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Abstract—
Social forwarding, recently a hot topic in mobile opportunistic

networking, faces extreme challenges from potentially large
numbers of mobile nodes, vast areas, and limited communication
resources. Such conditions render forwarding more challenging
in large-scale networks. We observe that forwarding techniques
based on social popularity fail to efficiently forward messages in
large scale networks. The social popularity of nodes might not
scale with the network size in a way that necessarily correlates
with the contact opportunities and mobility patterns of these
nodes. In this paper, we demonstrate, based on real mobility
traces, the weakness of existing social forwarding algorithms in
large scale communities. We address this weakness by propos-
ing strategies for partitioning these large scale communities
into sub-communities based on geographic locality or social
interests. We also examine exploiting particular nodes, named
MultiHomed nodes, in order to disseminate messages across
these sub-communities. We introduce CAF, a Community Aware
Forwarding framework, which can easily be integrated with most
of the state-of-the-art social forwarding algorithms, in order to
improve their performance in large scale networks. We use real
mobility traces to evaluate our proposed techniques. Our results
empirically show a performance increase of around 40% and
5% to 30% better success delivery rates compared to state-of-
the-art social forwarding algorithms, while incurring a marginal
increase in cost.

Index Terms—CAF, Social Forwarding, DTN, PeopleRank,
scalability, mobility traces.

I. INTRODUCTION

The proliferation of a new generation of powerful mo-
bile devices has led to the rise of new infrastructure-less
based communication paradigms and applications. This new
communication environment is characterized by a variety of
new challenges such as mobility, disconnections, and energy
constraints. While researchers in the area of Mobile Ad Hoc
Networks [13] (MANETs) have traditionally addressed some
of these challenges, their solutions fail in scenarios where
end-to-end paths may not exist. Delay Tolerant Networks [12]
(DTNs) in general, and opportunistic networks in particular,
have recently attempted to address this failure through a vari-
ety of message store-carry-and-forward techniques. The most
pressing concern in these types of opportunistic networking
solutions, is the fundamental problem of deciding on when to
forward a message and who this message should be forwarded
to. How to optimally select the next hop towards a destination
in a way that minimizes delay and maximizes success rate is

so far unknown.
One approach to the message forwarding challenge that

recently received increased attention, is to exploit social net-
working properties to opportunistically forward messages [17],
[15], [16], [14]. Nowadays the number of social network-
ing websites exploiting friendship links, such as Facebook,
LinkedIn, and MySpace, is constantly growing. Furthermore,
mobile phones provide constant Internet access and allow for
a continuous maintenance of these online social networking
websites. Social interaction between people can largely be
used as a good predictor for human mobility. Social informa-
tion can therefore be used to optimize opportunistic forwarding
decisions in Mobile Opportunistic Networks.

Our work addresses scalability issues of existing oppor-
tunistic social forwarding algorithms. In large scale oppor-
tunistic networks, the transmission of messages through the
most socially popular people, as proposed in the BubbleRap
algorithm [11], will ultimately consume most of their device
resources. Moreover, it is hard to defend the assumption that
a subset of socially high ranked nodes will physically meet all
other nodes in large scale networks. We validate this intuition
based on real life traces; we show, in section III, that state-
of-the-art social forwarding algorithms achieve satisfactory
performance within small communities such as conferences,
campuses, etc. but suffer in large scale networks.

This paper contributes to a better understanding of the
weaknesses of existing social forwarding algorithms in large
scale Mobile Opportunistic Networks, and proposes insights
to deal with such issues. We propose partitioning large scale
communities into multiple sub-communities based on vari-
ous common social characteristics such as locality or social
interests. We introduce (in section IV) CAF a Community
Aware Framework which can easily be integrated with most of
the existing social forwarding algorithms, in order to improve
their performance in large scale networks. CAF uses particular
nodes called MultiHomed nodes to disseminate messages
across all the sub-communities in the network. The original
social forwarding algorithm can then behave normally within
a local sub-community. Besides the simplicity of CAF, it uses
a relatively negligible overhead compared to the overhead
induced by state-of-the-art algorithms, such as BubbleRap, to
compute the global node ranking in the large scale network.
CAF remains a distributed forwarding algorithm and relies on



a local social/contact information to estimate future transfer
opportunities.

