
Towards Resource Sharing in Mobile Device Clouds:
Power Balancing Across Mobile Devices

Abderrahmen Mtibaa Afnan Fahim, Khaled A. Harras Mostafa H. Ammar
Texas A&M Carnegie Mellon University Georgia Institute of Technology

amtibaa@tamu.edu {afahim, kharras}@qatar.cmu.edu ammar@cc.gatech.edu

ABSTRACT
Despite the increased capabilities of mobile devices, mobile
application resource requirements can often transcend what
can be accomplished on a single device. This has been ad-
dressed through several proposals for efficient computation
offloading from mobile devices to remote cloud resources or
closely located computing resources known as cloudlets. In
this paper we consider an environment in which computa-
tional offloading is performed among a set of mobile devices.
We call this environment a Mobile Device Cloud (MDC). We
are interested in MDCs where nodes are highly collaborative.
We develop computational offloading schemes that maximize
the lifetime of the ensemble of mobile devices where we con-
sider the network to be alive as long as no device has de-
pleted its battery. As a secondary contribution in this work,
we develop and use an experimentation platform that allows
us to evaluate a range of computational models and profiles
derived from a realistic testbed. We use this platform as
a first step in an evaluation exercise that demonstrates the
effectiveness of our computation offloading algorithms in ex-
tending the lifetime of an MDC.

Categories and Subject Descriptors
C.2.4 [Computer]: Communication Networks

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Resource sharing, Mobile computing, Opportunistic com-
puting, Energy saving

1. INTRODUCTION
Mobile devices (e.g., smartphones, tablets) are increas-

ingly capable devices with significant computational power.
The demand for sophisticated mobile applications has been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MCC’13, August 12, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2180-8/13/08 ...$15.00.

fed by this increased capability. As a result, users take for
granted the ability of their devices to perform complicated
tasks such as image or audio or video processing, reality aug-
mentation, collaborative processing and decision making.

There continue to be two main roadblocks to unleash-
ing the full computational power of mobile devices. The
first is the continued power constraints in modern devices
where battery technology advances have not kept pace with
the advances in processing capability. Second, is that users
demand applications whose computing requirements often
transcend what can be accomplished on a single device. To
address these concerns there has been a body of work deal-
ing with techniques for efficient computation offloading from
mobile devices to remote cloud resources [7, 6] or closely lo-
cated computing resources known as cloudlets [13].

In our work, we consider environments in which compu-
tational offloading is performed among a set of mobile de-
vices forming what we call a Mobile Device Cloud (MDC).
Such an offloading context was considered in the Serendip-
ity system [14]. Our work is distinguished from [14] in that
we consider a highly collaborative context where the goal of
computational offloading is to maximize the lifetime of the
MDC. This context arises in several scenarios. The first is
where the mobile devices all belong to the same user, for ex-
ample, a user’s smartphone, tablet and laptop, or where the
devices belong to the same household. The second context
is where the devices are carried by a group of people on a
single collaborative mission. This can happen, for example,
in military or disaster relief scenarios. In such scenarios, the
incentive to collaborate on computational tasks is not an is-
sue and the communal goal of prolonging the lifetime of the
collection of devices makes sense. This incentive is further
amplified if a connection to a cloud is costly (in terms of
money or power due to large RTT [7]), unreliable, or simply
unavailable.

The main question we address in this paper is given 1) the
initial state of power availability in a collection of collabo-
rative mobile devices, and 2) a set of computational tasks
with known or estimated power consumption profiles on the
mobile devices, what is the best approach to schedule the
computation among the set of devices so as to maximize
their lifetime. Our work will consider a spectrum of connec-
tivity environments ranging from always connected (single
or multiple hops) to intermittently connected. We will focus
on the always connected context for this paper and relegate
consideration of other connectivity models to future work.

Our work can be viewed as providing mechanisms for the
balancing of power consumption due to computational load

across nodes of a mobile device cloud (MDC). We envision
this to be part of a general effort for balancing consumption
of all resources across an MDC, such as storage capacity,
communication bandwidth, and computational power. Ulti-
mately, we believe that effective resource management across
the elements of a highly-collaborative MDC can significantly
increase their usability as powerful computing platforms.

