2a2 + ... + qar-1 + ar + qar+1 + ... + qn-ran. 
Then we may easily verify that (a) - (c) hold.  
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14th IMO 1972 

 

  

A1.  Given any set of ten distinct numbers in the range 10, 11, ... , 99, prove that we 
can always find two disjoint subsets with the same sum.  

 

A2.  Given n > 4, prove that every cyclic quadrilateral can be dissected into n cyclic 
quadrilaterals.   

A3.  Prove that (2m)!(2n)! is a multiple of m!n!(m+n)! for any non-negative integers 
m and n.  

 

B1.  Find all positive real solutions to:  

        (x1
2 - x3x5)(x2

2 - x3x5) ≤ 0  
        (x2

2 - x4x1)(x3
2 - x4x1) ≤ 0  

        (x3
2 - x5x2)(x4

2 - x5x2) ≤ 0  
        (x4

2 - x1x3)(x5
2 - x1x3) ≤ 0  

        (x5
2 – x2x4)(x1

2 - x2x4) ≤ 0  

 

B2.  f and g are real-valued functions defined on the real line. For all x and y, f(x + y) 
+ f(x - y) = 2f(x)g(y). f is not identically zero and |f(x)| ≤ 1 for all x. Prove that |g(x)| ≤ 
1 for all x.   

B3.  Given four distinct parallel planes, prove that there exists a regular tetrahedron 
with a vertex on each plane.  
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Problem A1  

Given any set of ten distinct numbers in the range 10, 11, ... , 99, prove that we can always 
find two disjoint subsets with the same sum.    

Solution  

The number of non-empty subsets is 210 - 1 = 1023. The sum of each subset is at most 90 + ... + 
99 = 945, so there must be two distinct subsets A and B with the same sum. A \ B and B \ A are 
disjoint subsets, also with the same sum.   

IMO 1972 

  
Problem A2  

Given n > 4, prove that every cyclic quadrilateral can be dissected into n cyclic 
quadrilaterals.    

Solution  

A little tinkering soon shows that it is easy to divide a cyclic quadrilateral ABCD into 4 cyclic 
quadrilaterals. Take a point P inside the quadrilateral and take an arbitrary line PK joining it to 
AB. Now take L on BC so that ∠KPL = 180o - ∠B (thus ensuring that KPLB is cyclic), then M 
on CD so that ∠LPM = 180o - ∠C, then N on AD so that ∠MPN = 180o - ∠D. Then ∠NPK = 
180o - ∠A. We may need to impose some restrictions on P and K to ensure that we can obtain the 
necessary angles. It is not clear, however, what to do next.  

The trick is to notice that the problem is easy if two sides are parallel. For then we may take 
arbitrarily many lines parallel to the parallel sides and divide the original quadrilateral into any 
number of parts.  

So we need to arrange our choice of P and K so that one of the new quadrilaterals has parallel 
sides. But that is easy, since K is arbitrary. So take PK parallel to AD, then we must also have PL 
parallel to CD.  

It remains to consider how we ensure that the points lie on the correct sides. Consider first K and 
L. K cannot lie on AD since PK is parallel to AD, and we can avoid it lying on BC by taking P 
sufficiently close to D. Similarly, taking P sufficiently close to D ensures that L lies on BC. Now 
suppose that M and N are both on AD. Then if we keep K fixed and move P closer to CD, N will 
move on to CD, leaving M on AD.  
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Problem A3 

Prove that (2m)!(2n)! is a multiple of m!n!(m+n)! for any non-negative integers m and n.    

Solution 

The trick is to find a recurrence relation for f(m,n) = (2m)!(2n)!/(m!n!(m+n)!). In fact, f(m,n) = 4 
f(m,n-1) - f(m+1,n-1), which is sufficient to generate all the f(m,n), given that f(m,0) = 
(2m)!/(m!m!), which we know to be integeral.  

IMO 1972 

  
Problem B1  

Find all positive real solutions to:  

        (x1
2 - x3x5)(x2

2 - x3x5) ≤ 0  
        (x2

2 - x4x1)(x3
2 - x4x1) ≤ 0  

        (x3
2 - x5x2)(x4

2 - x5x2) ≤ 0  
        (x4

2 - x1x3)(x5
2 - x1x3) ≤ 0  

        (x5
2 - x2x4)(x1

2 - x2x4) ≤ 0    

Solution 

Answer: x1 = x2 = x3 = x4 = x5.  

The difficulty with this problem is that it has more information than we need. There is a neat 
solution in Greitzer which shows that all we need is the sum of the 5 inequalities, because one can 
rewrite that as (x1x2 - x1x4)

2 + (x2x3 - x2x5)
2 + ... + (x5x1 - x5x3)

2 + (x1x3 - x1x5)
2 + ... + (x5x2 - x5x4)

2 
≤ 0. The difficulty is how one ever dreams up such an idea!  

The more plodding solution is to break the symmetry by taking x1 as the largest. If the second 
largest is x2, then the first inequality tells us that x1

2 or x2
2 = x3x5. But if x3 and x5 are unequal, 

then the larger would exceed x1 or x2. Contradiction. Hence x3 = x5 and also equals x2 or x1. If 
they equal x1, then they would also equal x2 (by definition of x2), so in any case they must equal 
x2. Now the second inequality gives x2 = x1x4. So either all the numbers are equal, or x1 > x2 = x3 
= x5 > x4. But in the second case the last inequality is violated. So the only solution is all numbers 
equal.  

If the second largest is x5, then we can use the last inequality to deduce that x2 = x4 = x5 and 
proceed as before.  

If the second largest is x3, then the fourth inequality gives that x1 = x3 = x5 or x1 = x3 = x4. In the 
first case, x5 is the second largest and we are home already. In the second case, the third 
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inequality gives x3
2 = x2x5 and hence x3 = x2 = x5 (or one of x2, x5 would be larger than the second 

largest). So x5 is the second largest and we are home.  

Finally, if the second largest is x4, then the second inequality gives x1 = x2 = x4 or x1 = x3 = x4. 
Either way, we have a case already covered and so the numbers are 

IMO 1972 

 
Problem B2  

f and g are real-valued functions defined on the real line. For all x and y, f(x + y) + f(x - y) = 
2f(x)g(y). f is not identically zero and |f(x)| ≤ 1 for all x. Prove that |g(x)| ≤ 1 for all x.    

Solution  

Let k be the least upper bound for |f(x)|. Suppose |g(y)| > 1. Take any x with |f(x)| > 0, then 2k ≥ 
|f(x+y)| + |f(x-y)| ≥ |f(x+y) + f(x-y)| = 2|g(y)||f(x)|, so |f(x)| < k/|g(y)|. In other words, k/|g(y)| is an 
upper bound for |f(x)| which is less than k. Contradiction.   

IMO 1972 

 
 Problem B3  

Given four distinct parallel planes, prove that there exists a regular tetrahedron with a 
vertex on each plane.    

Solution  

Intuitively, we can place A and B on the two outer planes with AB perpendicular to the planes. 
Then tilt AB in one direction until we bring C onto one of the middle planes (keeping A and B on 
the outer planes), then tilt AB the other way (keeping A, B, C on their respective planes) until D 
gets onto the last plane.  

Take A as the origin. Let the vectors AB, AC, AD be b, c, d. Take p as one of the outer planes. 
Let the distances to the other planes be e, f, g. Now we find a vector n satisfying: n.b = e, n.c = f, 
n.d = g. This is a system of three equations in three unknowns with non-zero determinant 
(because b.c x d is non-zero), so it has a solution n. Scale the tetrahedron by |n|, orient p 
perpendicular to n/|n|, then B, C, D will be on the other planes as required.  
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13th IMO 1971 

 

  

A1.  Let En = (a1 - a2)(a1 - a3) ... (a1 - an) + (a2 - a1)(a2 - a3) ... (a2 - an) + ... + (an - a1)(an 
- a2) ... (an - an-1). Let Sn be the proposition that En ≥ 0 for all real ai.  

Prove that Sn is true for n = 3 and 5, but for no other n > 2.  
 

A2.  Let P1 be a convex polyhedron with vertices A1, A2, ... , A9. Let Pi be the 
polyhedron obtained from P1 by a translation that moves A1 to Ai. Prove that at least 
two of the polyhedra P1, P2, ... , P9 have an interior point in common.   

A3.  Prove that we can find an infinite set of positive integers of the form 2n - 3 (where 
n is a positive integer) every pair of which are relatively prime.  

 

B1.  All faces of the tetrahedron ABCD are acute-angled. Take a point X in the 
interior of the segment AB, and similarly Y in BC, Z in CD and T in AD.  

(a)  If angle DAB + angle BCD ≠ angle CDA + angle ABC, then prove that none of 
the closed paths XYZTX has minimal length;  

(b)  If angle DAB + angle BCD =angle CDA + angle ABC, then there are infinitely 
many shortest paths XYZTX, each with length 2 AC sin k, where 2k = angle BAC + 
angle CAD + angle DAB.  

 

B2.  Prove that for every positive integer m we can find a finite set S of points in the 
plane, such that given any point A of S, there are exactly m points in S at unit distance 
from A.   

B3.  Let A = (aij), where i, j = 1, 2, ... , n, be a square matrix with all aij non-negative 
integers. For each i, j such that aij = 0, the sum of the elements in the ith row and the 
jth column is at least n. Prove that the sum of all the elements in the matrix is at least 
n2/2.  
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Problem A1 

Let En = (a1 - a2)(a1 - a3) ... (a1 - an) + (a2 - a1)(a2 - a3) ... (a2 - an) + ... + (an - a1)(an - a2) ... (an - 
an-1). Let Sn be the proposition that En ≥ 0 for all real ai.  

Prove that Sn is true for n = 3 and 5, but for no other n > 2.    

Solution 

Take a1 < 0, and the remaining ai = 0. Then En = a1
n-1 < 0 for n even, so the proposition is false for 

even n.  

Suppose n ≥ 7 and odd. Take any c > a > b, and let a1 = a, a2 = a3 = a4= b, and a5 = a6 = ... = an = c. 
Then En = (a - b)3(a - c)n-4 < 0. So the proposition is false for odd n ≥ 7.  

Assume a1 ≥ a2 ≥ a3. Then in E3 the sum of the first two terms is non-negative, because (a1 - a3) ≥ 
(a2 - a3). The last term is also non-negative. Hence E3 ≥ 0, and the proposition is true for n = 3.  

It remains to prove S5. Suppose a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5. Then the sum of the first two terms in E5 is 
(a1 - a2){(a1 - a3)(a1 - a4)(a1 - a5) - (a2 - a3)(a2 - a4)(a2 - a5)} ≥ 0. The third term is non-negative (the 
first two factors are non-positive and the last two non-negative). The sum of the last two terms is: 
(a4 - a5){(a1 - a5)(a2 - a5)(a3 - a5) - (a1 - a4)(a2 - a4)(a3 - a4)} ≥ 0. Hence E5 ≥ 0.  

IMO 1971 

  
Problem A2 

Let P1 be a convex polyhedron with vertices A1, A2, ... , A9. Let Pi be the polyhedron 
obtained from P1 by a translation that moves A1 to Ai. Prove that at least two of the 
polyhedra P1, P2, ... , P9 have an interior point in common.    

Solution 

The result is false for 8 vertices - for example, the cube. We get 8 cubes, with only faces in 
common, forming a cube 8 times as large.  

This suggests a trick. Each Pi is contained in D, the polyhedron formed from P1 by doubling the 
scale. Take A1 as the origin and take the vertex Bi to have twice the coordinates of Ai. Given a 
point X inside P1, the midpoint of PiX must lie in P1 by convexity. Hence the point with doubled 
coordinates, which is obtained by adding the coordinates of Ai to the coordinates of X, lies in D. 
In other words every point of Pi lies in D. But the volume of D is 8 times the volume of P1, which 
is less than the sum of the volumes of P1, ... , P9.  
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Problem A3 

Prove that we can find an infinite set of positive integers of the form 2n - 3 (where n is a 
positive integer) every pair of which are relatively prime.    

Solution 

We show how to enlarge a set of r such integers to a set of r+1. So suppose 2n
1 - 3, ... , 2nr - 3 are 

all relatively prime. The idea is to find 2n - 1 divisible by m = (2n1 - 3) ... (2nr - 3), because then 2n 
- 3 must be relatively prime to all of the factors of m. At least two of 20, 21, ... , 2m must be 
congruent mod m. So suppose m1 > m2 and 2m1 = 2m

2 (mod m), then we must have 2m
1
 - m

2 - 1 = 0 
(mod m), since m is odd. So we may take nr+1 to be m1 - m2.  

IMO 1971 

  
Problem B1 

All faces of the tetrahedron ABCD are acute-angled. Take a point X in the interior of the 
segment AB, and similarly Y in BC, Z in CD and T in AD.  

(a)  If ∠∠∠∠DAB + ∠∠∠∠BCD ≠ ∠∠∠∠CDA + ∠∠∠∠ABC, then prove that none of the closed paths 
XYZTX has minimal length;  

(b)  If ∠∠∠∠DAB + ∠∠∠∠BCD = ∠∠∠∠CDA + ∠∠∠∠ABC, then there are infinitely many shortest paths 
XYZTX, each with length 2 AC sin k, where 2k = ∠∠∠∠BAC + ∠∠∠∠CAD + ∠∠∠∠DAB.    