A major contribution in our work is based on the fact that
our insights, evaluation, and analysis of social forwarding
algorithms as well as the CAF framework, are all based
on real mobility traces. We utilize in this paper the largest
data set (To the best of our knowledge) that captures human
mobility contacts in large scale networks in addition to the
corresponding social information. Our results, in section V,
show that we obtain a performance increase of around 40%
compared to the state-of-the-art social forwarding algorithms,
while incurring a marginal increase in cost. We also show
that CAF outperforms BubbleRap and achieves 5% to 30%
delivery rate improvement.

II. RELATED WORK

Mobile communication opportunities between nodes in Op-
portunistic Networks are intermittent in nature and end-to-end
paths between a source and a destination may never exist.
Since node contacts are mostly unpredictable, scheduled relay
approaches such as Message Ferrying [24] could not be effec-
tive. Replication is the most common technique to maximize
the number of successful message delivered. Naive forwarding
protocols based on flooding are extremely inefficient [25],
[22]; because flooding is very costly in terms of resource and
energy consumption. Most of the work done is on designing
controlled flooding algorithms to reduce the number of replica
copies in the network, and achieving a satisfactory delivery
rates. Proposed algorithms use a “utility” metric to make
forwarding decisions based on contact information [4], [5], [2],
[18], [8], probabilistic schemes [18], or social properties [10],
[11], [7], [19], [21], [9], [20].

While contact and learning based forwarding schemes have
been quite popular in literature, there has been much less
work on social based forwarding. We classify existing social
forwarding algorithms as follows:

Degree-Based Forwarding consists of forwarding mes-
sages to socially well connected nodes. Paths are constructed
according to a non-decreasing social node’s degree rule [19].

Centrality-Based Forwarding builds on the idea that cen-
tral nodes in social graphs are more likely to socialize with
other people and therefore suitable to forward messages to the
destination [7], [19]. Simbet [7] is a well known Centrality-
Based Forwarding algorithm which uses potential nodes to
forward messages to destination based on their centrality
characteristics.

PeopleRank is a fully distributed algorithm that ranks nodes
in a social graph similar to what PageRank [3] does for web
pages - i.e., it measures the relative “importance” of a node in
a social graph. Message forwarding decisions can then follow
a non-decreasing rank rule [21].

Most of these contributions generally highlight the superior
performance of social forwarding algorithms within specific
communities such as conferences, campuses, etc. Our goal in
this paper is to: (i) emphasize the weakness of such algorithms
in large scale networks and (ii) propose a technique, which can

easily be integrated with most social forwarding algorithms,
in order to improve the success rate in large scale networks.

Studying the scalability of forwarding algorithms in large
ad hoc networks is not a new research topic [10], [11].
Previous work that study opportunistic forwarding in large
scale networks have focused on the “mobility properties” [24],
[26], [27], [10]. However, connecting “social characteristics”
of individuals and their mobility to classify them into com-
munities remains largely unexplored. In order to interconnect
isolated regions (i.e., communities) in a large scale network,
pre-scheduled relay approaches such as Message Ferrying [26]
have been proposed; special mobile nodes called “ferries“ aid
connectivity between the nodes in the network. Since mobility
is, in general, unpredictable in opportunistic networks, sched-
uled approaches could not be effective.

Most relevant to this work, BubbleRap [10], [11] is a
forwarding algorithm that uses contact properties of node to
estimate nodes’ popularity and classify nodes in communities.
Besides the fact that the computation of nodes’ centrality
and communities are deduced from contact properties (and
evaluated with the same contact trace), BubbleRap assumes
that each node has a global ranking across the whole network;
we believe that such assumption is surrealistic in a large scale
environment. In our work, we do not rely on such simplistic
assumptions, and use explicit and local social interactions
between individual to form communities and disseminate mes-
sages across these communities. We show in our evaluation
how our Community Aware Forwarding framework (CAF)
outperforms BubbleRap in most scenarios.