Our efforts and the previous effort in [14] have highlighted
the need for a general experimentation platform to provide
meaningful evaluation of mobile device cloud (MDC) sys-
tems. Such experimentation platforms need to enable gen-
eral evaluation with a range of computational models and
profiles and need to be informed with realistic parameters
derived from real systems. As a secondary contribution in
this work, we develop and use such an experimentation plat-
form in our evaluation.

The rest of this paper is organized as follows. Section 2
briefly discusses work related to our research. In Section 3
we describe the MDC context and present our algorithms for
computational offloading that aim to maximize the network
lifetime. Section 4 describes our MDC experimental plat-
form. Section 5 presents the results from an experimental
evaluation of our algorithms. Section 6 concludes the paper
and discusses our future work agenda in this area.

2. RELATED WORK
With the rise in mobile application demand on computa-

tional resources, various solutions for computation offload-
ing to more powerful surrogate machines, known as cyber
foraging, have been proposed [8]. Recent solutions include
CloneCloud [6] and MAUI [7]. CloneCloud presents an al-
gorithm, based on static analysis and dynamic profiling in-
formation of any given task, for deciding whether to execute
this task locally or on a remote cloud. MAUI relies on de-
veloper effort to convert mobile applications in a managed
code environment to better support fine-grained real-time
offloading decision making; it also considers the possibility
of offloading to different types of high-end infrastructures de-
pending on their RTT in order to conserve energy. The im-
pact of large RTT’s on power consumption when offloading
computation is further examined and utilized as an incen-
tive for bringing resource-rich computational infrastructure,
known as Cloudlets [13] closer to mobile devices.

In our work, we consider computational offloading among
a set of mobile devices. Such a system has been considered
in [14] where the main concern was how to schedule and
allocate computational subtasks from an initiator to other
intermittently-connected mobile devices. The main goal was
to speed up computation through parallelism and to, if possi-
ble, reduce the initiator’s power consumption. In this work,
we consider the same context in which mobile devices can
offload computational subtasks to other mobile devices in a
Mobile Device Cloud (MDC) which may or may not be in-
termittently connected. Our work here is distinguished from
that in [14] in that we consider a highly collaborative context
where the goal of computational offloading is to maximize
the lifetime of the ensemble of devices.

Numerous energy saving solutions have been proposed by
the sensor networks community based on topology control,
route choice, sleep/wakeup protocols, low MAC protocol
duty cycles, data reduction, different data sampling tech-
niques, and sensor clustering solutions [2, 11, 15, 12, 3].
Similar to this body of work, we consider a network to be

Hops

D
is

co
nn

ec
tio

n
R

at
e

Lo
w

H
ig

h

1 2 more..

Fully connected
Network

2-Hops Connected
Network Connected Network

1-Hop
Opportunistically

Connected Network

... ...

M
ed

iu
m

2-Hops
Opportunistically

Connected Network

Opportunistic
Network

Figure 1: MDC Communication Contexts

alive as long as no device has depleted its battery. However,
the characteristics and typical conditions in sensor networks
differ significantly from the contexts considered in this paper
since they typically assume low mobility, high node homo-
geneity, constrained nodes that are not often recharged, and
topologies that overload nodes closer to data collecting sinks.

3. MAXIMIZING THE LIFETIME OF MO-
BILE DEVICE CLOUDS (MDC)

3.1 MDC Communication Context
Based on the scenarios presented in the introduction, we

believe that various mobile devices nowadays, and more so
in the future, can be easily grouped in a single ensemble
of devices that can act as a mobile device cloud (MDC).
This ensemble can be formed in various ways including man-
ual assignment (similar to adding all iOS devices to one’s
iTunes, or android devices with google), intelligent device
contact profiling, or via social profiles present on these de-
vices (e.g. devices of members in the same household might
be assigned to a single MDC). This discovery and MDC clus-
tering process is addressed in various ways in the research
community [1] and therefore, we assume that such mecha-
nisms exist.