Solution 

The key is to pretend the tetrahedron is made of cardboard, cut it along three edges and unfold it. 
Suppose we do this to get the hexagon CAC'BDB'. Now the path is a line joining Y on B'C to Y' 
on the opposite side BC' of the hexagon. Clearly this line must be straight for a minimal path. If 
B'C and BC' are parallel, then we can take Y anywhere on the side and the minimal path length is 
the expression given.  

But if they are not parallel, then the minimal path will come from an extreme position. Suppose 
CC' < BB'. If the interior angle CAC' is less than 180o, then the minimal path is obtained by 
taking Y at C. But this does not meet the requirement that Y be an interior point of the edge, so 
there is no minimal path in the permitted set. If the interior angle CAC' is greater than 180, then 
the minimal path is obtained by taking X and T at A. Again this is not permitted.  

The problem therefore reduces to finding the condition for B'C and BC' to be parallel. This is 
evidently angles BCD + DCA + CAD + BAD + BAC + ACB = 360o. But DCA + CAD = 180o - 
ADC, and BAC + ACB = 180o - ABC, so we obtain the condition given.  
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 Problem B2  

Prove that for every positive integer m we can find a finite set S of points in the plane, such 
that given any point A of S, there are exactly m points in S at unit distance from A.    

Solution  

Take a1, a2, ... , am to be points a distance 1/2 from the origin O. Form the set of 2m points ±a1 ±a2 
± ... ±am. Given such a point, it is at unit distance from the m points with just one coefficient 
different. So we are home, provided that we can choose the ai to avoid any other pairs of points 
being at unit distance, and to avoid any degeneracy (where some of the 2m points coincide).  

The distance between two points in the set is |c1a1 + c2a2 + ... + cmam|, where ci = 0, 2 or -2. So let 
us choose the ai inductively. Suppose we have already chosen up to m. The constraints on am+1 are 
that we do not have |c1a1 + c2a2 + ... + cmam + 2am+1| equal to 0 or 1 for any ci = 0, 2 or -2, apart 
from the trivial cases of all ci = 0. Each | | = 0 rules out a single point and each | | = 1 rules out a 
circle which intersects the circle radius 1/2 about the origin at 2 points and hence rules out two 
points. So the effect of the constraints is to rule out a finite number of points, whereas we have 
uncountably many to choose from.  

IMO 1971 

Problem B3  

Let A = (aij ), where i, j = 1, 2, ... , n, be a square matrix with all aij  non-negative integers. For 
each i, j such that aij  = 0, the sum of the elements in the ith row and the jth column is at least 
n. Prove that the sum of all the elements in the matrix is at least n2/2.    

Solution  

Let x be the smallest row or column sum. If x >= n/2, then we are done, so assume x < n/2. 
Suppose it is a row. (If not, interchange rows and columns.) The number of non-zero elements in 
the row, y, must also satisfy y < n/2, since each non-zero element is at least 1. Now move across 
this row summing the columns. The y columns with a non-zero element have sum at least x (by 
the definition of x). The n - y columns with a zero have sum at least n - x. Hence the total sum is 
at least xy + (n - x)(n - y) = n2/2 + (n - 2x)(n - 2y)/2 > n2/2.  

The result is evidently best possible, because we can fill the matrix alternately with zeros and 
ones (so that aij = 1 if i and j are both odd or both even, 0 otherwise). For n even, every row and 
column has n/2 1s, so the condition is certainly satisfied and the total sum is n2/2. For n odd, odd 
numbered rows have (n+1)/2 1s and even numbered one less. But the only zeros are in positions 
which have either the row or the column odd-numbered, so the sum in such cases is n as required. 
The total sum is n2/2 + 1/2. Alternatively, for n even, we could place n/2 down the main diagonal.  
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12th IMO 1970 

 

  

A1.  M is any point on the side AB of the triangle ABC. r, r1, r2 are the radii of the 
circles inscribed in ABC, AMC, BMC. q is the radius of the circle on the opposite side 
of AB to C, touching the three sides of AB and the extensions of CA and CB. 
Similarly, q1 and q2. Prove that r1r2q = rq1q2.  

 

A2.  We have 0 ≤ xi < b for i = 0, 1, ... , n and xn > 0, xn-1 > 0. If a > b, and xnxn-1...x0 
represents the number A base a and B base b, whilst xn-1xn-2...x0 represents the number 
A' base a and B' base b, prove that A'B < AB'.   

A3.  The real numbers a0, a1, a2, ... satisfy 1 = a0 ≤ a1 ≤ a2 ≤ ... . b1, b2, b3, ... are 
defined by bn = ∑1≤k≤n (1 - ak-1/ak)/√ak.  

(a)  Prove that 0 ≤ bn < 2.  

(b)  Given c satisfying 0 ≤ c < 2, prove that we can find an so that bn > c for all 
sufficiently large n.  

 

B1.  Find all positive integers n such that the set {n, n+1, n+2, n+3, n+4, n+5} can be 
partitioned into two subsets so that the product of the numbers in each subset is equal.   

B2.  In the tetrahedron ABCD, angle BDC = 90o and the foot of the perpendicular 
from D to ABC is the intersection of the altitudes of ABC. Prove that:  

      (AB + BC + CA)2 ≤ 6(AD2 + BD2 + CD2).  

When do we have equality?  

 

B3.  Given 100 coplanar points, no 3 collinear, prove that at most 70% of the triangles 
formed by the points have all angles acute.  

 

 

 

 

 

 



 176

IMO 1970 

 
  
Problem A1 

M is any point on the side AB of the triangle ABC. r, r1, r2 are the radii of the circles 
inscribed in ABC, AMC, BMC. q is the radius of the circle on the opposite side of AB to C, 
touching the three sides of AB and the extensions of CA and CB. Similarly, q1 and q2. Prove 
that r 1r 2q = rq1q2.    

Solution  

We need an expression for r/q. There are two expressions, one in terms of angles and the other in 
terms of sides. The latter is a poor choice, because it is both harder to derive and less useful. So 
we derive the angle expression.  

Let I be the center of the in-circle for ABC and X the center of the external circle for ABC. I is 
the intersection of the two angle bisectors from A and B, so c = r (cot A/2 + cot B/2). The X lies 
on the bisector of the external angle, so angle XAB is 90o - A/2. Similarly, angle XBA is 90o - 
B/2, so c = q (tan A/2 + tan B/2). Hence r/q = (tan A/2 + tan B/2)/(cot A/2 + cot B/2) = tan A/2 
tan B/2.  

Applying this to the other two triangles, we get r1/q1 = tan A/2 tan CMA/2, r2/q2 = tan B/2 tan 
CMB/2. But CMB/2 = 90o - CMA/2, so tan CMB/2 = 1/tan CMA/2. Hence result.  

IMO 1970 

  
  
Problem A2 

We have 0 ≤ xi < b for i = 0, 1, ... , n and xn > 0, xn-1 > 0. If a > b, and xnxn-1...x0 represents the 
number A base a and B base b, whilst xn-1xn-2...x0 represents the number A' base a and B' 
base b, prove that A'B < AB'.    

Solution 

We have anbm > bnam for n > m. Hence anB' > bnA'. Adding anbn to both sides gives anB > bnA. 
Hence xna

nB > xnb
nA. But xna

n = A - A' and xnb
n = B - B', so (A - A')B > (B - B')A. Hence result.  

Note that the only purpose of requiring xn-1 > 0 is to prevent A' and B' being zero.  
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Problem A3  

The real numbers a0, a1, a2, ... satisfy 1 = a0 <= a1 ≤ a2 <= ... . b1, b2, b3, ... are defined by bn = 
sum for k = 1 to n of (1 - ak-1/ak)/√ak.  

(a)  Prove that 0 ≤ bn < 2.  

(b)  Given c satisfying 0 ≤ c < 2, prove that we can find an so that bn > c for all sufficiently 
large n.    

Solution  

(a)  Each term of the sum is non-negative, so bn is non-negative. Let ck = √ak. Then the kth term = 
(1 - ak-1/ak)/√ak = ck-1

2/ck (1/ak-1 - 1/ak) = ck-1
2/ck (1/ck-1 + 1/ck)(1/ck-1 - 1/ck). But ck-1

2/ck (1/ck-1 + 
1/ck) ≤ 2, so the kth term ≤ 2(1/ck-1 - 1/ck). Hence bn <= 2 - 2/cn < 2.  

(b)  Let ck = dk, where d is a constant > 1, which we will choose later. Then the kth term is (1 - 
1/d2)1/dk, so bn = (1 - 1/d2)(1 - 1/dn+1)/(1 - 1/d) = (1 + 1/d)(1 - 1/dn+1). Now take d sufficiently 
close to 1 that 1 + 1/d > c, and then take n sufficiently large so that (1 + 1/d)(1 - 1/dn+1) > c.  

IMO 1970 

  
Problem B1  

Find all positive integers n such that the set {n, n+1, n+2, n+3, n+4, n+5} can be partitioned 
into two subsets so that the product of the numbers in each subset is equal.    

Solution  

The only primes dividing numbers in the set can be 2, 3 or 5, because if any larger prime was a 
factor, then it would only divide one number in the set and hence only one product. Three of the 
numbers must be odd. At most one of the odd numbers can be a multiple of 3 and at most one can 
be a multiple of 5. The other odd number cannot have any prime factors. The only such number is 
1, so the set must be {1, 2, 3, 4, 5, 6}, but that does not work because only one of the numbers is a 
multiple of 5. So there are no such sets.  
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Problem B2 

In the tetrahedron ABCD, angle BDC = 90o and the foot of the perpendicular from D to 
ABC is the intersection of the altitudes of ABC. Prove that:  

      (AB + BC + CA)2 ≤ 6(AD2 + BD2 + CD2).  

When do we have equality?    

Solution 

The first step is to show that angles ADB and ADC are also 90o. Let H be the intersection of the 
altitudes of ABC and let CH meet AB at X. Planes CED and ABC are perpendicular and AB is 
perpendicular to the line of intersection CE. Hence AB is perpendicular to the plane CDE and 
hence to ED. So BD2 = DE2 + BE2. Also CB2 = CE2 + BE2. Subtracting: CB2 - BD2 = CE2 - DE2. 
But CB2 - BD2 = CD2, so CE2 = CD2 + DE2, so angle CDE = 90o. But angle CDB = 90o, so CD is 
perpendicular to the plane DAB, and hence angle CDA = 90o. Similarly, angle ADB = 90o.  

Hence AB2 + BC2 + CA2 = 2(DA2 + DB2 + DC2). But now we are done, because Cauchy's 
inequality gives (AB + BC + CA)2 ≤ 3(AB2 + BC2 + CA2).  

We have equality iff we have equality in Cauchy's inequality, which means AB = BC = CA.  

IMO 1970 

 
 Problem B3 

Given 100 coplanar points, no 3 collinear, prove that at most 70% of the triangles formed by the 
points have all angles acute.  

Solution    Improved and corrected by Gerhard Wöginger, Technical University Graz  

At most 3 of the triangles formed by 4 points can be acute. It follows that at most 7 out of the 10 
triangles formed by any 5 points can be acute. For given 10 points, the maximum no. of acute 
triangles is: the no. of subsets of 4 points x 3/the no. of subsets of 4 points containing 3 given 
points. The total no. of triangles is the same expression with the first 3 replaced by 4. Hence at 
most 3/4 of the 10, or 7.5, can be acute, and hence at most 7 can be acute.  

The same argument now extends the result to 100 points. The maximum number of acute 
triangles formed by 100 points is: the no. of subsets of 5 points x 7/the no. of subsets of 5 points 
containing 3 given points. The total no. of triangles is the same expression with 7 replaced by 10. 
Hence at most 7/10 of the triangles are acute 
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11th IMO 1969 

 

  

A1.  Prove that there are infinitely many positive integers m, such that n4 + m is not 
prime for any positive integer n.  

 

A2.  Let f(x) = cos(a1 + x) + 1/2 cos(a2 + x) + 1/4 cos(a3 + x) + ... + 1/2n-1 cos(an + x), 
where ai are real constants and x is a real variable. If f(x1) = f(x2) = 0, prove that x1 - x2 
is a multiple of π.   

A3.  For each of k = 1, 2, 3, 4, 5 find necessary and sufficient conditions on a > 0 such 
that there exists a tetrahedron with k edges length a and the remainder length 1.  

 

B1.  C is a point on the semicircle diameter AB, between A and B. D is the foot of the 
perpendicular from C to AB. The circle K1 is the in-circle of ABC, the circle K2 
touches CD, DA and the semicircle, the circle K3 touches CD, DB and the semicircle. 
Prove that K1, K2 and K3 have another common tangent apart from AB.  

 

B2.  Given n > 4 points in the plane, no three collinear. Prove that there are at least (n-
3)(n-4)/2 convex quadrilaterals with vertices amongst the n points.  

 

B3.  Given real numbers x1, x2, y1, y2, z1, z2, satisfying x1 > 0, x2 > 0, x1y1 > z1
2, and 

x2y2 > z2
2, prove that:  

      8/((x1 + x2)(y1 + y2) - (z1 + z2)
2) ≤ 1/(x1y1 - z1

2) + 1/(x2y2 - z2
2).  

Give necessary and sufficient conditions for equality.  
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Problem A1  

Prove that there are infinitely many positive integers m, such that n4 + m is not prime for 
any positive integer n.    