III. SOCIAL FORWARDING WEAKNESS IN LARGE SCALE
NETWORKS

In this section, we first present a brief overview on the
idea behind social forwarding algorithms. We then describe
the drawbacks of the current state-of-the-art algorithms with
large scale networks using a motivating scenario. Finally, we
confirm our observations and quantify these drawbacks using
experimental validation and analysis.

A. Social Forwarding Overview

In social-based opportunistic networks, we are generally
interested in delivering data among a set of N mobile wireless
nodes. Communication between two nodes is established when
they are within radio range of each other. Data is forwarded
from source to destination using these opportunistic contacts.
We model social relationships between mobile nodes using a
non-time varying graph, which we denote as Gs = (Vs, Es).
Social graphs reflect the interaction or interrelation between
people/nodes. Such information is available either in online
social applications or could be extracted from the phone
history or other sources. A link in the social graph between
two nodes implies that these nodes are socially “connected”
according to one or more social attributes (e.g., friends in
Facebook or sharing a common interest).

A social forwarding algorithm is a store-carry-forward
algorithm which spreads a message M among nodes (relays)
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Fig. 1: Example showing (a) the weaknesses of existing social forwarding algorithms in a large scale community, and (b)
identifying sub-communities within the same large scale one, and using MultiHomed nodes to disseminate messages to these
sub-communities.

who have specific social properties. In this paper, our anal-
ysis is based on three existing social forwarding algorithms;
Degree-Based Forwarding [19], Centrality-Based Forwarding
(Simbet) [7], and PeopleRank [21]. Various social forwarding
mechanisms differ by the method used to predict device mo-
bility and future contact opportunities between devices based
on simple social properties. These approaches, which use
social properties to forward messages, implicitly assumes that
opportunistic contacts correlate with the social property upon
which the algorithms are designed. In large scale networks,
where distances have larger impact such contact opportunities,
it is hard to defend such an assumption.

B. Motivating Scenario

Fig. 1(a) illustrates a scenario where social forwarding
attempts to disseminate a message M generated by a source
S to the destination D. Without any notion of communities,
M is forwarded in the wrong direction relying on “globally
popular nodes” in the network (i.e., the BubbleRap technique).
Theses particular nodes, although popular, may not be able to
deliver the message to all the nodes in the network. In the
education city (EC) (a campus that includes 6 US university
branches in Doha, Qatar), the founder of EC could be a
very popular person in the whole campus (Globally Popular
Node), but not likely suitable to relay the message M to a
student in a particular university on campus. However, other
nodes may be locally popular (e.g., within a university of the
campus as shown in Fig. 1(b)) and more suitable to deliver
this message to its destination in a specific sub-community.
Therefore, particular nodes which we call MultiHomed nodes
such as postmen or campus bus drivers are more suitable
to disseminate the message M across all sub-communities.
This approach is opposed to the BubbleRap algorithm that
uses globally popular nodes to disseminate the message to all

communities. Therefore, the main idea (shown in Fig. 1(b))
is to first breakdown the original large scale community into
multiple sub-communities, then disseminate the message to
these sub-communities. Afterwards, locally popular nodes can
then deliver the message M within its sub-community.

C. Experimental Validation

In this section, we highlight the weaknesses of existing
social forwarding algorithms in large scale networks relying on
two experimental data sets. We run analysis on the following
experimental data sets (Table I summarizes the characteristics
of the used data sets. More details can be found in [21], and
CRAWDAD1.):

Dartmouth: We use the WiFi access network of Dart-
mouth campus [1]. This data set spans roughly 1300x1300
square meters and over 160 buildings, and about 550 802.11b
access points throughout. Dartmouth college covers student
residences, sport infrastructures, administrative buildings, and
academic buildings. The data set contains logs of client
MAC addresses, and SSIDs of access points as well as their
positions. We assume that two nodes are able to communicate
if they are connected at the same time to the same access point.
We use this trace to generate contacts between 100 nodes
in order to simulate the message propagation in a pure ad-
hoc manner. Note that the ping-pong effect in the Dartmouth
trace [1] will not affect such assumption.