Regardless of the resource being shared between members
of an MDC, the network topology of that MDC has great
impact on the performance of offloading or resource shar-
ing algorithms. We believe that the two topological factors
that mostly impact any proposed solution are the number
of hops and the disconnection rate due to node mobility be-
tween any pair of MDC nodes. The communication contexts
created as a result of these two factors are shown in Fig. 1.
Our work will consider the spectrum of connectivity environ-
ments starting from the most basic, a fully connected MDC
with low disconnections (e.g. multiple devices carried by a
single owner), to more complex scenarios induced by grad-
ually considering two hop connected MDC’s with low dis-
connections as well as one hop opportunistically connected
MDCs. We relegate consideration of other portions of the
connectivity contexts to future work.

3.2 Network Model & Assumptions
We consider a network of n mobile devices. Each device u

has limited energy Eut , and available computation Cut capa-
bilities at any given time t. These nodes form a connected
or intermittently connected graph G.

Each device node u performs a set of tasks Tuk , k = 1..j.
We assign to each task a time-to-live deadline, denoted by

TTLTk . Tk also consists of two main components; compu-
tation CTk and data transfer DTk .

We assume in this paper that all tasks can run simultane-
ously and there are no dependencies between any two tasks.
Eu,vTk

denotes the expected energy requirement for a task
Tuk to run on a device v. Such energy is a function of the
required time to compute the task at node v denoted by
Cu,vTk

and the required time to transfer the task data input
and output between the source node u and node v denoted
by Du,v

Tk
.

Ei,uTk
= f(Ci,uTk

, Di,u
Tk

)

Where f is a function that determines the expected en-
ergy consumed based on (i) computation and (ii) data trans-
fer requirements. In this paper we adopt an experimental
approach that updates a table of estimated energy and re-
sponse times for each data and computation pair (i.e., each
task). Different energy functions f can also be considered
in order to estimate the energy consumption in real time.

3.3 Power Balancing Algorithm
In wireless opportunistic networks, nodes have limited ca-

pacity batteries. A node fails when its battery drains, which
causes considerable delay degradation in the network. Bal-
ancing available power is then particularly important to pro-
long the lifetime of the network. We believe that in a mobile
device cloud all nodes in the network are important and a
node failure is equivalent to network failure. We therefore
define the lifetime of the network as the time for the first
node to die as in [5, 9].

Our goal in this paper is to prolong the lifetime of the net-
work by balancing energy consumption among MDC nodes.
We propose power availability balancing solutions for each
of the communication contexts previously defined in order
to highlight the potential gain in network lifetime.

Alg. 1 describes the approach to schedule the computa-
tion among the set of devices so as to maximize their life-
time given the initial state of power availability in a col-
lection of collaborative mobile devices, and a given task
Tk(CTk , DTk , TTLTk) for a node u characterized by its avail-
able remaining energy Eut ,and available computation capa-
bilities Cut at a given time t. It provides a function that
returns G all members belonging to the same family of node
u (GETMEMBERS(u)), and the communication context
used to connect such devices. In this paper we simply as-
sume that nodes manually select their family members (e.g.,
all MAC devices registered to iTune). Alg. 1 considers a
spectrum of connectivity environments ranging from always
connected; (i) single, or (ii) multiple hops to (iii) intermit-
tently connected. For each connectivity environment, it es-
timates data communication (Offl(v) represents the esti-
mated time to offload the data to node v, and Resp(v, u)
the time to send back the results from node u to v.) and
task computation time (Comp()) as well as the power con-
sumption of the given task on all mobile devices including
itself and offloads to the nodes v such that it balances the
remaining power among all nodes in G.

3.3.1 Single Hop MDC
A node u, belonging to a single hop MDC cluster G, re-

ceives a list of neighbors that form a fully connected network
of mobile devices. The GetMembers(u) is responsible of se-
lecting theses nodes forming the MDC based on social or

contextual profiling. It also estimates the lifetime of each
edge in the graph as an expected contact duration between
two neighboring devices.