Solution  

n4 + 4 r4 = (n2 + 2rn + 2r2)(n2 - 2rn + 2r2). Clearly the first factor is greater than 1, the second 
factor is (n - r)2 + r2, which is also greater than 1 for r greater than 1. So we may take m = 4 r4 for 
any r greater than 1.  

IMO 1969 

  
Problem A2  

Let f(x) = cos(a1 + x) + 1/2 cos(a2 + x) + 1/4 cos(a3 + x) + ... + 1/2n-1 cos(an + x), where ai are 
real constants and x is a real variable. If f(x1) = f(x2) = 0, prove that x1 - x2 is a multiple of π.   

Solution  

f is not identically zero, because f(-a1) = 1 + 1/2 cos(a2 - a1) + ... > 1 - 1/2 - 1/4 - ... - 1/2n-1 > 0.  

Using the expression for cos(x + y) we obtain f(x) = b cos x + c sin x, where b = cos a1 + 1/2 cos 
a2 + ... + 1/2n-1 cos an, and c = - sin a1 - 1/2 sin a2 - ... - 1/2n-1 sin an. b and c are not both zero, 
since f is not identically zero, so f(x) = √(b2 + c2) cos(d + x), where cos d = b/√(b2 + c2), and sin d 
= c/√(b2 + c2). Hence the roots of f(x) = 0 are just mπ + π/2 - d.  

 IMO 1969 

  
Problem A3  

For each of k = 1, 2, 3, 4, 5 find necessary and sufficient conditions on a > 0 such that there 
exists a tetrahedron with k edges length a and the remainder length 1.    

Solution  

A plodding question. Take the tetrahedron to be ABCD.  

Take k = 1 and AB to have length a, the other edges length 1. Then we can hinge triangles ACD 
and BCD about CD to vary AB. The extreme values evidently occur with A, B, C, D coplanar. 
The least value, 0, when A coincides with B, and the greatest value √3, when A and B are on 
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opposite sides of CD. We rule out the extreme values on the grounds that the tetrahedron is 
degenerate, thus obtaining 0 < a < √3.  

For k = 5, the same argument shows that 0 < 1 < √3 a, and hence a > 1/√3.  

For k = 2, there are two possible configurations: the sides length a adjacent, or not. Consider first 
the adjacent case. Take the sides length a to be AC and AD. As before, the two extreme cases 
gave A, B, C, D coplanar. If A and B are on opposite sides of CD, then a = √(2 - √3). If they are 
on the same side, then a = √(2 + √3). So this configuration allows any a satisfying √(2 - √3) < a < 
√(2 + √3).  

The other configuration has AB = CD = a. One extreme case has a = 0. We can increase a until 
we reach the other extreme case with ADBC a square side 1, giving a = √2. So this configuration 
allows any a satisfying 0 < a < √2. Together, the two configurations allow any a satisfying: 0 < a 
< √(2 + √3).  

This also solves the case k = 4, and allows any a satisfying: a > 1/√(2 + √3) = √(2 - √3).  

For k = 3, any value of a > 0 is allowed. For a <= 1, we may take the edges length a to form a 
triangle. For a ≥ 1 we may take a triangle with unit edges and the edges joining the vertices to the 
fourth vertex to have length a.   

IMO 1969 

  
Problem B1  

C is a point on the semicircle diameter AB, between A and B. D is the foot of the 
perpendicular from C to AB. The circle K1 is the in-circle of ABC, the circle K2 touches CD, 
DA and the semicircle, the circle K3 touches CD, DB and the semicircle. Prove that K1, K2 
and K3 have another common tangent apart from AB.    

Solution  
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Let the three centers be O1, O2 and O3. We show that O1 is the midpoint of O2O3. In fact it is 
sufficient to show that O1 lies on O2O3, because then we can reflect the known tangent AB in the 
line O2O3.  

As usual, let AB = c, BC = a, CA = b. Let the in-circle touch AB at P, AC at Q and BC at R. Then 
since angle ACB = 90, O1QCR is a square. Also AQ = AP and BP = BR, so r1 = b - AP, and r1 = a 
- BP = a - (c - AP). Adding: r1 = (a + b - c)/2, and AP = (b + c - a)/2.  

Let the circle center O2 touch AB at X, and the circle center O3 touch AB at Y. Let O be the 
midpoint of AB. Now consider the right-angled triangle OXO2. Since the circle center O2 touches 
the semicircle, OO2 = c/2 - r2. OX = OD + DX = (c/2 - AD) + r2. Also, by similar triangles, AD = 
b2/c. So, using Pythagoras: (c/2 - r2)

2 = r2
2 + (c/2 - b2/c + r2)

2. Multiplying out and rearranging: r2
2 

- 2r2(c - b2/c) - (b2 - b4/c2). But ABC is right-angled, so c2 = a2 + b2, and hence c - b2/c = a2/c and 
b2 - b4/c2 = a2b2/c2. So r2

2 + 2r2 a
2/c - a2b2/c2 = 0, which has roots r2 = a - a2/c (positive) and - a + 

a2/c (negative). So r2 = a - a2/c. Similarly, r3 = b - b2/c. So O2X + O3Y = XY = r2 + r3 = a + b - c = 
2 r1.  

XP = AP - AX = AP - (AD - DX) = (b + c - a)/2 - (b2/c - r2) = (b + c - a)/2 - (c - a) = (a + b - c)/2 
= r1. We now have all we need: XP = PY = PO1, and XO2 + YO3 = 2 PO1.   

IMO 1969 

  
Problem B2  

Given n > 4 points in the plane, no three collinear. Prove that there are at least (n-3)(n-4)/2 
convex quadrilaterals with vertices amongst the n points.    

Solution  

(n-3)(n-4)/2 is a poor lower bound.  

Observe first that any 5 points include 4 forming a convex quadrilateral. For take the convex hull. 
If it consists of more than 3 points, we are done. If not, it must consist of 3 points, A, B and C, 
with the other 2 points, D and E, inside the triangle ABC. Two vertices of the triangle must lie on 
the same side of the line DE and they form convex quadrilateral with D and E.  

Given n points, we can choose 5 in n(n-1)(n-2)(n-3)(n-4)/120 different ways. Each choice gives 
us a convex quadrilateral, but any given convex quadrilateral may arise from n-4 different sets of 
5 points, so we have at least n(n-1)(n-2)(n-3)/120 different convex quadrilaterals. We now show 
that n(n-1)(n-2)(n-3)/120 ≥ (n-3)(n-4)/2 for all n ≥ 5.  

We wish to prove that n(n-1)(n-2) ≥ 60(n-4), or n(n-1)(n-2) - 60(n-4) ≥ 0. Trial shows equality for 
n = 5 and 6, so we can factorise and get (n-5)(n-6)(n+8), which is clearly at least 0 for n at least 5.  
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Problem B3  

Given real numbers x1, x2, y1, y2, z1, z2, satisfying x1 > 0, x2 > 0, x1y1 > z1
2, and x2y2 > z2

2, 
prove that:  

      8/((x1 + x2)(y1 + y2) - (z1 + z2)
2) ≤ 1/(x1y1 - z1

2) + 1/(x2y2 - z2
2).  

Give necessary and sufficient conditions for equality.    

Solution  

Let a1 = x1y1 - z1
2 and a2 = x2y2 - z2

2. We apply the arithmetic/geometric mean result 3 times:  

(1) to a1
2, a2

2, giving 2a1a2 ≤ a1
2 + a2

2;  

(2) to a1, a2, giving √(a1a2) ≤ (a1 + a2)/2;  

(3) to a1y2/y1, a2y1/y2, giving √(a1a2) ≤ (a1y2/y1 + a2y1/y2)/2;  

We also use (z1/y1 - z2/y2)
2 ≥ 0. Now x1y1 > z1

2 ≥ 0, and x1 > 0, so y1 > 0. Similarly, y2 > 0. So:  

(4) y1y2(z1/y1 - z2/y2)
2 ≥ 0, and hence z1

2y2/y1 + z2
2y1/y2 ≥ 2z1z2.  

Using (3) and (4) gives 2√(a1a2) ≤ (x1y2 + x2y1) - (z1
2y2/y1 + z2

2y1/y2) ≤ (x1y2 + x2y1 - 2z1z2).  

Multiplying by (2) gives: 4a1a2 ≤ (a1 + a2)(x1y2 + x2y1 - 2z1z2).  

Adding (1) and 2a1a2 gives: 8a1a2 ≤ (a1 + a2)
2 + (a1 + a2)(x1y2 + x2y1 - 2z1z2) = a(a1 + a2), where a 

= (x1 + x2)(y1 + y2) - (z1 + z2)
2. Dividing by a1a2a gives the required inequality.  

Equality requires a1 = a2 from (1), y1 = y2 from (2), z1 = z2 from (3), and hence x1 = x2. 
Conversely, it is easy to see that these conditions are sufficient for equality.  

 

 

 

 

 

 

 



 184

 

10th IMO 1968 

 

  

A1.  Find all triangles whose side lengths are consecutive integers, and one of whose 
angles is twice another.  

 

A2.  Find all natural numbers n the product of whose decimal digits is n2 - 10n - 22.  
 

A3.  a, b, c are real with a non-zero. x1, x2, ... , xn satisfy the n equations:  

        axi
2 + bxi + c = xi+1, for 1 ≤ i < n  

        axn
2 + bxn + c = x1  

Prove that the system has zero, 1 or >1 real solutions according as (b - 1)2 - 4ac is <0, 
=0 or >0.  

 

B1.  Prove that every tetrahedron has a vertex whose three edges have the right lengths 
to form a triangle.   

B2.  Let f be a real-valued function defined for all real numbers, such that for some a 
> 0 we have  

        f(x + a) = 1/2 + √(f(x) - f(x)2) for all x.  

Prove that f is periodic, and give an example of such a non-constant f for a = 1.  

 

B3.  For every natural number n evaluate the sum  

    [(n+1)/2] + [(n+2)/4] + [(n+4)/8] + ... + [(n+2k)/2k+1] + ... , where [x] denotes the 
greatest integer ≤ x.  
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IMO 1968 

 

Problem A1  

Find all triangles whose side lengths are consecutive integers, and one of whose angles is 
twice another.    

Solution  

Let the sides be a, a+1, a+2, the angle oppose a be A, the angle opposite a+1 be B, and the angle 
opposite a+2 be C.  

Using the cosine rule, we find cos A = (a+5)/(2a+4), cos B = (a+1)/2a, cos C = (a-3)/2a. Finally, 
using cos 2x = 2 cos2x - 1, we find solutions a = 4 for C = 2A, a = 1 for B = 2A, and no solutions 
for C = 2B.  

a = 1 is a degenerate solution (the triangle has the three vertices collinear). The other solution is 
4, 5, 6.  

IMO 1968 

 

Problem A2  

Find all natural numbers n the product of whose decimal digits is n2 - 10n - 22.    

Solution  

Suppose n has m > 1 digits. Let the first digit be d. Then the product of the digits is at most d.9m-1 
< d.10m-1 <= n. But (n2 - 10n - 22) - n = n(n - 11) - 22 > 0 for n >= 13. So there are no solutions 
for n ≥ 13. But n2 - 10n - 22 < 0 for n ≤ 11, so the only possible solution is n = 12 and indeed that 
is a solution.   
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 Problem A3  

a, b, c are real with a non-zero. x1, x2, ... , xn satisfy the n equations:  

        axi
2 + bxi + c = xi+1, for 1 ≤ i < n  

        axn
2 + bxn + c = x1  

Prove that the system has zero, 1 or >1 real solutions according as (b - 1)2 - 4ac is <0, =0 or 
>0.   

Solution  

Let f(x) = ax2 + bx + c - x. Then f(x)/a = (x + (b-1)/2a)2 + (4ac - (b-1)2)/4a2. Hence if 4ac - (b-1)2 
> 0, then f(x) has the same sign for all x. But f(x) > 0 means ax2 + bx + c > x, so if {xi} is a 
solution, then either x1 < x2 < ... < xn < x1, or x1 > x2 > ... > xn > x1. Either way we have a 
contradiction. So if 4ac - (b-1)2 > 0 there cannot be any solutions.  

If 4ac - (b-1)2 = 0, then we can argue in the same way that either x1 ≤ x2 ≤ ... ≤ xn ≤ x1, or x1 ≥ x2 
≥ ... ≥ xn ≥ x1. So we must have all xi = the single root of f(x) = 0 (which clearly is a solution).  

If 4ac - (b-1)2 < 0, then f(x) = 0 has two distinct real roots y and z and so we have at least two 
solutions to the equations: all xi =y, and all xi = z. We may, however, have additional solutions. 
For example, if a = 1, b = 0, c = -1 and n is even, then we have the additional solution x1 = x3 = x5 
= ... = 0, x2 = x4 = ... = -1.  

IMO 1968 

  
Problem B1  

Prove that every tetrahedron has a vertex whose three edges have the right lengths to form 
a triangle.    

Solution  

The trick is to consider the longest side. That avoids getting into lots of different possible cases 
for which edge is longer than the sum of the other two.  

So assume the result is false and let AB be the longest side. Then we have AB > AC + AD and 
BA > BC + BD. So 2AB > AC + AD + BC + BC. But by the triangle inequality, AB < AC + CB, 
AB < AD + DB, so 2AB < AC + CB + AD + DB. Contradiction.  
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Problem B2  

Let f be a real-valued function defined for all real numbers, such that for some a > 0 we 
have  

        f(x + a) = 1/2 + √(f(x) - f(x)2) for all x.  