San Francisco: To the best of our knowledge, this is the
largest data set that captures human mobility contacts as well
as human social properties in large scale networks. We use the
San Francisco taxi trace [23], and combine it with three other
existing data sets to represent three different communities. The
San Francisco taxi trace contains mobility traces of taxi cabs in
San Francisco. It contains GPS coordinates of approximately

1crawdad.cs.dartmouth.edu/



Dartmouth San Francisco
MobiClique Infocom06 Conext08

duration 3 days 3 days 3 days 3 days
mobility pattern WiFi Bluetooth Bluetooth Bluetooth
# nodes 100 27 47 22
median inter-contact 6 mins 10 mins 15 mins 12 mins
median contact time 160 sec 240 sec 150 sec 120 sec

TABLE I: Dataset properties

500 taxis collected over 30 days. Each trace contains the
reported time and location for each taxi. We incorporate traces
for the duration of 3 days, interpolate the movement of the
cabs, and then generate the contacts between these taxis. We
assume a contact has occurred when a taxi comes within
a proximity of 100 meters from another taxi. In this data
set, taxis are connecting different zones of the San Francisco
area such as the airport, downtown, and the sunset area. We
artificially add real human mobility patterns in each of this
areas based on real traces (see Table. I for more detail). To
summarize, the resulting data set contains 3 sub-communities
in three different areas of San Francisco. Taxis are moving
between these areas. Contacts between taxis and nodes within
an area are added based on the same contact time and inter-
contact time distribution [6] of the corresponding area.

Our evaluation methodology: We evaluate the perfor-
mance of three state-of-the-art social forwarding algorithms in
large scale networks relying on the two previously described
data sets; Dartmouth and San Francisco. In our evaluation,
we compute the sequence of optimal paths found between
any source and destination in the data set. From the sequence
of delay-optimal paths we deduce the delay obtained by the
optimal path at all time. We uniformly combine all the obser-
vations of a trace among all sources, destinations, and for every
starting time (the time in seconds when the message M was
generated by the source node S). We present this aggregated
sample of observations via its empirical CDF. We plot the suc-
cess rate of the three social forwarding algorithms normalized
by the success rate of flooding as a function of the message
delivery delay. The detailed computation process could be
found in [6]. Compared with previous generalized Dijkstra’s
algorithm, this algorithm directly computes representation of
paths for all starting times. In our experimental evaluation, we
utilize the following metrics to evaluate a given forwarding
algorithm f : (i) the normalized success rate within time t:
the probability of f to successfully deliver the message to its
destination within time t normalized by the same probability
given by epidemic forwarding algorithm (optimal success rate
within the same time t), and (ii) the normalized cost: the
fraction of contacts (i.e., number of replica copies) used by
f normalized by the fraction of contacts used by epidemic
forwarding algorithm (the most expensive).

Fig. 2(a) plots the normalized success rate of three social
forwarding algorithms (PeopleRank, Degree-Based, and Sim-
bet) with respect to the Dartmouth data set. Note that the
value of the CDF (Cumulative Distribution Function) for a
given time t is equal to the probability to successfully find a
path within time t, when sources, destinations and message
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Fig. 2: Scalability issues of social-based algorithm relying on
experimental data sets.

generation time are chosen at random. If no path exists, we
include an infinite value in the distribution. We then normalize
by the CDF given by an epidemic algorithm (flooding).