Node u, upon generating a given task Tk, it offloads it to a
neighbor node v if and only if the expected response time of
migrating the task to v is within the task deadline (TTLTk)
and the estimated remaining energy is maximized as shown
in Eq. 1.

max
v∈G
{(Eu

t − Ecomm(u, v)) + (E
v
t − Ecomp(v)− Ecomm(v, u))} (1)

where Ecomm(u, v) is the total amount of energy required
by node u to send DTk to another node v, and receive the
result data back from the selected node v. Ecomm(v, u) rep-
resents node v’s estimated communication energy for receiv-
ing DTk from node u and the energy required to send back
the results. Ecomp(v) is the estimated amount of energy
required by node v to compute Tk.

After selecting node v that gives the best energy balance,
if v = u the node executes the task locally and updates its
remaining energy. Otherwise, it offloads the task and waits
for its completion to receive the results back from node v.

3.3.2 Two-Hop MDC
In the case of a two hop MDC cluster G, node u receives

the topology of the network and computes all shortest paths
to all nodes in the graph. For each of its tasks Tk, node u
computes all expected energy consumed if the task has to
be offloaded to a every device v in the graph G. This ex-
pected energy is estimated differently if the task is offloaded
throughout a single hop or two hop paths. Knowing the
shortest distance to each node v, Node u verifies (i) Eq. 1
if v is directly connected to u or (ii) Eq. 2 if there exists
another node w that connects u to v.

max
v∈G
{(Eu

t − Ecomm(u,w)) + (E
w
t − Ecomm(u,w, v))

+(E
v
t − Ecomp(v)− Ecomm(v, w))} (2)

where w is an intermediate node connecting nodes u and
v, and Ecomm(u,w, v) is an estimated communication energy
consumption of node w to receive data from u, forward it to
v, receive back results from v, and forward it to u.

3.3.3 Opportunistic MDC
In the case of opportunistic (intermittently connected MDC),

node u verifies whether or not contacts with its neighbors are
long enough to carry the task data, as well as the existence
of a communication channel to receive back the results. All
this should happen within the task deadline. We assume in
this paper, that node u can predict the contact duration and
frequency connecting him to its MDC nodes. This also can
be estimated via social or contextual profiling or historical
contacts with other node.

Once the availability of a communication channel to a
subset of nodes in node u’s MDC graph G is ascertained, it
offloads the task to the node that maximizes Eq. 1.

4. THE MDC EXPERIMENTATION PLAT-
FORM

Researchers in mobile cloud computing resort to imple-
menting or migrating representative resource heavy applica-
tions on mobile devices over which they evaluate new archi-
tectures, task scheduling algorithms, or different offloading

Algorithm 1 Power balancing Alg. (node u(Eut , C
u
t))

Require: Retrieve(DeviceCapabilities)
1: function GetMembers(u) . returns MDC of u

2: while ∃(Tk(CTk
, DTk

, TTLTk
) ∈ buffer(u)) do

3: G←GetMembers(u)
4: ∀v ∈ G,Ev ← CurrentEnergy(v)
5: switch G do
6: case 1hopMDC
7: ∀v ∈ G,
8: if Offl(v) + Comp(v) + Resp(v, u) ≤ TTLTk

then

9: offoadTo(v|Eq.1)
10: Update(Eu, Ev)

11: case 2hopMDC
12: ∀v ∈ G,
13: if π(u, v) ⊂ G, then . π() a shortest path in G
14: if Offl(v)+Comp(v)+Resp(v, u) ≤ TTLTk

then

15: offoadTo(v|Eq.2)
16: Update(Eu, Ev)

17: else
18: ∃w, π(u,w, v) ⊂ G,
19: if Offl(w) + Offl(v) + Comp(v) + Resp(v, w) +

Resp(w, u) ≤ TTLTk
then

20: offoadTo(v|Eq.2)
21: Update(Eu, Ew, Ev)

22: case OppMDC
23: for (v ∈ G) AND (Wait(u, v) + Offl(v) + Comp(v) +

Wait(v, u) + Resp(v, u) ≤ TTLTk
) do

24: offoadTo(v|Eq.1)
25: Update(Eu, Ev)

techniques. Since appropriate, flexible, and open source mo-
bile applications are not easily accessible, this approach is
time consuming and takes the focus away from the main
research contributions. Even with the effort exerted in in-
tegrating research contributions with representative appli-
cations, results are coarse grained, potentially application
dependent, and take away the ability of evaluating future
applications that might not exist yet.