Prove that f is periodic, and give an example of such a non-constant f for a = 1.    

Solution  

Directly from the equality given: f(x+a) ≥ 1/2 for all x, and hence f(x) ≥ 1/2 for all x.  

So f(x+2a) = 1/2 + √( f(x+a) - f(x+a)2 ) = 1/2 + √f(x+a) √(1 - f(x+a)) = 1/2 + √(1/4 - f(x) + f(x)2) 
= 1/2 + (f(x) - 1/2) = f(x). So f is periodic with period 2a.  

We may take f(x) to be arbitrary in the interval [0,1). For example, let f(x) = 1 for 0 ≤ x < 1, f(x) 
= 1/2 for 1 ≤ x < 2. Then use f(x+2) = f(x) to define f(x) for all other values of x.  

  

IMO 1968 

  
Problem B3  

For every natural number n evaluate the sum  

    [(n+1)/2] + [(n+2)/4] + [(n+4)/8] + ... + [(n+2k)/2k+1] + ... , where [x] denotes the greatest 
integer ≤ x.    

Solution  

For any real x we have [x] = [x/2] + [(x+1]/2]. For if x = 2n + 1 + k, where n is an integer and 0 ≤ 
k < 1, then lhs = 2n + 1, and rhs = n + n + 1. Similarly, if x = 2n + k.  

Hence for any integer n, we have: [n/2k] - [n/2k+1] = [(n/2k + 1)/2] = [(n + 2k)/2k+1]. Hence 
summing over k, and using the fact that n < 2k for sufficiently large k, so that [n/2k ] = 0, we have: 
n = [(n + 1)/2] + [(n + 2)/4] + [(n + 4)/8] + ... .  

  

 

 



 188

 

9th IMO 1967 

 

  

A1.  The parallelogram ABCD has AB = a, AD = 1, angle BAD = A, and the triangle 
ABD has all angles acute. Prove that circles radius 1 and center A, B, C, D cover the 
parallelogram iff  

            a ≤ cos A + √3 sin A.  
 

A2.  Prove that a tetrahedron with just one edge length greater than 1 has volume at 
most 1/8.   

A3.  Let k, m, n be natural numbers such that m + k + 1 is a prime greater than n + 1. 
Let cs = s(s+1). Prove that:  

        (cm+1 - ck)(cm+2 - ck) ... (cm+n - ck)  

is divisible by the product c1c2 ... cn.  

 

B1.  A0B0C0 and A1B1C1 are acute-angled triangles. Construct the triangle ABC with 
the largest possible area which is circumscribed about A0B0C0 (BC contains A0, CA 
contains B0, and AB contains C0) and similar to A1B1C1.   

B2.  a1, ... , a8 are reals, not all zero. Let cn = a1
n + a2

n + ... + a8
n for n = 1, 2, 3, ... . 

Given that an infinite number of cn are zero, find all n for which cn is zero.   

B3.  In a sports contest a total of m medals were awarded over n days. On the first day 
one medal and 1/7 of the remaining medals were awarded. On the second day two 
medals and 1/7 of the remaining medals were awarded, and so on. On the last day, the 
remaining n medals were awarded. How many medals were awarded, and over how 
many days?  
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Problem A1  

The parallelogram ABCD has AB = a, AD = 1, angle BAD = A, and the triangle ABD has all 
angles acute. Prove that circles radius 1 and center A, B, C, D cover the parallelogram iff  

            a ≤ cos A + √3 sin A.    

Solution  

 

Evidently the parallelogram is a red herring, since the circles cover it iff and only if the three 
circles center A, B, D cover the triangle ABD.  

The three circles radius x and centers the three vertices cover an acute-angled triangle ABD iff x 
is at least R, the circumradius. The circumcenter O is a distance R from each vertex, so the 
condition is clearly necessary. If the midpoints of BD, DA, AB are P, Q, R, then the circle center 
A, radius R covers the quadrilateral AQOR, the circle center B, radius R covers the quadrilateral 
BROP, and the circle center D radius R covers the quadrilateral DPOQ, so the condition is also 
sufficient.  

We need an expression for R in terms of a and A. We can express BD two ways: 2R sin A, and 
√(a2 + 1 - 2a cos A). So a necessary and sufficient condition for the covering is 4 sin2A ≥ (a2 + 1 - 
2a cos A), which reduces to a ≤ cos A + √3 sin A, since cos A ≤ a (the foot of the perpendicular 
from D onto AB must lie between A and B).  
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Problem 2  

Prove that a tetrahedron with just one edge length greater than 1 has volume at most 1/8.    

Solution  

 

Let the tetrahedron be ABCD and assume that all edges except AB have length at most 1. The 
volume is the 1/3 x area BCD x height of A above BCD. The height is at most the height of A 
above CD, so we maximise the volume by taking the planes ACD and BCD to be perpendicular. 
If AC or AD is less than 1, then we can increase the altitude from A to CD whilst keeping BCD 
fixed by taking AC = AD = 1. A similar argument shows that we must have BC = BD = 1.  

But the volume is also the 1/3 x area ABC x height of D above ABC, so we must adjust CD to 
maximise this height. We want the angle between planes ABC and ABD to be as close as possible 
to 90o. The angle increases with increasing CD until it becomes 90o. CMD is then a right-angled 
triangle. Now the angle ACB must be less than the angle between the planes ACD and BCD and 
hence < 90o, so angle ACM < 45o, so CM > 1/√2. Similarly DM. Hence when CMD = 90o we 
have CD > 1. Thus we maximise the height of D above ABC by taking CD = 1.  

So BCD is equilateral with area (√3)/4. ACD is also equilateral with altitude (√3)/2. Since the 
planes ACD and BCD are perpendicular, that is also the height of A above BCD. So the volume 
is 1/3 x(√3)/4 x (√3)/2 = 1/8.  

IMO 1967 

  
Problem A3  

Let k, m, n be natural numbers such that m + k + 1 is a prime greater than n + 1. Let cs = 
s(s+1). Prove that:  

        (cm+1 - ck)(cm+2 - ck) ... (cm+n - ck)  

is divisible by the product c1c2 ... cn.  
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Solution  

The key is that ca - cb = (a - b)(a + b + 1). Hence the product (cm+1 - ck)(cm+2 - ck) ... (cm+n - ck) is 
the product of the n consecutive numbers (m - k + 1), ... , (m - k + n), times the product of the n 
consecutive numbers (m + k + 2), ... , (m + k + n + 1). The first product is just the binomial 
coefficient (m-k+n)Cn times n!, so it is divisible by n!. The second product is 1/(m + k + 1) x (m 
+ k + 1)(m + k + 2) ... (m + k + n + 1) = 1/(m + k + 1) x (m+k+n+1)C(n+1) x (n+1)!. But m + k + 
1 is a prime greater than n + 1, so it has no factors in common with (n+1)!, hence the second 
product is divisible by (n+1)!. Finally note that c1c2 ... cn= n! (n+1)!.   

IMO 1967 

  
Problem B1 

A0B0C0 and A1B1C1 are acute-angled triangles. Construct the triangle ABC with the largest 
possible area which is circumscribed about A0B0C0 (BC contains A0, CA contains B0, and 
AB contains C0) and similar to A1B1C1.    

Solution 

 

Take any triangle similar to A1B1C1 and circumscribing A0B0C0. For example, take an arbitrary 
line through A0 and then lines through B0 and C0 at the appropriate angles to the first line. Label 
the triangle's vertices X, Y, Z so that A0 lies on YZ, B0 on ZX, and C0 on XY. Now any 
circumscribed ABC (labeled with the same convention) must have C on the circle through A0, B0 
and Z, because it has ∠C = ∠Z = ∠C1. Similarly it must have B on the circle through C0, A0 
and Y, and it must have A on the circle through B0, C0 and X.  

Consider the side AB. It passes through C0. Its length is twice the projection of the line joining 
the centers of the two circles onto AB (because each center projects onto the midpoint of the part 
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of AB that is a chord of its circle). But this projection is maximum when it is parallel to the line 
joining the two centers. The area is maximised when AB is maximised (because all the triangles 
are similar), so we take AB parallel to the line joining the centers. [Note, in passing, that this 
proves that the other sides must also be parallel to the lines joining the respective centers and 
hence that the three centers form a triangle similar to A1B1C1.]   

IMO 1967 

  
Problem B2  

a1, ... , a8 are reals, not all zero. Let cn = a1
n + a2

n + ... + a8
n for n = 1, 2, 3, ... . Given that an 

infinite number of cn are zero, find all n for which cn is zero.    

Solution  

Take |a1| ≥ |a2| ≥ ... ≥ |a8|. Suppose that |a1|, ... , |ar| are all equal and greater than |ar+1|. Then for 
sufficiently large n, we can ensure that |as|

n < 1/8 |a1|
n for s > r, and hence the sum of |as|

n for all s 
> r is less than |a1|

n. Hence r must be even with half of a1, ... , ar positive and half negative.  

If that does not exhaust the ai, then in a similar way there must be an even number of ai with the 
next largest value of |ai|, with half positive and half negative, and so on. Thus we find that cn = 0 
for all odd n.  

 IMO 1967 

  
Problem B3  

In a sports contest a total of m medals were awarded over n days. On the first day one 
medal and 1/7 of the remaining medals were awarded. On the second day two medals and 
1/7 of the remaining medals were awarded, and so on. On the last day, the remaining n 
medals were awarded. How many medals were awarded, and over how many days?    

Solution  

Let the number of medals remaining at the start of day r be mr. Then m1 = m, and 6(mk - k)/7 = 
mk+1 for k < n with mn = n.  

After a little rearrangement, we find that m = 1 + 2(7/6) + 3(7/6)2 + ... + n(7/6)n-1. Summing, we 
get m = 36(1 - (n + 1)(7/6)n + n (7/6)n+1) = 36 + (n - 6)7n/6n-1. 6 and 7 are coprime, so 6n-1 must 
divide n - 6. But 6n-1 > n - 6, so n = 6 and m = 36.  
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8th IMO 1966 

 

  

A1.  Problems A, B and C were posed in a mathematical contest. 25 competitors 
solved at least one of the three. Amongst those who did not solve A, twice as many 
solved B as C. The number solving only A was one more than the number solving A 
and at least one other. The number solving just A equalled the number solving just B 
plus the number solving just C. How many solved just B?  

 

A2.  Prove that if BC + AC = tan C/2 (BC tan A + AC tan B), then the triangle ABC is 
isosceles.  

 

A3.  Prove that a point in space has the smallest sum of the distances to the vertices of 
a regular tetrahedron iff it is the center of the tetrahedron.  

 

B1.  Prove that 1/sin 2x + 1/sin 4x + ... + 1/sin 2nx = cot x - cot 2nx for any natural 
number n and any real x (with sin 2nx non-zero).   

B2.  Solve the equations:  

    |ai - a1| x1 + |ai - a2| x2 + |ai - a3| x3 + |ai - a4| x4 = 1, i = 1, 2, 3, 4, where ai are distinct 
reals.  

 

B3.  Take any points K, L, M on the sides BC, CA, AB of the triangle ABC. Prove 
that at least one of the triangles AML, BKM, CLK has area ≤ 1/4 area ABC.  
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IMO 1966 

  
Problem A1  

Problems A, B and C were posed in a mathematical contest. 25 competitors solved at least 
one of the three. Amongst those who did not solve A, twice as many solved B as C. The 
number solving only A was one more than the number solving A and at least one other. The 
number solving just A equalled the number solving just B plus the number solving just C. 
How many solved just B?   

Answer    6.    

Solution  

Let a solve just A, b solve just B, c solve just C, and d solve B and C but not A. Then 25 - a - b - c 
- d solve A and at least one of B or C. The conditions give:  

b + d = 2(c + d); a = 1 + 25 - a - b - c - d; a = b + c.  

Eliminating a and d, we get: 4b + c = 26. But d = b - 2c ≥ 0, so b = 6, c = 2.  

IMO 1966 

 
 Problem A2  

Prove that if BC + AC = tan C/2 (BC tan A + AC tan B), then the triangle ABC is isosceles.    

Solution  

A straight slog works. Multiply up to get (a + b) cos A cos B cos C/2 = a sin A cos B sin C/2 + b 
cos A sin B sin C/2 (where a = BC, b = AC, as usual). Now use cos(A + C/2) = cos A cos C/2 - 
sin A sin C/2 and similar relation for cos (B + C/2) to get: a cos B cos(A + C/2) + b cos A cos (B 
+ C/2) = 0. Using C/2 = 90o - A/2 - B/2, we find that cos(A + C/2) = - cos(B + C/2) (and = 0 only 
if A = B). Result follows.  
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IMO 1966 

  
Problem A3 

Prove that a point in space has the smallest sum of the distances to the vertices of a regular 
tetrahedron iff it is the center of the tetrahedron.    

Solution 

Let the tetrahedron be ABCD and let P be a general point. Let X be the midpoint of CD. Let P' be 
the foot of the perpendicular from P to the plane ABX. We show that if P does not coincide with 
P', then PA + PB + PC + PD > P'A + P'B + P'C + P'D.  

PA > P'A (because angle PP'A = 90o) and PB > P'B. P'CD is isosceles and PCD is not but P is the 
same perpendicular distance from the line CD as P'. It follows that PC + PD > P'C + P'D. The 
easiest way to see this is to reflect C and D in the line PP' to give C' and D'. Then PC = PC', and 
PC' + PD > C'D = P'C' + P'D = P'C + P'D.  