Despite the fact that social inputs match the contact prop-
erties of nodes, there are 25% to 55% of losses compared to
Epidemic forwarding, within a 10-minutes timescales. In fact,
in large scale networks, social forwarding algorithms loose
many opportunities to reach destinations in optimal delays.
Similar results are observed using the San Francisco data set.
Fig. 2(b) shows that the three considered social forwarding
algorithms achieve only 35% to 65% compared to the success
rate given by epidemic forwarding algorithm. At this point,
we can clearly see how social forwarding suffers in large scale
networks. These results match the intuition presented in the EC
example and strongly motivate the need for agile solutions that
take such situations into account.

IV. SOCIAL FORWARDING ACROSS MULTIPLE
SUB-COMMUNITIES

So far, we have shown that using social inputs in large-
scale areas have serious drawbacks. Our main hypothesis is
that in large-scale networks where multiple sub-communities
may exist, social prediction has its limitations and two people
socially connected may not frequently meet because they could
be far away from each other. In this section, we first introduce
and compare the impact of different large-scale community
classification techniques, and ensure that the state-of-the-art
social forwarding algorithms perform well within the resulting
sub-communities. We then propose CAF, a community aware
framework, that can be easily integrated with these algorithms
to improve their performance in large scale networks.

A. Classification and Forwarding in Sub-Communities

A common property of social networks is cliques or com-
munities; circles of friends or acquaintances in which every
member knows every other member. In large-scale networks,
people can be regrouped into sub-communities. Our exper-
imental data set can be classified in multiple communities
according to different classification techniques. The San Fran-
cisco data set is by default classified into three communities
(airport, downtown, and sunset areas) relying on a geographic
classification. However in the Dartmouth data set, users can be
regrouped according to these two community classifications:
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Fig. 3: Normalized success rate distribution of PeopleRank
relying on different community classification

Geographic Classification: Since the Dartmouth campus
area is roughly 1300x1300 square meters, people going to
campus every day are mostly visiting the same places. Usually,
these places are selected in a way that minimizes the walking
distance. To capture this classification, we split the Dartmouth
campus into regions (Northwest NW, Northeast NE, Southwest
SW, and Southeast SE)2. A node i belongs to a region R if
it has been connected to more access points belonging to this
corresponding region as compared to the other regions.

Activity-Based Classification: The Dartmouth College
campus has over 160 buildings. Usually people visiting the
campus are interested in a few buildings. People can therefore
be classified based on their activity or interests. For example,
the campus contains more than a dozen athletic facilities and
fields. Most of them are located in the southeast corner of the
campus. Athletic people are more likely to meet each others
and be classified in an athletic community. We consider people
more connected to the athletic building’s access points as part
of the athletic community. Similarly we define academic and
residential communities.

After classifying the large-scale community, we now ensure
that PeopleRank performs well within a single community;
similar results have been obtained with other forwarding
algorithms. We plot the normalized success rate of PeopleRank
according to the two community classifications described
above: (i) Activity-Based Classification (in Fig. 3(a)), and (ii)
Geographic Classification (in Fig. 3(b)).

We observe that the geographic classification leads to better
PeopleRank performance. PeopleRank achieves 92% to 97%
of normalized success rate within 10-minutes timescales ac-
cording to the geographic classification (in Fig. 3(b)), and 90%
to 94% within the same timescale according to the activity
based classification in Fig. 3(a). These results confirm that
short distances (e.g., people living in the same neighborhood
or region) typically leads to strong social ties, and relevant
social classification.

Moreover, we notice that, in Fig. 3(a), PeopleRank achieves
higher success rate among athletic users than others ac-
cording to the activity based classification. Relying on the
athletic community, PeopleRank outperforms its own success

2http://www.dartmouth.edu/∼maps/campus/close-ups/index.html

rate performance by roughly 3% and 5% within 10-minutes
timescale compared to respectively the academic and the resi-
dential communities. As described above, most of the athletic
buildings are located in the southeast corner of the campus
which leads to a combination of geographic and activity based
classification.