Based on this observation, we believe there is a need for a
generic flexible platform that can be utilized by researchers
to freely test mobile cloud computing resource sharing and
offloading solutions. This tool should decouple two main
components that characterize any mobile application: the
amount of data as well as the computational load that any
task or job will require. These two components of the appli-
cation should also be easily broken down into distributable
sub-tasks that researchers can control in real-time. Similar
to simulations, this flexibility in the generic platform allows
researchers to test their solutions over a fine-grained range of
parameters that can represent a wider spectrum of current
and future applications.

We introduce our mobile data cloud (MDC) experimen-
tal platform for mobile cloud computing research as shown
in Fig. 2. We implement the MDC platform as an an-
droid application with a set of APIs for mobile-to-mobile
task offloading. This platform allows users to generate tasks
with different computational loads (measured in total float-
ing point operations and denoted in MFLOP) and relevant
data input (measured and denoted in MB). It also provides
APIs that enable building more specialized applications that
can offload sub-tasks, set by the user, using various wireless
technologies, such as WiFi, Bluetooth, or WiFi Direct. The
user can select the number of connected devices from a pool
of devices within its proximity, as well as the amount of data
and computational load to be offloaded to each connected
device. When the user executes a task generation and of-
floading scenario by pressing the send button, the original

Wires from
power supply are
soldered to
phone's battery
contacts

Power SupplyConstant voltage
being provided
to the circuit.

Current reading
of the circuit

S III running MDCloud
app. Sending Task
(15MFLOP, 20MB) to S II.

S II running
MDCloud
app and
receiving
tasks.

Figure 2: MDC Experimentation Platform: measur-
ing energy consumption on an S2 upon receiving a
task (15MFLOP, 20MB) from S3 device

task is, therefore, fragmented and the selected percentages
will be forwarded to remote devices while the remaining sub-
tasks will run locally. The MDC platform enables the ap-
plication to log the total response time for each task (i.e.,
the time when the task was initiated to the time when the
results are sent back to the initiating user). It also logs the
task computational completion time for every device as well
as the data transfer time separately.

In order for the MDC experimental platform to be com-
plete, real-time power measurements are needed for vari-
ous states of an application. We therefore set-up an energy
measurement circuit as shown in Fig. 2 in order to measure
the computational and communication energy consumption.
We remove the battery from the phone, solder a DC power
supply to phone’s power input as shown in the figure, and
supply a constant voltage that matches that of the battery.
We measure the electric current drawn as a result of each
event, such as sending or receiving data (using Bluetooth,
WiFi, or WiFi direct) as well as a given computational load,
and calculate the power consumed for each event. We run
these events independently for the duration of one minute
to smooth out any fluctuations that occur as a result of
other OS-related tasks. Once we have the power for each
event computed, we finally measure the duration taken for
any event in our real experiments and calculate the resulting
total energy consumed in Joules.

We use this platform to generate power usage profiles
for various computational and data transmission demands.
These profiles are in turn used as input to system simula-
tions as described in the next section.

5. EXPERIMENTAL EVALUATION

5.1 Evaluation Methodology
We first run a set of preliminary experiments using the

MDC platform previously described. We perform many ex-
periments while making Bluetooth transfers between a Sam-
sung S2 and a Samsung S3 devices. We also run many
experiments independently consisting of sending, receiving
and computing tasks with different data sizes and computa-
tion complexities. We construct a table that logs response
time and consumed energy for each task (i.e., energy con-
sumed upon sending Es

D
S2,S3
Tk

, energy consumed upon re-

MFLOP [Comp time]
MB
[Comm time]

0 [0s] 15 [13.43s] 30 [28.441s] 45 [44.19s] 60 [57.59s]