So if P has the smallest sum, it must lie in the plane ABX and similarly in the plane CDY, where 
Y is the midpoint of AB, and hence on the line XY. Similarly, it must lie on the line joining the 
midpoints of another pair of opposite sides and hence must be the center.   

IMO 1966 

  
Problem B1  

Prove that 1/sin 2x + 1/sin 4x + ... + 1/sin 2nx = cot x - cot 2nx for any natural number n and 
any real x (with sin 2nx non-zero).    

Solution  

cot y - cot 2y = cos y/sin y - (2 cos2y - 1)/(2 sin y cos y) = 1/(2 sin y cos y) = 1/sin 2y. The result 
is now easy. Use induction. True for n = 1 (just take y = x). Suppose true for n, then taking y = 
2nx, we have 1/sin 2n+1x = cot 2nx - cot 2n+1x and result follows for n + 1.  
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Problem B2  

Solve the equations:  

    |ai - a1| x1 + |ai - a2| x2 + |ai - a3| x3 + |ai - a4| x4 = 1, i = 1, 2, 3, 4, where ai are distinct reals.    

Answer : x1 = 1/(a1 - a4), x2 = x3 = 0, x4 = 1/(a1 - a4).    

Solution  

Take a1 > a2 > a3 > a4. Subtracting the equation for i=2 from that for i=1 and dividing by (a1 - a2) 
we get:  

      - x1 + x2 + x3 + x4 = 0.  

Subtracting the equation for i=4 from that for i=3 and dividing by (a3 - a4) we get:  

      - x1 - x2 - x3 + x4 = 0.  

Hence x1 = x4. Subtracting the equation for i=3 from that for i=2 and dividing by (a2 - a3) we get:  

      - x1 - x2 + x3 + x4 = 0.  

Hence x2 = x3 = 0, and x1 = x4 = 1/(a1 - a4).  
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IMO 1966 

 
 Problem B3 

Take any points K, L, M on the sides BC, CA, AB of the triangle ABC. Prove that at least 
one of the triangles AML, BKM, CLK has area ≤ 1/4 area ABC.    

Solution 

 

If not, then considering ALM we have 4·AL·AM·sin A > AB·AC·sin A, so 4·AL·AM > AB·AC = 
(AM + BM)(AL + CL), so 3·AL·AM > AM·CL + BM·AL + BM·CL. Set k = BK/CK, l = CL/AL, 
m = AM/BM, and this inequality becomes:  

      3 > l + 1/m + l/m.  

Similarly, considering the other two triangles we get: 3 > k + 1/l + k/l, and 3 > m + 1/k + m/k.  

Adding gives: 9 > k + l + m + 1/k + 1/l + 1/m + k/l + l/m + m/k, which is false by the 
arithmetic/geometric mean inequality.  
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7th IMO 1965 

 

  

A1.  Find all x in the interval [0, 2π] which satisfy:  

        2 cos x ≤ |√(1 + sin 2x) - √(1 - sin 2x)| ≤ √2.   

A2.  The coefficients aij of the following equations  

        a11x1 + a12 x2+ a13 x3 = 0 
        a21x1 + a22x2 + a23x3 = 0 
        a31x1 + a32x2 + a33x3 = 0  

satisfy the following: (a) a11, a22, a33 are positive, (b) other aij are negative, (c) the sum 
of the coefficients in each equation is positive. Prove that the only solution is x1 = x2 = 
x3 = 0.  

 

A3.  The tetrahedron ABCD is divided into two parts by a plane parallel to AB and 
CD. The distance of the plane from AB is k times its distance from CD. Find the ratio 
of the volumes of the two parts.   

B1.  Find all sets of four real numbers such that the sum of any one and the product of 
the other three is 2.  

 

B2.  The triangle OAB has ∠O acute. M is an arbitrary point on AB. P and Q are the 
feet of the perpendiculars from M to OA and OB respectively. What is the locus of H, 
the orthocenter of the triangle OPQ (the point where its altitudes meet)? What is the 
locus if M is allowed to vary over the interior of OAB?  

 

B3.  Given n > 2 points in the plane, prove that at most n pairs of points are the 
maximum distance apart (of any two points in the set).  
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Problem A1  

Find all x in the interval [0, 2π] which satisfy:  

        2 cos x ≤ |√(1 + sin 2x) - √(1 - sin 2x)| ≤ √2.    

Solution  

Let y = |√(1 + sin 2x) - √(1 - sin 2x)|. Then y2 = 2 - 2|cos 2x|. If x belongs to [0, π/4] or [3π/4, 
5π/4] or [7π/4], then cos 2x is non-negative, so y2 = 2 - 2 cos 2x = 4 sin2 x, so y = 2|sin x|. We 
have cos x <= |sin x| except for x in [0, π/4] and [7π/4, 2π]. So that leaves [3π/4, 5π/4] in which 
we certainly have |sin x| ≤ 1/√2.  

If x belongs (π/4, 3π/4) or (5π/5, 7π/4), then cos 2x is negative, so y2 = 2 + 2 cos 2x = 4 cos2x. So 
y = 2 |cos x|. So the first inequality certainly holds. The second also holds.  

Thus the inequalities hold for all x in [π/4, 7π/4].  

IMO 1965 

 

Problem A2  

The coefficients aij  of the following equations  

        a11x1 + a12 x2+ a13 x3 = 0 
        a21x1 + a22x2 + a23x3 = 0 
        a31x1 + a32x2 + a33x3 = 0  

satisfy the following: (a) a11, a22, a33 are positive, (b) other aij  are negative, (c) the sum of the 
coefficients in each equation is positive. Prove that the only solution is x1 = x2 = x3 = 0.    

Solution  

The slog solution is to multiply out the determinant and show it is non-zero. A slicker solution is 
to take the xi with the largest absolute value. Say |x1| ≥ |x2|, |x3|. Then looking at the first equation 
we have an immediate contradiction, since the first term has larger absolute value than the sum of 
the absolute values of the second two terms.  
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Problem A3 

The tetrahedron ABCD is divided into two parts by a plane parallel to AB and CD. The 
distance of the plane from AB is k times its distance from CD. Find the ratio of the volumes 
of the two parts.    

Solution 

Let the plane meet AD at X, BD at Y, BC at Z and AC at W. Take plane parallel to BCD through 
WX and let it meet AB in P.  

Since the distance of AB from WXYZ is k times the distance of CD, we have that AX = k·XD 
and hence that AX/AD = k/(k+1). Similarly AP/AB = AW/AC = AX/AD. XY is parallel to AB, 
so also AX/AD = BY/BD = BZ/BC.  

vol ABWXYZ = vol APWX + vol WXPBYZ. APWX is similar to the tetrahedron ABCD. The 
sides are k/(k+1) times smaller, so vol APWX = k3(k+1)3 vol ABCD. The base of the prism 
WXPBYZ is BYZ which is similar to BCD with sides k/(k+1) times smaller and hence area 
k2(k+1)2 times smaller. Its height is 1/(k+1) times the height of A above ABCD, so vol prism = 3 
k2(k+1)3 vol ABCD. Thus vol ABWXYZ = (k3 + 3k2)/(k+1)3 vol ABCD. We get the vol of the 
other piece as vol ABCD - vol ABWXYZ and hence the ratio is (after a little manipulation) 
k2(k+3)/(3k+1).  

 IMO 1965 

 

Problem B1  

Find all sets of four real numbers such that the sum of any one and the product of the other 
three is 2.    

Answer  

1,1,1,1 or 3,-1,-1,-1.    

Solution  

Let the numbers be x1, ... , x4. Let t = x1x2x3x4. Then x1 + t/x1 = 2. So all the xi are roots of the 
quadratic x2 - 2x + t = 0. This has two roots, whose product is t.  

If all x i are equal to x, then x3 + x = 2, and we must have x = 1. If not, then if x1 and x2 are 
unequal roots, we have x1x2 = t and x1x2x3x4 = t, so x3x4 = 1. But x3 and x4 are still roots of x2 - 2x 
+ t = 0. They cannot be unequal, otherwise x3x4 = t, which gives t = 1 and hence all xi = 1. Hence 
they are equal, and hence both 1 or both -1. Both 1 gives t = 1 and all xi = 1. Both -1 gives t = -3 
and hence xi = 3, -1, -1, -1 (in some order).  
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Problem B2  

The triangle OAB has ∠∠∠∠O acute. M is an arbitrary point on AB. P and Q are the feet of the 
perpendiculars from M to OA and OB respectively. What is the locus of H, the orthocenter 
of the triangle OPQ (the point where its altitudes meet)? What is the locus if M is allowed to 
vary of the interior of OAB?    

Solution  

 

Let X be the foot of the perpendicular from B to OA, and Y the foot of the perpendicular from A 
to OB. We show that the orthocenter of OPQ lies on XY.  

MP is parallel to BX, so AM/MB = AP/PX. Let H be the intersection of XY and the 
perpendicular from P to OB. PH is parallel to AY, so AP/PX = YH/HX. MQ is parallel to AY, so 
AM/MB = YQ/BQ. Hence YQ/BQ = YH/HX and so QH is parallel to BX and hence 
perpendicular to AO, so H is the orthocenter of OPQ as claimed.  

If we restrict M to lie on a line A'B' parallel to AB (with A' on OA , B' on OB) then the locus 
is a line X'Y' parallel to XY, so as M moves over the whole interior, the locus is the interior 
of the triangle OXY.  

 

 

 

 

 

 

 

 



 202

 

IMO 1965 

 

Problem B3  

Given n > 2 points in the plane, prove that at most n pairs of points are the maximum 
distance apart (of any two points in the set).    

Solution  

The key is that if two segments length d do not intersect then we can find an endpoint of one 
which is a distance > d from an endpoint of the other.  

Given this, the result follows easily by induction. If false for n, then there is a point A in three 
pairs AB, AC and AD of length d (the maximum distance). Take AC to lie between AB and AD. 
Now C cannot be in another pair. Suppose it was in CX. Then CX would have to cut both AB and 
AD, which is impossible.  

 

To prove the result about the segments, suppose they are PQ and RS. We must have angle PQR 
less than 90o, otherwise PR > PQ = d. Similarly, the other angles of the quadrilateral must all be 
less than 90o. Contradiction.  
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6th IMO 1964 

 

  

A1. (a)  Find all natural numbers n for which 7 divides 2n - 1. 
(b)  Prove that there is no natural number n for which 7 divides 2n + 1.  

 

A2.  Suppose that a, b, c are the sides of a triangle. Prove that:  

    a2(b + c - a) + b2(c + a - b) + c2(a + b - c) ≤ 3abc.   

A3.  Triangle ABC has sides a, b, c. Tangents to the inscribed circle are constructed 
parallel to the sides. Each tangent forms a triangle with the other two sides of the 
triangle and a circle is inscribed in each of these three triangles. Find the total area of 
all four inscribed circles.  

 

B1.  Each pair from 17 people exchange letters on one of three topics. Prove that there 
are at least 3 people who write to each other on the same topic. [In other words, if we 
color the edges of the complete graph K17 with three colors, then we can find a triangle 
all the same color.]  

 

B2.  5 points in a plane are situated so that no two of the lines joining a pair of points 
are coincident, parallel or perpendicular. Through each point lines are drawn 
perpendicular to each of the lines through two of the other 4 points. Determine the 
maximum number of intersections these perpendiculars can have.  

 

B3.  ABCD is a tetrahedron and D0 is the centroid of ABC. Lines parallel to DD0 are 
drawn through A, B and C and meet the planes BCD, CAD and ABD in A0, B0, and C0 
respectively. Prove that the volume of ABCD is one-third of the volume of A0B0C0D0. 
Is the result true if D0 is an arbitrary point inside ABC?  
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Problem A1  

(a)  Find all natural numbers n for which 7 divides 2n - 1. 
(b)  Prove that there is no natural number n for which 7 divides 2n + 1.   
Solution  

23 = 1 (mod 7). Hence 23m = 1 (mod 7), 23m+1 = 2 (mod 7), and 23m+2 = 4 (mod 7). Hence we never 
have 7 dividing 2n + 1, and 7 divides 2n - 1 iff 3 divides n.  

IMO 1964 

 

Problem A2  

Suppose that a, b, c are the sides of a triangle. Prove that:  

    a2(b + c - a) + b2(c + a - b) + c2(a + b - c) ≤ 3abc.    

Solution  

The condition that a, b, c be the sides of a triangle, together with the appearance of quantities like 
a + b - c is misleading. The inequality holds for any a , b, c ≥ 0.  

At most one of (b+c-a), (c+a-b), (a+b-c) can be negative. If one of them is negative, then 
certainly:  

        abc ≥ (b + c - a)(c + a - b)(a + b - c) (*)  

since the lhs is non-negative and the rhs is non-positive.  

(*) is also true if none of them is negative. For then the arithmetic/geometric mean on b + c - a, c 
+ a - b gives:  
        c2 ≥ (b + c - a)(c + a - b).  

Similarly for a2 and b2. Multiplying and taking the square root gives (*). Multiplying out easily 
gives the required result.  
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Problem A3  

Triangle ABC has sides a, b, c. Tangents to the inscribed circle are constructed parallel to 
the sides. Each tangent forms a triangle with the other two sides of the triangle and a circle 
is inscribed in each of these three triangles. Find the total area of all four inscribed circles  

Solution  

 

This is easy once you realize that the answer is not nice and the derivation a slog. Use r = 
2·area/perimeter and Heron's formula: area k is given by 16k2 = (a + b + c)(b + c - a)(c + a - b)(a 
+ b - c).  

