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ABSTRACT
This paper studies a Bluetooth-based mobile social network
application deployed among a group of 28 participants col-
lected during a computer communication conference. We
compare the social graph containing friends, as defined by
participants, to the contact graph, that is the temporal net-
work created by opportunistic contacts as owners of devices
move and come into communication range. Our contribu-
tion is twofold: First, we prove that most properties of nodes,
links, and paths correlate among the social and contact graphs.
Second, we study how the structure of the social graph helps
building forwarding paths in the temporal network, allow-
ing two nodes to communicate over time using opportunis-
tic contacts and intermediate nodes. Efficient paths can be
built using only pairs of nodes that are close in a social
sense, making opportunistic forwarding compliant with the
requirement of social network application.

1. INTRODUCTION
Social interaction in the ancient time primarily took

place through physical meeting. The telegraph and tele-
phone networks made a first step toward remote social
interaction. More recently, the Internet added multi-
ple social interaction techniques not based on physi-
cal meeting: email, chat, and Online Social Network
services (OSN) such as facebook, orkut, MySpace, or
LinkedIn, etc. These applications create a virtual space
where users can build the social network of their ac-
quaintances independently of where they are located,
and allow these social networks (or communities) to in-
teract freely using a large set of Internet applications.
However, when people with similar interests or common
acquaintances get close to each others in streets or con-
ferences, they have no automated way to identify this
potential “relationship”. With geolocalization applica-
tions, it is now highly likely that OSNs will include in
a near future some representation of user location, and
offer services to “link” mobile users. However, the re-
lation between virtual social interactions and physical
meeting remains largely unexplored.

In this paper we study the evolution of the social
relationships of a group of 28 participants using smart-

phones on which we had installed a mobile opportunistic
social networking application, during ACM CoNEXT
2007. At the beginning of the conference, device users
were asked to identify and enter in their device their
“friends” among conference participants. We call this
list of social connections the initial social network. Dur-
ing the conference, they are informed of who is present
in their neighborhood, and notified by a distinctive ring
or a vibration if a friend, or a friend of a friend, is seen.
A user can decide to ignore these notifications, or meet
one of these persons physically and/or add them to its
list of friends. Our devices log (1) all Bluetooth con-
tacts between experimental devices, as well as (2) all
user action such as adding a new friend or deleting an
existing friend. We use this data set to study the evo-
lution of the initial social graph and to analyze how
human mobility and social relationships mutually im-
pact each other in the specific context of a conference1.
One of the key issue we study is the feasibility of oppor-
tunistic forwarding [1, 3, 5, 4], that is delivering data
between two nodes on a forwarding path using oppor-
tunistic contacts and intermediate nodes2.

To the best of our knowledge, this is the first at-
tempt to compare the graph of social relationships as
defined by the users and the contact opportunities re-
sulting from their mobility during a community event
(i.e. a computer network conference). We make the fol-
lowing contributions:

• Properties of nodes, links, and paths, are stud-
ied jointly in the social graph of friends and in
the temporal network of opportunistic contacts.
We observe expected and unexpected similarities,
which confirm that classifying nodes based on their
friends is relevant for the temporal network as well.
We notice that this correspondence improves with
time. (Section 4)

• We show that delay-efficient forwarding paths can
1We have decided to conduct these experiments during con-
ferences as it is a reasonable group size to cover and because
it can be reproduced with similar environment.
2See, for instance, Pocket Switched Networks[1] or Delay-
Tolerant Networks (www.dtnrg.org).
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be constructed using only contacts between peo-
ple close in a social sense, following the princi-
ple underlying most OSN. Moreover, the contacts
that are critical for opportunistic forwarding can
be identified from the position of the contacted
nodes in the social network. Our empirical analy-
sis compares several heuristic rules. (Section 5)

These early results, even if limited in scope and depth,
are very encouraging and will help us improve our ex-
perimental devices in order to prepare the next experi-
mental campaign.

2. RELATED WORKS
Most social properties have been studied for static

graph, with a few notable exceptions [7, 9]. Properties
of paths built over time in a quickly varying graph is a
relative new topic [9, 2, 8]. So far the similarities with
traditional social networks have been investigated in a
macroscopic sense: evidence of heavy tailed statistics
for degree [8] and inter-contact times [2, 5], community
identification [9, 4], short diameter [7, 2]. In contrast,
we focus here on topological similarity “node-per-node”
between the two networks.

Several research works recently considered the prob-
lem of designing opportunistic forwarding schemes that
are aware of social properties [3, 4]. This implicitly
assumes that opportunistic contacts relate with the so-
cial property that is used to design one algorithm. Our
work does not propose new algorithms but it addresses
the above issue more generally. It can be used to un-
derstand what type of information is the most relevant.
Note that social relationships between participants is
for the first time defined by the participants themselves
via the application. In previous works we are aware
of [4], participants have just been asked their interests,
affiliation, etc. and social graphs have been inferred
from their answers.

3. DATA AND METHODOLOGY

3.1 Experimental settings
The goal of the experiment is to study the charac-

teristics of a social network built using mobile devices
in order to meet potential friends, make new friends or
delete existing friends. The experimental devices are
HTC 640 and Touch smartphones running our mobile
opportunistic social networking application.