0 [0s] [0 ;0 ; 0] [0 ; 4.39 ; 4.29] [0 ; 9.06 ; 8.98] [0 ; 13.392 ; 12.85] [0 ; 18.38 ; 17.76]
5 [24.85s] [9.19 ; 5.96 ; 0] [9.62 ; 6.24 ; 4.29] [9.18 ; 5.95 ; 9.1] [9.19 ; 5.95 ; 14.14] [9.17 ; 5.95 ; 18.43]
10 [49.354s] [18.26 ; 11.84 ; 0] [18.24 ; 11.83 ; 4.38] [18.26 ; 11.84 ; 9.36] [18.44 ; 11.96 ; 13.56] [18.28 ; 11.85 ; 18.77]
20 [98.583s] [36.59 ; 23.73 ; 0] [36.59 ; 23.73 ; 4.39] [36.56 ; 23.71 ; 8.82] [36.43 ; 23.63 ; 13] [36.4 ; 23.61 ; 18.56]

Table 1: Experimental results for Bluetooth offloading from S2 to S3: [send ; recv ; comp] energies in J

ceiving Er
D

S2,S3
Tk

, and energy consumed upon computing a

task ES2,S3Tk
) as shown in Tab. 1. We vary computation from

0 MFLOP to 60MFLOP1. We also vary the input data sizes
from 0 to 20MB (e.g., compressed video file). Note that
Tab. 1 consists of results of a Bluetooth transfer from S2 to
S3. We also run experiments for all possible transfer com-
binations. Results for other combinations are not shown in
the paper to avoid redundancy.

Next, we consider a network consisting of 5 mobile de-
vices; 2 Samsung S2 and 3 Samsung S3 running the MDC
application. We emulate an MDC cluster where nodes gen-
erate tasks independently. Tasks are generated following a
Poisson arrival process of rate λ. The goal is to fairly dis-
tribute the computation and data load in order to achieve a
fair energy distribution within a deadline δt. We assign ini-
tial battery levels randomly between the following two initial
levels 25% and 100%.

We, then, measure three main metrics; (i) the average
remaining energy in the networks, (ii) the fairness index,
and (iii) the lifetime of the network. We use Jain’s fairness
metric [10], denoted by F , to evaluate the available power
balancing among all nodes in the network. The best case is
reached when F is close to 1 (fair allocation), and the worst
case is given by 1/n.

F =
(
∑n

1 E
i
δt)

2

n ·
∑n

1 (Eiδt)
2

5.2 A Single Hop MDC Cluster
Fig. 3-(a) plots both the Jain fairness index and the av-

erage remaining energy at each node over time. We show
that, while the average remaining energy in the network is
dropping almost linearly, the Jain fairness index increases
quickly. The linear dropping of energy is mainly explained
by the Poisson task arrival over time; it drops from 63% at
the beginning of the experiment to 0% at 153 minutes. At
the beginning of the experiment the remaining energy dis-
tribution was not fair with a Jain fairness index of 47%. It,
however, reaches 80% within 20 minutes only. The network
then reaches a steady state and F oscillates around 85% and
93% before dropping to 25% when only one node remains
alive in the network at 147 minutes.

Fig. 3-(d) compares the network lifetime of three offload-
ing algorithms; our energy balancing algorithm which we
will call Fair, a random offloading algorithm (Random), and
optimal time offloading algorithm (Greedy) which consists
of always offloading to the nodes with the best computation
capabilities (e.g., send always to tablets instead of mobile
phones). We show that Fair prolongs the lifetime of the net-
work by 60 to 75% compared to the two other considered

120MFLOP is the approximate complexity of a face recog-
nition app., 60 MFLOP is the approximate complexity of a
virus scan against a library of 1000 virus sig. when the size
of the file system is 1MB

offloading algorithms; Fair, indeed, successes on keeping all
nodes alive for about 2 hours while Random and Greedy fail
within only 40 minutes. We also show that Fair maintains
a fairly distributed remaining energy among the nodes as
shown in Fig. 3-(a). With the Fair algorithm, the power
depletion of a node is an indicator that the other nodes are
about to also have their power depleted. This is verified
in Fig. 3-(d)where a first battery depletion was directly fol-
lowed (no more than 25 minutes) by other nodes failures.