Overall, the results confirm that social forwarding al-
gorithms achieve satisfactory performance within sub-
communities. However, it was shown in the previous section
that they suffer in large scale networks where multiple sub-
communities may exist. We therefore propose a strategy to
help existing social forwarding algorithms deal with this
issue and successfully forward messages across multiple sub-
communities.

B. The Community Aware Framework (CAF)

Motivated by the satisfactory performance of social forward-
ing within single sub-communities, we propose a community
aware framework (CAF) that can easily be integrated with
most social forwarding algorithms in order to deal with the
weaknesses described above in large scale networks. This
framework extension relies on the fact that social forwarding
algorithms operate normally within the same sub-community.
Indeed, messages will be forwarded socially toward nodes
which belong to the same sub-community.

On the other hand, particular nodes will operate as an inter-
communities backbone and circulate the message to the other
sub-communities, and within these sub-communities messages
will then be socially forwarded. We call these nodes Multi-
Homed nodes (MH). MultiHomed nodes are characterized by
their higher mobility and belong to multiple sub-communities
(i.e., MultiHomed nodes are moving from one sub-community
to another). These node can be postmen, buses, cabs, etc.
depending on the large community. We then rank the Mul-
tiHomed nodes according to the number of sub-communities
(MHrank) they belong to. For example, if we consider the
geographic classification in the Dartmouth campus data set,
MH nodes belonging to four sub-communities are high ranked
compared to MH nodes belonging to only two or three
sub-communities. Therefore, MH nodes carrying a message
forward it to other MH nodes according to a non-decreasing
MHrank.

Algorithm 1 summarizes the additional operations (de-
scribed above) on top of the current state-of-the-art social
forwarding algorithm (which will refer to by SFA in Algo-
rithm 1). Besides the simplicity of our proposed algorithm,
we would like to emphasize that the overhead is relatively
negligible compared to the overhead induced by BubbleRap
to compute the global node ranking in the whole system
(in a large scale network). Our proposed algorithm remains
a distributed forwarding algorithm and relies on local so-
cial/contact information to estimate future transfer oppor-
tunities. Moreover, this framework extension can easily be
integrated with most of the social forwarding algorithms. Next,
we evaluate the CAF-extended version of three state-of-the-
art social forwarding algorithms that integrate this proposed



Algorithm 1 CAF-SFA(node i)
{Node i is running a social forwarding algorithm SFA}
{SFA(i) denotes the rank of node i according to SFA}

Ensure: MHi
rank ← #sub-communities

while (1) do
while (i is in contact with j) do

update(SFA(i), SFA(j))
while (∃ m ∈ buffer(i)) do

if [(community(i) == community(j)) AND
(SFA(j) ≥ SFA(i))] OR [j = destination(m)] OR
[MHj

rank ≥MHi
rank] then

Forward(m, j)
end if

end while
end while

end while
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Fig. 4: Impact of community classification on CAF-
PeopleRank success rate.

framework.

V. CAF EVALUATION

In this section, we apply CAF to PeopleRank, Simbet, and
Degree-Based forwarding. We conduct our evaluation using
real trace analysis where we compare CAF-extended social
forwarding algorithms to BubbleRap algorithm [10], [11].

A. The Impact of Community Classification on CAF-enabled
Social Forwarding Algorithms

We investigate the impact of different community classifi-
cation (described in the previous section) on the performance
of CAF. We show a representative set of results for the CAF-
PeopleRank algorithm. Similar results have been observed for
CAF-Simbet and CAF-Degree Based but are not shown due
to space limitation.

Fig. 4 plots the normalized success rate of the extended
PeopleRank algorithm, with different classification techniques,
in the Dartmouth data set. We notice that extended PeopleRank
outperforms the original PeopleRank for all timescales (5%
to 30% of success rate improvement). Furthermore, such
improvement differs from one community classification to
another. Geographic classification gives better performance
than activity-based classification; indeed, the activity-based

classification in the Dartmouth campus groups people be-
longing to specific buildings. However, theses buildings are
not always geographically close to each others, and therefore
messages sent from a specific building can take a long time to
reach other members of the same sub-community. We finally
note that, combining two community classification approaches
leads to better success rate performance, and more than a 30%
improvement compared to the Activity-Based classification.