The small triangles at the vertices are similar to the main triangle and smaller by a factor (h - 
2r)/h, where h is the relevant altitude. For the triangle opposite side a: (h - 2r)/h = 1 - 
2(2k/p)/(2k/a) = 1 - 2a/p = (b + c - a)/(a + b + c).  

Hence the total area is ((a + b + c)2 + (b + c - a)2 + (c + a - b)2 + (a + b - c)2)/(a + b + c)2 pi r2 =  

(a2 + b2 + c2).pi.(b + c - a)(c + a - b)(a + b - c)/(a + b + c)3.  

IMO 1964 

 

Problem B1  

Each pair from 17 people exchange letters on one of three topics. Prove that there are at 
least 3 people who write to each other on the same topic. [In other words, if we color the 
edges of the complete graph K17 with three colors, then we can find a triangle all the same 
color.]    

Solution  

Take any person. He writes to 16 people, so he must write to at least 6 people on the same topic. 
If any of the 6 write to each other on that topic, then we have a group of three writing to each 
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other on the same topic. So assume they all write to each other on the other two topics. Take any 
of them, B. He must write to at least 3 of the other 5 on the same topic. If two of these write to 
each other on this topic, then they form a group of three with B. Otherwise, they must all write to 
each other on the third topic and so from a group of three.  

 

IMO 1964 

 

Problem B2  

5 points in a plane are situated so that no two of the lines joining a pair of points are 
coincident, parallel or perpendicular. Through each point lines are drawn perpendicular to 
each of the lines through two of the other 4 points. Determine the maximum number of 
intersections these perpendiculars can have.    

Solution  

It is not hard to see that the required number is at most 315. But it is not at all obvious how you 
prove it actually is 315, short of calculating the 315 points intersection for a specific example.  

Call the points A, B, C, D, E. Given one of the points, the other 4 points determine 6 lines, so 
there are 6 perpendiculars through the given point and hence 30 perpendiculars in all. These 
determine at most 30.29/2 = 435 points of intersection. But some of these necessarily coincide. 
There are three groups of coincidences. The first is that the 6 perpendiculars through A meet in 
one point (namely A), not the expected 15. So we lose 5.14 = 70 points. Second, the lines through 
C, D and E perpendicular to AB are all parallel, and do not give the expected 3 points of 
intersection, so we lose another 10.3 = 30 points. Third, the line through A perpendicular to BC is 
an altitude of the triangle ABC, as are the lines through B perpendicular to AC, and the through C 
perpendicular to AB. So we only get one point of intersection instead of three, thus losing another 
10.2 = 20 points. These coincidences are clearly all distinct (the categories do not overlap), so 
they bring us down to a maximum of 435 - 120 =315.  

There is no obvious reason why there should be any further coincidences. But that is not quite the 
same as proving that there are no more. Indeed, for particular positions of the points A, B, C, D, E 
we can certainly arrange for additional coincidences (the constraints given in the problem are not 
sufficient to prevent additional coincidences). So we have to prove that it is possible to arrange 
the points so that there are no additional coincidences. I cannot see how to do this, short of 
exhibiting a particular set of points, which would be extremely tiresome. Apparently the 
contestants were instructed verbally that they did not have to do it.  
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Problem B3  

ABCD is a tetrahedron and D0 is the centroid of ABC. Lines parallel to DD0 are drawn 
through A, B and C and meet the planes BCD, CAD and ABD in A0, B0, and C0 respectively. 
Prove that the volume of ABCD is one-third of the volume of A0B0C0D0. Is the result true if 
D0 is an arbitrary point inside ABC?    

Solution  

Yes, indeed it is true for an arbitrary point in the plane of ABC not on any of the lines AB, BC, 
CA  

Take D as the origin. Let A, B, C be the points a, b, c respectively. Then D0 is pa + qb + rc with p 
+ q + r = 1 and p, q, r > 0. So a point on the line parallel to DD0 through A is a + s(pa + qb + rc. 
It is also in the plane DBC if s = -1/p, so A0 is the point - q/p b - r/p c. Similarly, B0 is - p/q a - r/q 
c, and C0 is - p/r a - q/r b.  

The volume of ABCD is 1/6 |a x b.c| and the volume of A0B0C0D0 is 1/6 |(pa + (q + q/p)b + (r + 
r/p)c) x ((p + p/q)a + qb + (r + r/q)c).((p + p/r)a + (q + q/r)b + rc)|  

Thus vol A0B0C0D0/vol ABCD = abs value of the determinant:  

 
| p        q + q/p  r + r/p | 
 
| p + p/q  q        r + r/q | 
 
| p + p/r  q + q/r  r       | 
 
which is easily found to be 2 + p + q + r = 3.  
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5th IMO 1963 

 

  

A1.  For which real values of p does the equation  

        √(x2 - p) + 2 √(x2 - 1) = x have real roots? What are the roots?   

A2.  Given a point A and a segment BC, determine the locus of all points P in space 
for which ∠APX = 90o for some X on the segment BC.   

A3.  An n-gon has all angles equal and the lengths of consecutive sides satisfy a1 ≥ a2 
≥ ... ≥ an. Prove that all the sides are equal.   

B1.  Find all solutions x1, ... , x5 to the five equations xi + xi+2 = y xi+1 for i = 1, ... , 5, 
where subscripts are reduced by 5 if necessary.  

 

B2.  Prove that cos π/7 - cos 2π/7 + cos 3π/7 = 1/2.  
 

B3.  Five students A, B, C, D, E were placed 1 to 5 in a contest with no ties. One 
prediction was that the result would be the order A, B, C, D, E. But no student 
finished in the position predicted and no two students predicted to finish consecutively 
did so. For example, the outcome for C and D was not 1, 2 (respectively), or 2, 3, or 3, 
4 or 4, 5. Another prediction was the order D, A, E, C, B. Exactly two students 
finished in the places predicted and two disjoint pairs predicted to finish consecutively 
did so. Determine the outcome.  
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Problem A1  

For which real values of p does the equation  

        √(x2 - p) + 2 √(x2 - 1) = x have real roots? What are the roots?    

Solution  

I must admit to having formed rather a dislike for this type of question which came up in almost 
every one of the early IMOs. Its sole purpose seems to be to teach you to be careful with one-way 
implications: the fact that a2 = b2 does not imply a = b.  

The lhs is non-negative, so x must be non-negative. Moreover 2√(x2 - 1) ≤ x, so x ≤ 2/√3. Also 
√(x2 - p) ≤ x, so p ≥ 0.  

Squaring etc gives that any solution must satisfy x2 = (p - 4)2/(16 - 8p). We require x ≤ 2/√3 and 
hence (3p - 4)(p + 4) ≤ 0, so p ≤ 4/3.  

Substituting back in the original equality we get |3p-4| + 2|p| = |p - 4|, which is indeed true for any 
p satisfying 0 ≤ p ≤ 4/3.    

IMO 1963 

 
   
Problem A2  

Given a point A and a segment BC, determine the locus of all points P in space for which ∠∠∠∠APX = 90o for some X on the segment BC.    

Solution  

Take the solid sphere on diameter AB, and the solid sphere on diameter AC. Then the locus is the 
points in one sphere but not the other (or on the surface of either sphere). Given P, consider the 
plane through P perpendicular to AP and the parallel planes through the other two points of 
intersection of AP with the two spheres (apart from A) which pass through B and C.  
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Problem A3  

An n-gon has all angles equal and the lengths of consecutive sides satisfy a1 ≥ a2 ≥ ... ≥ an. 
Prove that all the sides are equal.    

Solution  

For n odd consider the perpendicular distance of the shortest side from the opposite vertex. This 
is a sum of terms ai x cosine of some angle. We can go either way round. The angles are the same 
in both cases, so the inequalities give that a1 = an-1, and hence a1 = ai for all i < n. We get a1 = an 
by repeating the argument for the next shortest side. The case n even is easier, because we take a 
line through the vertex with sides a1 and an making equal angles with them and look at the 
perpendicular distance to the opposite vertex. This gives immediately that a1 = an.  

IMO 1963 

 
 Problem B1  

Find all solutions x1, ... , x5 to the five equations xi + xi+2 = y xi+1 for i = 1, ... , 5, where 
subscripts are reduced by 5 if necessary.    

Solution  

Successively eliminate variables to get x1(y - 2)(y2 + y - 1)2 = 0. We have the trivial solution xi = 
0 for any y. For y = 2, we find xi = s for all i (where s is arbitrary). Care is needed for the case y2 
+ y - 1 = 0, because after eliminating three variables the two remaining equations have a factor y2 
+ y - 1, and so they are automatically satisfied. In this case, we can take any two xi arbitrary and 
still get a solution. For example, x1 = s, x2 = t, x3 = - s + yt, x4 = - ys - yt, x5 = ys - t.  
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Problem B2  

Prove that cos π/7 - cos 2π/7 + cos 3π/7 = 1/2.    

Solution  

Consider the roots of x7 + 1 = 0. They are eiπ/7, ei3π/7, ... , ei13π/7 and must have sum zero since there 
is no x6 term. Hence, in particular, their real parts sum to zero. But cos7π/7 = - 1 and the others 
are equal in pairs, because cos(2π - x) = cos x. So we get cos π/7 + cos 3π/7 + cos 5π/7 = 1/2. 
Finally since cos(π - x) = - cos x, cos 5π/7 = - cos 2π/7.  

IMO 1963 

 
  
  
Problem B3  

Five students A, B, C, D, E were placed 1 to 5 in a contest with no ties. One prediction was 
that the result would be the order A, B, C, D, E. But no student finished in the position 
predicted and to two students predicted to finish consecutively did so. For example, the 
outcome for C and D was not 1, 2 (respectively), or 2, 3, or 3, 4 or 4, 5. Another prediction 
was the order D, A, E, C, B. Exactly two students finished in the places predicted and two 
disjoint pairs predicted to finish consecutively did so. Determine the outcome.    

Solution  

Start from the second prediction. The disjoint pairs can only be: DA, EC; DC, CB; or AE, CB. 
The additional requirement of just two correct places means that the only possibilities (in the light 
of the information about the second prediction) are: DABEC, DACBE, EDACB, AEDCB. The 
first is ruled out because AB are consecutive. The second is ruled out because C is in the correct 
place. The fourth is ruled out because A is in the correct place. This leaves EDACB, which is 
indeed a solution.  
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4th IMO 1962 

 

  

A1.  Find the smallest natural number with 6 as the last digit, such that if the final 6 is 
moved to the front of the number it is multiplied by 4.   

A2.  Find all real x satisfying: √(3 - x) - √(x + 1) > 1/2.  
 

A3.  The cube ABCDA'B'C'D' has upper face ABCD and lower face A'B'C'D' with A 
directly above A' and so on. The point x moves at constant speed along the perimeter 
of ABCD, and the point Y moves at the same speed along the perimeter of B'C'CB. X 
leaves A towards B at the same moment as Y leaves B' towards C'. What is the locus 
of the midpoint of XY?  

 

B1.  Find all real solutions to cos2x + cos22x + cos23x = 1.  
 

B2.  Given three distinct points A, B, C on a circle K, construct a point D on K, such 
that a circle can be inscribed in ABCD.   

B3.  The radius of the circumcircle of an isosceles triangle is R and the radius of its 
inscribed circle is r. Prove that the distance between the two centers is √(R(R - 2r)).  

 

B4.  Prove that a regular tetrahedron has five distinct spheres each tangent to its six 
extended edges. Conversely, prove that if a tetrahedron has five such spheres then it is 
regular.  
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IMO 1962 

  
Problem A1  

Find the smallest natural number with 6 as the last digit, such that if the final 6 is moved to 
the front of the number it is multiplied by 4.    

Solution  

We have 4(10n+6) = 6·10m + n, where n has m digits. So 13n + 8 = 2·10m. Hence n = 2n' and 13n' 
= 10m - 4. Dividing, we quickly find that the smallest n', m satisfying this are: n' = 7692, m = 5. 
Hence the answer is 153846.  

IMO 1962 

 
  
Problem A2  

Find all real x satisfying: √(3 - x) - √(x + 1) > 1/2.   

Solution  

It is easy to show that the inequality implies |x-1| > √31/8, so x > 1 + √31/8, or x < 1 - √31/8. But 
the converse is not true.  

Indeed, we easily see that x > 1 implies the lhs < 0. Also care is needed to ensure that the 
expressions under the root signs are not negative, which implies -1 ≤ x ≤ 3. Putting this together, 
suggests the solution is -1 ≤ x < 1 - √31/8, which we can easily check.  
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Problem A3  

The cube ABCDA'B'C'D' has upper face ABCD and lower face A'B'C'D' with A directly 
above A' and so on. The point x moves at constant speed along the perimeter of ABCD, and 
the point Y moves at the same speed along the perimeter of B'C'CB. X leaves A towards B 
at the same moment as Y leaves B' towards C'. What is the locus of the midpoint of XY?    

Solution  

 

Answer: the rhombus CUVW, where U is the center of ABCD, V is the center of ABB'A, and W 
is the center of BCC'B'.  