5.3 Two Hop MDC Cluster
We consider all possible combinations of 5 node networks

with a diameter of 2 hops. Within such networks, the short-
est distance between any two nodes is less than or equal to 2
hops. Data points in the following figures represent the av-
erage of all data points given by each network combination.
Similar to the previous scenario, we assign random initial
battery levels to the 5 nodes and generate tasks following a
Poisson arrival process.

We plot in Fig. 3-(b) the average remaining energy as well
as the Jain fairness index over time. Similar to the 1-hop
scenario, we show that our Fair algorithm helps to balance
energy among all the nodes in the network. The fairness
index increases to reach a steady state within 65 minutes.
It took more time than the 1 hop scenario to reach a steady
state, this can be explained by the fact that in 2 hop paths, a
task depletes two nodes’ batteries instead of one and makes
available energy balancing harder. We also show that the
fairness index fluctuates after the first battery drop in the
network reaches 0.25% when only one node remains in the
network.

Fig. 3-(e) compares the network lifetime using the three
previously described algorithms; Fair, Greedy and Random
offloading algorithms. We show that our Fair algorithm pro-
longs the lifetime of the network by almost 50% compared to
the random offloading algorithm and 65% compared to the
Greedy algorithm. Fair, indeed, helps extend the depletion
time of the first node in the network to more than 90 min-
utes. However, with Greedy offloading one node’s battery is
depleted within 30 minutes. This is because the algorithm
directs all tasks to the most powerful node in the network
which impacts its battery and also the batteries of the nodes
around it (nodes responsible of forwarding the task to the
most powerful one).

5.4 Opportunistic MDC Cluster
We now consider the case of intermittently connected net-

works where nodes’ mobility patterns and/or future contacts
between nodes are predictable. Considering a more general
scenario with unpredictable contacts will be investigated as
a part of our future work.

Our analysis relies on a subset of nodes in the Infocom06
data set [4] which consists of a real user mobility trace of 78
participants attending the IEEE Infocom 2006 conference.

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160
 0

 20

 40

 60

 80
Ja

in
 F

ai
rn

es
s

(F
)

E
ne

rg
y

A
vg

. (
%

)

Time (minutes)

Fairness
Avg

(a) Fairness performance in single hop
MDC

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120
 0

 20

 40

 60

 80

Ja
in

 F
ai

rn
es

s
(F

)

E
ne

rg
y

A
vg

. (
%

)

Time (minutes)

Fairness
Avg

(b) Fairness performance in two hop
MDC

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300
 0

 20

 40

 60

 80

Ja
in

 F
ai

rn
es

s
(F

)

E
ne

rg
y

A
vg

. (
%

)

Time (minutes)

Fairness
Avg

(c) Fairness performance in opportunis-
tic MDC

 0

 2

 4

 6

 0 20 40 60 80 100 120 140 160

al
iv

e
no

de
s

(#
)

Time (minutes)

Fair
Greedy

Random

(d) Network lifetime of Fair vs. Greedy
vs and Random in a single hop MDC

 0

 2

 4

 6

 0 20 40 60 80 100 120

al
iv

e
no

de
s

(#
)

Time (minutes)

Fair
Greedy

Random

(e) Network lifetime of Fair vs. Greedy
vs and Random in a two hop MDC

 0

 2

 4

 6

 0 50 100 150 200 250 300

al
iv

e
no

de
s

(#
)

Time (minutes)

Fair
Greedy

Random

(f) Network lifetime of Fair vs. Greedy
vs and Random in opportunistic MDC

Figure 3: Available power balancing for single hop, two hop and opportunistic MDC clusters

We select a subset of 5 nodes forming the highest contact
rates between them (Nodes No. 40, 32, 19, 15, and 22 in the
data set).

We perform a store-carry-forward algorithm to offload tasks
from a node u to another node v. We model the evolution
of contacts between the 5 selected nodes by a time vary-
ing graph G(t). We assume that each node predicts future
contacts by accessing G(t), ∀t ≥ 0.