B. CAF vs. BubbleRap

Initially, we consider the San Francisco data set using only
5% of the total cabs to represent the MultiHomed nodes. We
evaluate the performance of our proposed framework (CAF)
and compare against: (i) the original social forwarding scheme
(without the framework extension), and (ii) the BubbleRap
algorithm. Later, we analyze the impact of different fraction
of cabs on the performance in order to justify our 5% choice
in the evaluation.

We apply CAF to three state-of-the-art forwarding algo-
rithms; PeopleRank, Simbet, and Degree-Based forwarding.
Fig. 5 compares the performance of the extended versions of
these three algorithms against the original versions (without
CAF extension) and the BubbleRap algorithm using the San
Francisco data set. We first show that in the three plots, the
CAF extended algorithms outperform the corresponding orig-
inal algorithm for all timescales; for a 10 minutes timescale
CAF-PeopleRank outperforms PeopleRank by roughly 40%
more delivery success rate, while CAF-Simbet and CAF-
Degree-Based achieve respectively 30% and 25% better suc-
cess rate compared to their original algorithms. For larger
timescales CAF performance remain better, however the im-
provement is less significant since the proposed framework is
designed for a better dissemination of the message in order to
reach the destination in shorter delays.

Moreover, we show that CAF outperforms BubbleRap es-
pecially for PeopleRank and Simbet; the probability to suc-
cessfully deliver the message using CAF-PeopleRank or CAF-
Simbet is 5% to 30% larger than the success rate probability
achieved by BubbleRap for all timescales. The reason behind
this result is that BubbleRap uses node degree to estimate
the social centrality. However, it was shown in [19] that node
degree could not be considered to estimate efficiently future
contacts. Therefore, BubbleRap performs poorly compared
to Centrality-Based forwarding algorithms (CAF-Simbet and
PeopleRank) and performs better compared to CAF-Degree-
Based especially for large timescales.

We note that BubbleRap uses contact properties to compute
communities and uses the same data set to evaluate the
algorithm (the same data set is used for both design and eval-
uation). This may explain the better performance given by this
algorithm in large timescales compared to CAF-Degree-Based
algorithm. However, in shorter time scales CAF-Degree-Based
achieves 7% more success delivery rate than BubbleRap. This
can be explained by the use of explicit MultiHomed nodes
instead of globally popular nodes as shown in the motivating
example (Fig. 1).
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Fig. 5: Comparison of CAF-PeopleRank, CAF-Degree-based, and CAF-Simbet with BubbleRap (San Francisco data set using
only 5% cabs).
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Fig. 6: Normalized success rate distribution of CAF-
PeopleRank across multiple communities (San Fransisco).

C. The Impact of MultiHomed Nodes

The number of MultiHomed nodes (MH) needed to make
CAF efficient may depend on different factors such as the
number of communities, distance between communities, MH
mobility, etc. Obviously, the more MultiHomed (MH) avail-
able for the system, the more successful it will be. Our goal in
this section is to understand the impact of the number of MH
nodes on the system’s performance. We use the San Fransisco
data set and vary the fraction of cabs used in the trace (we
randomly pick x% of the total number of cabs); cabs in this
data set are connecting the three disconnected areas of the San
Fransisco city, and may operate as MH nodes.

In Fig. 6, we plot the normalized success rate of the CAF-
PeopleRank algorithm with different fractions of MultiHomed
nodes in the San Francisco data set. Obviously the more MH
nodes used the better performance CAF can achieve. We show
that the improvement is significant for the first MH added;
the improvement from 1% to 2% of MH is roughly 10% of
success rate however it is only 0.7% from 5% to 10% of MH
nodes. We show that with only 5% of MultiHomed nodes (only
10 cabs in the data set) CAF-PeopleRank algorithm achieves
a near to optimal performance; it performs more than 90%
of success rate compared to epidemic forwarding (within 10-
minutes timescale) which represent only 0.7% less than the
optimal given by 10% of MH nodes (20% of MH gives no
significant improvement compared to 10% of MH). These
results are very promising since they do not require a large

number of participants to be involved in order for CAF to be
successful, and hence, minimizing the deployment barrier for
such solutions.