Take rectangular coordinates with A as (0, 0, 0) and C' as (1, 1, 1). Let M be the midpoint of XY. 
Whilst X is on AB and Y on B'C', X is (x, 0, 0) and Y is (1, x, 1), so M is (x/2 + 1/2, x/2, 1/2) = x 
(1, 1/2, 1/2) + (1-x) (1/2, 0, 1/2) = x W + (1-x) V, so M traces out the line VW.  

Whilst X is on BC and Y is on C'C, X is (1, x, 0) and Y is ( 1, 1, 1-x), so M is (1, x/2+1/2, 1/2 - 
x/2) = x (1, 1, 0) + (1-x) (1, 1/2, 1/2) = x C + (1-x) W, so M traces out the line WC.  

Whilst X is on CD and Y is on CB, X is (1-x, 1, 0) and Y is (1, 1-x, 0), so M is (1-x/2, 1-x/2, 0) = 
x (1, 1, 0) + (1-x) (1/2, 1/2, 0) = x C + (1-x) U, so M traces out the line CU.  

Whilst X is on DA and Y is on BB', X is (0, 1-x, 0) and Y is (1, 0, x), so M is (1/2, 1/2 - x/2, x/2) 
= x (1/2, 0, 1/2) + (1-x) (1/2, 1/2, 0) = x V + (1-x) U, so M traces out the line UV.  
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Problem B1  

Find all real solutions to cos2x + cos22x + cos23x = 1.   

Solution 

Put c = cos x, and use cos3x = 4c3 - 3c, cos 2x = 2 c2 - 1. We find the equation given is equivalent 
to c = 0, c2 = 1/2 or c2 = 3/4. Hence x = π/2, 3π/2, π/4, 3π/4, π/6, 5π/6 or any multiple of π plus 
one of these.  

IMO 1962 

  
Problem B2  

Given three distinct points A, B, C on a circle K, construct a point D on K, such that a circle 
can be inscribed in ABCD.  

   

Solution 

 

 

 

I be the center of the inscribed circle. Consider the quadrilateral ABCI. ∠BAI = 1/2 ∠BAD and ∠BCI = 1/2 ∠BCD, so ∠BAI + ∠BCI = 90o, since ABCD is cyclic. Hence ∠AIC = 270o - ∠ABC. So if we draw a circle through A and C such that for X points on the arc AC ∠AXC = 
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90o + ∠ABC, then the intersection of the circle with the angle bisector of ∠ABC gives the point 
I.  

To draw this circle take the diameter AE. Then ∠CAE = 180o - ∠ACE - ∠AEC = 90o - ∠ABC. 
So we want AE to be tangent to the circle. Thus the center of the circle is on the perpendicular to 
AE through A and on the perpendicular bisector of AC.  

To prove the construction possible we use the fact that a quadrilateral ABCD has an inscribed 
circle iff AB + CD = BC + AD. For D near C on the circumcircle of ABC we have AB + CD < 
BC + AD, whilst for D near A we have AB + CD > BC + AD, so as D moves continuously along 
the circumcircle there must be a point with equality. [Proof that the condition is sufficient: it is 
clearly necessary (use fact that tangents from a point are of equal length). So take a circle 
touching AB, BC and AD and let the other tangent from C (not BC) meet AD in D'. Then CD' - 
CD = AD' - AD, hence D'= D.]  

  

IMO 1962 

 
  
Problem B3  

The radius of the circumcircle of an isosceles triangle is R and the radius of its inscribed 
circle is r. Prove that the distance between the two centers is √(R(R - 2r)).    

Solution  

 

 

 

Let the triangle be ABC with AB = AC, let the incenter be I and the circumcenter O. Let the 
distance IO be d, taking d positive if O is closer to A than I, negative if I is closer. Let the ∠OAB 
be θ.  
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Then r = (R + d) sin θ, and r + d = R cos 2θ. It helps to draw a figure to check that this remains 
true for the various possible configurations. Using cos 2θ = 1 - 2 sin2θ, we find that (d + R + r)(d2 
- R(R - 2r)) = 0. But OI < OA, so d is not - R - r. Hence result.  

Comment.  

 

This result is known as Euler's formula and is true for any triangle. Suppose two chords PQ and 
ST of a circle intersect at I. Then PIS and TIQ are similar, so PI·IQ = SI·IT. Take the special case 
when ST is perpendicular to OI, where O is the center of the circle, then SI·IT = SI2 = R2 - OI2, 
where R is the radius of the circle, so PI·IQ = R2 - OI2.  

 

Now let O be the circumcenter, I the incenter of an arbitrary triangle ABC. Extend AI to meet the 
circumcircle again at D. Then by the above IO2 = R2 - AI·ID. If E is the foot of the perpendicular 
from I to AC, then AI = r/sin(A/2). We show that DI = DB. ∠DBI = ∠DBC + ∠CBI = ∠DAC 
+ ∠DBI = A/2 + B/2. ∠DIB = ∠IAB + ∠IBA = A/2 + B/2. Hence ∠DBI = ∠DIB, so DI = 
DB, as claimed. Take F on the circle so that DF is a diameter, then ∠DFB = ∠DAB = A/2, so 
DB = 2R sin A/2. Thus IO2 = R2 - r/sin(A/2) 2R sin(A/2) = R2 - 2Rr.  
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Problem B4  

Prove that a regular tetrahedron has five distinct spheres each tangent to its six extended 
edges. Conversely, prove that if a tetrahedron has five such spheres then it is regular.    

Solution  

First part is obvious. The wrong way to do the second part is to start looking for the locus of the 
center of a sphere which touches three edges. The key is to notice that the tangents to a sphere 
from a given point have the same length.  

Let the tetrahedron be A1A2A3A4. Let S be the sphere inside the tetrahedron, S1 the tetrahedron 
opposite A1, and so on. Let the tangents to S from Ai have length ai. Then the side AiA j has length 
ai+aj. Now consider the tangents to S1 from A1. Their lengths are a1 + 2a2, a1 + 2a3, and a1 + 2a4. 
Hence a2 = a3 = a4. Similarly, considering S2, we have that a1 = a3 = a4.  
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3rd IMO 1961 

 

  

A1.  Solve the following equations for x, y and z: 
  
        x + y + z = a;     x2 + y2 + z2 = b2;     xy = z2 
.   
What conditions must a and b satisfy for x, y and z to be distinct positive numbers?  

 

A2.  Let a, b, c be the sides of a triangle and A its area. Prove that: 
  
        a2 + b2 + c2 ≥ 4√3 A 
  
When do we have equality?  

 

A3.  Solve the equation cosnx - sinnx = 1, where n is a natural number.  
 

B1.  P is inside the triangle ABC. PA intersects BC in D, PB intersects AC in E, and 
PC intersects AB in F. Prove that at least one of AP/PD, BP/PE, CP/PF does not 
exceed 2, and at least one is not less than 2.   

B2.  Construct the triangle ABC, given the lengths AC=b, AB=c and the acute ∠AMB = α, where M is the midpoint of BC. Prove that the construction is possible if 
and only if 
  
        b tan(α/2) ≤ c < b. 
  
When does equality hold?  

 

B3.  Given 3 non-collinear points A, B, C and a plane p not parallel to ABC and such 
that A, B, C are all on the same side of p. Take three arbitrary points A', B', C' in p. 
Let A'', B'', C'' be the midpoints of AA', BB', CC' respectively, and let O be the 
centroid of A'', B'', C''. What is the locus of O as A', B', C' vary?  

 

 

 

 

IMO 1961 
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Problem A1  

Solve the following equations for x, y and z:  

        x + y + z = a;     x2 + y2 + z2 = b2;     xy = z2  

What conditions must a and b satisfy for x, y and z to be distinct positive numbers?    

Solution  

A routine slog gives z = (a2 - b2)/2a, x and y = (a2 + b2)/4a ± √(10a2b2 - 3a4 - 3b4)/4a.  

A little care is needed with the conditions. Clearly x, y, z positive implies a > 0, and then z 
positive implies |b| < a. The expression under the root must be positive. It helps if you notice that 
it factorizes as (3a2 - b2)(3b2 - a2). The second factor is positive because |b| < a, so the first factor 
must also be positive and hence a < √3 |b|. These conditions are also sufficient to ensure that x 
and y are distinct, but then z must also be distinct because z2 = xy.  

IMO 1961 

Problem A2  

Let a, b, c be the sides of a triangle and A its area. Prove that:  

        a2 + b2 + c2 ≥ 4√3 A  

When do we have equality?    

Solution  

One approach is a routine slog from Heron's formula. The inequality is quickly shown to be 
equivalent to a2b2 + b2c2 + c2a2 ≤ a4 + b4 + c4, which is true since a2b2 ≤ (a4 + b4)/2. We get 
equality iff the triangle is equilateral.  

Another approach is to take an altitude lying inside the triangle. If it has length h and divides the 
base into lengths r and s, then we quickly find that the inequality is equivalent to (h - (r + s)√3/2)2 
+ (r - s)2 ≥ 0, which is true. We have equality iff r = s and h = (r + s)√3/2, which means the 
triangle is equilateral.  

A third solution is due to Jonathan Mizrahi (somewhat adapted):  

We have b2 + c2 >= 2bc with equality iff b = c. Also for any angle x in the range 0o to 180o we 
have 2bc ≥ 2bc sin(X + 30o) with equality iff X = 60o. So taking X to be the angle between the 
sides b and c (we cannot call it A because A is already used to mean the area in this question!) we 
have that b2 + c2 ≥ bc sin(X + 30o) with equality iff the triangle is equilateral. Now 2 sin(X + 30o) 
= √3 sin X + cos X, so using the cosine rule a2 = b2 + c2 - 2bc cos X, we get the required 
inequality.  
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IMO 1961 

 
Problem A3  

Solve the equation cosnx - sinnx = 1, where n is a natural number.    

Solution 

Since cos2x + sin2x = 1, we cannot have solutions with n not 2 and 0 < |cos x|, |sin x| < 1. Nor can 
we have solutions with n=2, because the sign is wrong. So the only solutions have sin x = 0 or cos 
x = 0, and these are: x = multiple of π, and n even; x even multiple of π and n odd; x = even 
multiple of π + 3π/2 and n odd.   

IMO 1961 

  
Problem B1  

P is inside the triangle ABC. PA intersects BC in D, PB intersects AC in E, and PC 
intersects AB in F. Prove that at least one of AP/PD, BP/PE, CP/PF does not exceed 2, and 
at least one is not less than 2.    

Solution  

 

Take lines through the centroid parallel to the sides of the triangle. The result is then obvious.  
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IMO 1961 

 
  
Problem B2  

Construct the triangle ABC, given the lengths AC = b, AB = c and the acute ∠∠∠∠AMB = α , 
where M is the midpoint of BC. Prove that the construction is possible if and only if  

        b tan(α /2) ≤ c < b. 
   

When does equality hold?    

Answer  

Equality holds if ∠BAC = 90o and ∠ACB = α/2  

   

Solution  

 

The key is to take N so that A is the midpoint of NB, then ∠NCB = α.  

The construction is as follows: take BN length 2AB. Take circle through B and N such that the ∠BPN = α for points P on the arc BN. Take A as the midpoint of BN and let the circle center A, 
radius AC cut the arc BN at C. In general there are two possibilities for C.  
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Let X be the intersection of the arc BN and the perpendicular to the segment BN through A. For 
the construction to be possible we require AX ≥ AC > AB. But AB/AX = tan α/2, so we get the 
condition in the question.  

Equality corresponds to C = X and hence to ∠BAC = 90o and ∠ACB = α/2.  

 IMO 1961 

 
 Problem B3  

Given 3 non-collinear points A, B, C and a plane p not parallel to ABC and such that A, B, 
C are all on the same side of p. Take three arbitrary points A', B', C' in p. Let A'', B'', C'' 
be the midpoints of AA', BB', CC' respectively, and let O be the centroid of A'', B'', C''. 
What is the locus of O as A', B', C' vary?    

Solution  

The key is to notice that O is the midpoint of the segment joining the centroids of ABC and 
A'B'C'. The centroid of ABC is fixed, so the locus is just the plane parallel to p and midway 
between p and the centroid of ABC.  
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2nd IMO 1960 

 

  

A1.  Determine all 3 digit numbers N which are divisible by 11 and where N/11 is 
equal to the sum of the squares of the digits of N.   

A2.  For what real values of x does the following inequality hold: 
  
        4x2/(1 - √(1 + 2x))2  <  2x + 9 ?   

A3.  In a given right triangle ABC, the hypoteneuse BC, length a, is divided into n 
equal parts with n an odd integer. The central part subtends an angle α at A. h is the 
perpendicular distance from A to BC. Prove that: 
  
        tan α = 4nh/(an2 - a).  

 

B1.  Construct a triangle ABC given the lengths of the altitudes from A and B and the 
length of the median from A.   

B2.  The cube ABCDA'B'C'D' has A above A', B above B' and so on. X is any point of 
the face diagonal AC and Y is any point of B'D'. 
(a) find the locus of the midpoint of XY; 
(b) find the locus of the point Z which lies one-third of the way along XY, so that 
ZY=2·XZ.  

 

B3.  A cone of revolution has an inscribed sphere tangent to the base of the cone (and 
to the sloping surface of the cone). A cylinder is circumscribed about the sphere so 
that its base lies in the base of the cone. The volume of the cone is V1 and the volume 
of the cylinder is V2. 
(a)  Prove that V1 ≠ V2; 
(b)  Find the smallest possible value of V1/V2. For this case construct the half angle of 
the cone.  