A given node u, upon generating a task, estimates the
remaining energies throughout each opportunistic path and
verifies that the expected response time stays within the
deadline assigned to the task. Fig. 3-(c),(f) plot energy
balancing performance over time. While opportunistic net-
works add a longer waiting delay to the task completion
time, our Fair algorithm manages to reach 80% Jain fair-
ness index within less that one hour. Then it reaches the
steady state within less than two hours. It drops to 25%
at 265 minutes when only one node was alive. Other algo-
rithms did not manage to keep all their nodes alive more
than 90 minutes.

6. CONCLUSION & FUTURE WORK
In this paper, we have considered the question of how to

maximize the lifetime of a highly collaborative mobile de-
vice cloud. We accomplish this by developing techniques for
balancing the available power across devices under various
connectivity assumptions. We developed an experimenta-
tion platform that allowed us to obtain realistic power and
computation profiles which we then used to evaluate the
performance of our power balancing techniques.

This work represented a preliminary study into the ques-
tion of resource management in highly collaborative mobile
device clouds. We believe that effective management of re-
sources across the nodes in such an MDC can significantly
improve their utility as powerful computing platforms.

Our work will continue in several directions: 1) We will
continue to consider the full spectrum of communication
contexts as described in Sec 3. 2) We also plan to consider
management considerations for other MDC resources such
as device storage. 3) We will also generalize our resource
management goals to include some criteria for weighted re-
source usage to accommodate various prioritization policies
among devices.

7. REFERENCES
[1] M. Abdellatif, A. Mtibaa, K. A. Harras, and M. Youssef.

GreenLoc: an energy efficient architecture for WiFi-based
indoor localization on mobile devices. In IEEE ICC 2013.

[2] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella.
Energy conservation in wireless sensor networks: A survey. Ad
Hoc Networks, 7(3):537–568, 2009.

[3] L. Bai, L. Zhao, and Z. Liao. Energy balance in cooperative
wireless sensor network. In Wireless Conference, 2008. EW
2008. 14th European, pages 1–5. IEEE, 2008.

[4] A. Chaintreau, A. Mtibaa, L. Massoulié, and C. Diot. The
diameter of opportunistic mobile networks. In Proceedings of
ACM CoNext, 2007.

[5] J.-H. Chang and L. Tassiulas. Energy conserving routing in
wireless ad-hoc networks. In INFOCOM 2000, volume 1, pages
22–31. IEEE, 2000.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
Clonecloud: elastic execution between mobile device and cloud.
EuroSys ’11, pages 301–314, New York, NY, USA, 2011. ACM.

[7] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: making smartphones
last longer with code offload. In MobiSys’10, pages 49–62, 2010.

[8] J. Flinn. Cyber foraging: Bridging mobile and cloud
computing. Synthesis Lectures on Mobile and Pervasive
Computing, 7(2):1–103, 2012.

[9] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
Energy-efficient communication protocol for wireless
microsensor networks. In System Sciences, 2000. Proceedings
of the 33rd Annual Hawaii International Conference on,
pages 10–pp. IEEE, 2000.

[10] R. Jain, D.-M. Chiu, and W. R. Hawe. A quantitative measure
of fairness and discrimination for resource allocation in
shared computer system. Eastern Research Laboratory, Digital
Equipment Corporation, 1984.

[11] A. Kwok and S. Martinez. Energy-balancing cooperative
strategies for sensor deployment. In Decision and Control,
2007 46th IEEE Conference on, pages 6136–6141. IEEE, 2007.

[12] C. Li, M. Ye, G. Chen, and J. Wu. An energy-efficient unequal
clustering mechanism for wireless sensor networks. In Mobile
Adhoc and Sensor Systems Conference, 2005, pages 8–pp.
IEEE, 2005.

[13] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The
case for vm-based cloudlets in mobile computing. Pervasive
Computing, IEEE, 8(4):14–23, 2009.

[14] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura.
Serendipity: enabling remote computing among intermittently
connected mobile devices. In MobiHoc, pages 145–154, 2012.

[15] M. Ye, C. Li, G. Chen, and J. Wu. Eecs: an energy efficient
clustering scheme in wireless sensor networks. In Performance,
Computing, and Communications Conference, 2005. IPCCC
2005. 24th IEEE International, pages 535–540. IEEE, 2005.