An important observation from the figure to share is that
adding MultiHomed nodes (e.g., taxis in the San Francisco
data set) is also beneficial for shorter delays. This might
appear strange since one might expect that taxis may need
non negligible time to drive from one community to another,
and so, only large time delays would be affected. However,
this effect can simply be explained by the fact that taxis are
also used to improve the performance within a single sub-
community; e.g., within downtown, taxis could be considered
as a better relay to efficiently disseminate the message within
such sub-community.

D. The Cost of CAF

One may claim that CAF can be costly. The cost of a for-
warding algorithm, defined as the fraction of contacts involved
in the forwarding process, is very important in opportunistic
networks. It is obvious that CAF uses more contacts than
the original version since it disseminates the message first to
all other sub-communities, and then proceeds normally within
each sub-community. We therefore quantitatively compare the
cost of each social forwarding algorithm and study more
options in order to reduce the cost of the extended version
of social forwarding algorithms.

In addition to the basic CAF we have presented, we also
evaluate the cost of another community destination aware
framework (CDAF). Such framework assumes a priori knowl-
edge of the destination’s sub-community. Such simplistic
assumption, while surrealistic, is widely used in the literature.
We use this framework as a benchmark and compare the
overhead of CDAFs, CAFs, to the overhead of the original
social forwarding algorithms.

We measure the overhead (i.e., cost) of each algorithm
as the fraction of contacts (i.e., number of replica copies of
the message) used by each forwarding algorithm normalized
by the fraction of contacts used by the epidemic forwarding
algorithm. Fig. 7 compares the normalized cost of the differ-
ent schemes. Obviously, CDAF is outperforming all others
schemes, and the cost is reduced considerably by roughly
20% to 30%. We also show that CAF uses fewer contacts
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Fig. 7: Normalized cost of different social forwarding schemes
using the San Francisco data set (+5% MH).

than BubbleRap in PeopleRank and Simbet cases (by 0.5%
to 2%). However, BubbleRap uses 4% less contacts compared
to CAF-Degree-Based. This is partly explained by the use of
contact properties in both the design and the evaluation of the
algorithm which optimizes the number of messages replicated
in the system compared to CAF-Degree-Based algorithm. The
overall message is that the cost incurred in CAF is negligible
when compared to the gains of this framework.

VI. CONCLUSION AND FUTURE WORK

The proliferation of online social network platforms and
applications such as Facebook, Orkut, or MySpace, makes
information about the social interaction of users “easily” ac-
cessible. In opportunistic networks, such information can then
be used to predict future encounters of participating devices.
In this paper, we have studied the weakness of state-of-the-art
social forwarding algorithms in large scale networks; in such
a network when multiple sub-communities may exist, social
prediction has its limitations. We have proposed a community
aware framework CAF, which can easily. To summarize our
findings, social information can be considered to guide and
improve forwarding decisions within a sub-community. Within
multiple sub-communities, CAF helps existing social forward-
ing algorithms to improve their performance by roughly 40%,
and achieves 5% to 30% better success delivery rate than
BubbleRap, with negligible incurred cost.

There are several venues we plan to purpose in our future
work. First, in this paper sub-communities were chosen of-
fline. An important research direction to pursue is to indicate
whether these sub-communities can be efficiently identified
using a distributed algorithm running with local information
at the nodes. Second, we have shown that the cost is consid-
erably reduced if we assuming an a priori knowledge of the
destination’s sub-community. Better distributed approaches to
estimate this knowledge would be highly beneficial.
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