 

B4.  In the isosceles trapezoid ABCD (AB parallel to DC, and BC = AD), let AB = a, 
CD = c and let the perpendicular distance from A to CD be h. Show how to construct 
all points X on the axis of symmetry such that ∠BXC = ∠AXD = 90o. Find the 
distance of each such X from AB and from CD. What is the condition for such points 
to exist?  
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 Problem A1  

Determine all 3 digit numbers N which are divisible by 11 and where N/11 is equal to the 
sum of the squares of the digits of N.   
 

Answer  

550, 803.  

Solution  

So, put N/11 = 10a + b. If a + b ≤ 9, we have 2a2 + 2ab + 2b2 = 10a + b (*), so b is even. Put b = 
2B, then B = a(a-5) + 2aB + 4B2, which is even. So b must be a multiple of 4, so b = 0, 4 or 8. If b 
= 0, then (*) gives a = 5 and we get the solution 550. If b = 4, then (*) gives a2 - a + 14 = 0, which 
has no integral solutions. If b = 8, then (since a + b ≤ 9 and a > 0) a must be 1, but that does not 
satisfy (*).  

If a + b > 9, we have (a+1)2 + (a+b-10)2 + b2 = 10a + b, or 2a2 + 2ab + 2b2 - 28a - 21b + 101 = 0 
(**), so b is odd. Put b = 2B+1. Then a2 + 2aB + 4B2 - 13a - 17B + 41 = 0. But a(a-13) is even, so 
B is odd. Hence b = 3 or 7. If b = 3, then (**) gives a2 - 11a + 28 = 0, so a = 4 or 7. But a + b > 9, 
so a = 7. That gives the solution 803. If b = 7, then (**) gives a2 - 7a + 26 = 0, which has no 
integral solutions.  

Comment :Personally, I hate this type of question. The fastest way to solve it is almost certainly 
to scan the 81 multiples of 11 from 110 to 990.  

IMO 1960 

  
Problem A2  

For what real values of x does the following inequality hold:  

        4x2/(1 - √(1 + 2x))2  <  2x + 9 ?   
Answer  : -1/2 ≤ x < 45/8.   
Solution  

We require the first inequality to avoid imaginary numbers. Hence we may set x = -1/2 + a2/2, 
where a ≥ 0. The inequality now gives immediately a < 7/2 and hence x < 45/8. It is a matter of 
taste whether to avoid x = 0. I would allow it because the limit as x tends to 0 of the lhs is 4, and 
the inequality holds.  

Thanks to Dave Arthur for the idea of putting x = -1/2 + a, which saves some tedious algebra.  
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Problem A3  

In a given right triangle ABC, the hypoteneuse BC, length a, is divided into n equal parts 
with n an odd integer. The central part subtends an angle α  at A. h is the perpendicular 
distance from A to BC. Prove that:  

        tan α  = 4nh/(an2 - a).  

  
Solution  

Let M be the midpoint of BC, and P and Q the two points a/2n either side of it, with P nearer B. 
Then α = ∠PAQ = ∠QAH - ∠PAH (taking angles as negative if P (or Q) lies to the left of H). 
So tan α = (QH - PH)/(AH2 + QH·PH) = AH·PQ/(AH2 + (MH - a/2n)(MH + a/2n)) = (ah/n)/(a2/4 - 
a2/(4n2)) = 4nh/(an2 - a).  

 IMO 1960 

  
Problem B1  

Construct a triangle ABC given the lengths of the altitudes from A and B and the length of 
the median from A.   
 

Solution  

 

Let M be the midpoint of BC, AH the altitude from A, and BI the altitude from B. Start by 
constructing AHM. Take X on the circle diameter AM with MX = BI/2. Let the lines AX, HM 
meet at C and take B so that BM = MC. [This works because CMX and CBI are similar with MX 
= BI/2 and hence CM = CB/2.]  
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Problem B2  

The cube ABCDA'B'C'D' has A above A', B above B' and so on. X is any point of the face 
diagonal AC and Y is any point of B'D'. 
(a) find the locus of the midpoint of XY; 
(b) find the locus of the point Z which lies one-third of the way along XY, so that ZY=2·XZ.  

  
Solution  

 

The key idea is that the midpoint must lie in the plane half-way between ABCD and A'B'C'D'. 
Similarly, Z must lie in the plane one-third of the way from ABCD to A'B'C'D'.  

(a)  Regard ABCD as horizontal. Then the locus is the square with vertices the midpoints of the 
vertical faces (shown shaded in the diagram).  

Take Y at B' and let X vary, then we trace out MN. Similarly, we can get the other sides. Now 
with Y at B', take X in general position, so the midpoint of XY is on MN. Now move Y to D', the 
midpoint traces out a line parallel to the other two sides of the square, so we can get any point 
inside the square. But equally, it is clear that any point inside the triangle LMN corresponds to a 
point Y on the ray D'B' not between B' and D', so it does not lie in the locus. Similarly for the 
other three triangles. So the locus is the square.  

(b)  A similar argument shows that the locus is the rectangle shown in the diagram below which is 
√2/3 x 2√2/3.  
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Problem B3  

A cone of revolution has an inscribed sphere tangent to the base of the cone (and to the 
sloping surface of the cone). A cylinder is circumscribed about the sphere so that its base 
lies in the base of the cone. The volume of the cone is V1 and the volume of the cylinder is 
V2.  
(a)  Prove that V1 ≠ V2; 
(b)  Find the smallest possible value of V1/V2. For this case construct the half angle of the 
cone.   

Solution  

Let the vertex of the cone be V, the center of the sphere be O and the center of the base be X. Let 
the radius of the sphere be r and the half-angle of the cone θ.  

Then the the cone's height is VO + OX = r(1 + 1/sin θ), and the radius of its base is r(1 + 1/sin θ) 
tan θ. Hence V1/V2 = (1/6) (1 + 1/sin θ)3 tan2θ = (1 + s)3(6s(1 - s2)), where s = sin θ.  

We claim that (1 + s)3(6s(1 - s2)) ≥ 4/3. This is equivalent to 1 + 3s + 3s2 + s3 ≥ 8s - 3s3 or 1 - 5s + 
3s2 + 9s3 >= 0. But we can factorise the cubic as (1 - 3s)2(1 + s). So we have V1/V2 ≥ 4/3 with 
equality iff s = 1/3.  
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Problem B4  

In the isosceles trapezoid ABCD (AB parallel to DC, and BC = AD), let AB = a, CD = c and 
let the perpendicular distance from A to CD be h. Show how to construct all points X on the 
axis of symmetry such that ∠∠∠∠BXC = ∠∠∠∠AXD = 90o. Find the distance of each such X from 
AB and from CD. What is the condition for such points to exist?    

Solution  

Since angle BXC = 90o, X lies on the circle diameter BC. In general this will intersect the axis of 
symmetry in 0, 1 or 2 points. By symmetry any points of intersection X will also lie on the circle 
diameter AD and so will have angle AXD = 90o also.  

Let L be the midpoint of AB, and M the midpoint of CD. Let X lie on LM a distance x from L. 
We have LB = a/2, MC = c/2, and XM = h - x. The triangles LBX and MXC are similar, so 2x/a 
= c/(2(h-x)). Hence 4x2 - 4xh + ac = 0, so x = h/2 ± (√(h2 - ac) )/2.  

There are 0, 1, 2 points according as h2 <, =, > ac.  
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A1.  Prove that (21n+4)/(14n+3) is irreducible for every natural number n.  
 

A2.  For what real values of x is √(x + √(2x-1)) + √(x - √(2x-1)) = A given (a) A = √2, 
(b) A = 1, (c) A = 2, where only non-negative real numbers are allowed in square roots 
and the root always denotes the non-negative root?   

A3.  Let a, b, c be real numbers. Given the equation for cos x: 
  
        a cos2x + b cos x + c = 0,  
  
form a quadratic equation in cos 2x whose roots are the same values of x. Compare the 
equations in cos x and cos 2x for a=4, b=2, c=-1.  

 

B1.  Given the length |AC|, construct a triangle ABC with ∠ABC = 90o, and the 
median BM satisfying BM2 = AB·BC.   

B2.  An arbitrary point M is taken in the interior of the segment AB. Squares AMCD 
and MBEF are constructed on the same side of AB. The circles circumscribed about 
these squares, with centers P and Q, intersect at M and N. 
  (a) prove that AF and BC intersect at N; 
  (b) prove that the lines MN pass through a fixed point S (independent of M); 
  (c) find the locus of the midpoints of the segments PQ as M varies.  

 

B3.  The planes P and Q are not parallel. The point A lies in P but not Q, and the point 
C lies in Q but not P. Construct points B in P and D in Q such that the quadrilateral 
ABCD satisfies the following conditions: (1) it lies in a plane, (2) the vertices are in 
the order A, B, C, D, (3) it is an isosceles trapezoid with AB parallel to CD (meaning 
that AD = BC, but AD is not parallel to BC unless it is a square), and (4) a circle can 
be inscribed in ABCD touching the sides.  
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Problem A1  

Prove that (21n+4)/(14n+3) is irreducible for every natural number n.  
 

Solution  

3(14n+3) - 2(21n+4) = 1. 

IMO 1959 

 
Problem A2  

For what real values of x is √(x + √(2x-1)) + √(x - √(2x-1)) = A, given (a) A = √2, (b) A = 1, (c) 
A = 2, where only non-negative real numbers are allowed in square roots and the root 
always denotes the non-negative root?    

Answer  

(a) any x in the interval [1/2,1]; (b) no solutions; (c) x=3/2.    

Solution  

Note that we require x ≥ 1/2 to avoid a negative sign under the inner square roots. Since (x-1)2 ≥ 
0, we have x ≥ √(2x-1), so there is no difficulty with √(x - √(2x-1)), provided that x ≥ 1/2.  

Squaring gives 2x + 2√(x2-2x+1) = A2. Note that the square root is |x-1|, not simply (x-1). So we 
get finally 2x + 2|x-1| = A2. It is now easy to see that we get the solutions above.  
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Problem A3  

Let a, b, c be real numbers. Given the equation for cos x: 

        a cos2x + b cos x + c = 0,  

form a quadratic equation in cos 2x whose roots are the same values of x. Compare the 
equations in cos x and cos 2x for a=4, b=2, c=-1.   
 

Solution  

You need that cos 2x = 2 cos2x - 1. Some easy manipulation then gives:  

a2cos22x + (2a2 + 4ac - 2b2) cos 2x + (4c2 + 4ac - 2b2 + a2) = 0.  

The equations are the same for the values of a, b, c given. The angles are 2π/5 (or 8π/5) and 4π/5 
(or 6π/5).  

IMO 1959  
  
Problem B1 

Given the length |AC|, construct a triangle ABC with ∠∠∠∠ABC = 90o, and the median BM 
satisfying BM2 = AB·BC.  
Solution  

 

Area = AB·BC/2 (because ∠ABC = 90o= BM2/2 (required) = AC2/8 (because BM = AM = MC), 
so B lies a distance AC/4 from AC. Take B as the intersection of a circle diameter AC with a line 
parallel to AC distance AC/4.  
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 Problem B2  

An arbitrary point M is taken in the interior of the segment AB. Squares AMCD and 
MBEF are constructed on the same side of AB. The circles circumscribed about these 
squares, with centers P and Q, intersect at M and N. 
  (a) prove that AF and BC intersect at N; 
  (b) prove that the lines MN pass through a fixed point S (independent of M); 
  (c) find the locus of the midpoints of the segments PQ as M varies.   
 

Solution  

 

(a)   ∠ANM = ∠ACM = 45o. But ∠FNM = ∠FEM = 45o, so A, F, N are collinear. Similarly, ∠BNM = ∠BEM = 45o and ∠CNM = 180o - ∠CAM = 135o, so B, N, C are collinear.  

(b)   Since ∠ANM = ∠BNM = 45o, ∠ANB = 90o, so N lies on the semicircle diameter AB. Let 
NM meet the circle diameter AB again at S. ∠ANS = ∠BNS implies AS = BS and hence S is a 
fixed point.  

(c)   Clearly the distance of the midpoint of PQ from AB is AB/4. Since it varies continuously 
with M, it must be the interval between the two extreme positions, so the locus is a segment 
length AB/2 centered over AB. 
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Problem B3  

The planes P and Q are not parallel. The point A lies in P but not Q, and the point C lies in 
Q but not P. Construct points B in P and D in Q such that the quadrilateral ABCD satisfies 
the following conditions: (1) it lies in a plane, (2) the vertices are in the order A, B, C, D, (3) 
it is an isosceles trapezeoid with AB is parallel to CD (meaning that AD = BC, but AD is not 
parallel to BC unless it is a square), and (4) a circle can be inscribed in ABCD touching the 
sides.  

  
Solution  

 

Let the planes meet in the line L. Then AB and CD must be parallel to L. Let H be the foot of the 
perpendicular from C to AB. The fact that a circle can be inscribed implies AB + CD = BC + AD 
(equal tangents from A, B, C, D to the circle). Also CD = AB ± 2BH. This leads to AH = AD = 
BC.  

The construction is now easy. First construct the point H. Then using the circle center C radius 
AH, construct B. Using the circle center A radius AH construct D.  

Note that if CH > AH then no construction is possible. If CH < AH, then there are two solutions, 
one with AB > CD, the other with AB < CD. If CH = AH, then there is a single solution, which is 
a square.  

------------------------------------------------ The end --------------------------------------------------- 
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