Participants have been chosen among the participants
of ACM Sigcomm CoNext 2007 conference held in New-
York City on December 15-17, 2007. Before running
the application, each participant is asked to select its
friends among the 150 CoNext participants. The list
of friends constitutes the initial social network of each
participant. Our social networking application rings or

vibrates any time a friend, a friend of a friend, is in
the Bluetooth neighborhood. The neighborhood is dis-
played on the user’s device who can add new friends
or delete existing friends based on his or her discussion
with them. Our objective is to study how the initial
network evolved based on opportunistic contacts made
during the conference, and how it relates.

Limiting the list of friends to the set of conference
participants is not representative of their complete so-
cial network, nevertheless it captures social relationship
within this event. We believe it is an acceptable restric-
tion for an initial experiment.

The 28 participants were asked to use the application
at their own convenience and to maintain the device
with enough battery. The experiment lasts three days
and each device is being used an average of 2,2 days (as
people arrive and leave at different times)3. We define
the offline time as the time during which (within the
full trace) the device was not running the application.
The average offline time is 32,1 hours resulting mainly
from application crashes and battery depletion. Devices
scan their environment using Bluetooth every 2 min-
utes (as in previous experiments [1]). A total of 9024
opportunistic contacts have been recorded among the
experimental devices. For this particular experiment,
we ignore contacts made with non experimental Blue-
tooth devices such as laptops or regular cell phones. We
focus in the rest of the paper on day-time contact char-
acteristics (contacts occurring during conference time:
from 9am to 6pm).

3.2 Definitions and Terminology
In the rest of this paper, we refer to the slowly varying

graph of friendship between participants as the social
graph, which we denote as G = (V,E).

The collection of opportunistic Bluetooth contacts
between the participants form a temporal network (i.e.
a graph with a static set of nodes, and a set of edges
that may change with time, cf. [6, 1]). We call this
temporal network the contact graph, and denote it by
Gt = (V,Et). Paths may be constructed in tempo-
ral network as a concatenation of contacts following a
chronological property. Among these paths, a path from
s ∈ V to d ∈ V starting at time t0 is delay-optimal
if it reaches the destination d in the earliest possible
time. Delay-optimal paths for any starting time and
any source-destination pair can be computed efficiently
via dynamic programming (see [2] for more details).

4. TOPOLOGICAL COMPARISON
In this section, we study the topologies of the social

graph and the contact graph with respect to nodes, con-
tacts and paths.
3One out of the 28 nodes has been removed as it was used
only for a couple of hours.
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4.1 Social Graph Characteristics
Table 1 presents some characteristics of the social

graph (shown in Figure 1) created by participants in
the application described above.

Initial Graph Final Graph
# connected nodes 26 27

# edges 56 115
average degree 5.2 9.5

clustering coefficient 0.2 0.36
diameter 7 4

Table 1: Statistics of social graph
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Figure 1: Social Graph

The initial social graph (represented by black edges in
Figure 1) denotes the friends network when the applica-
tion started. During the experiment users could become
friends when meeting opportunistically, resulting in the
final social graph which, in addition, contained the gray
edges shown in the same Figure. From the table, one
can see that the average degree roughly doubles during
the course of the experiment, as well as the clustering
coefficient4, while the diameter is divided by 2.

4.2 Properties of node
Complex system and social networks are usually char-

acterized by large heterogeneity between the nodes. A
small portion of highly active nodes typically co-exist
with a large population of nodes that follow a normal
volume of activity. In this section, we wish to identify
such nodes and compare them in both graphs.

4.2.1 Node degree
A first estimation of the importance of a node in a

network is its degree, which measures its neighborhood.
Equivalently, in the contact graph, the size of the neigh-
borhood of a node is the average number of devices
4The clustering coefficient is defined as the average for u ∈ V
of the ratio between the number of edges connecting neigh-
bors of u and the number of pairs of neighbors of u.

that it meets via opportunistic contacts during a scan
(measured during daytime). We present both measures,
jointly for each node, in Figure 2.
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Figure 2: Joint values of the nodes degree in the
social and contact graph: for final social graph
(main) and initial social graph (small frame)

We intuitively expect that a node with a larger num-
ber of friends also sees more opportunistic contacts.
However, there is no reason to believe that these two
values are related linearly. Hence, to check the first
assertion, we define the ordering error as

|{ u 6= v ∈ V , M(u) ≤ M(v) and Mt(u) > Mt(v) }|
|V |(|V | − 1)

,

where M and Mt denotes two functions V → R, which
depends respectively on G and Gt, and associates a met-
ric value to each vertex.

There does not seem to be a significant correlation
among the two metrics when the contact graph is com-
pared to the initial social graph (indeed, a fifth of the
pairs create ordering errors when using these two met-
rics). However, during the course of the experiment,
some correlation appears and the ordering error de-
creases. In other words, it is likely that we meet reg-
ularly people who are not part of our social circle, but
as time goes on, the proximity plays a role in order to
make friends. This applies to our experiment, since our
application allows to make new friends only via oppor-
tunistic meeting.

4.2.2 Centrality
Centrality is a more refined measure of the impor-

tance of a node for a network; it deals with the occur-
rence of this node inside the shortest paths connecting
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pairs of other nodes. It is defined in a static graph as

C(v) =
| { s, d ∈ V \ {v} , s 6= d | v ∈ π(s, d) } |

(|V | − 1)(|V | − 2)
,

where π(s, d) denotes the shortest path from s to d in
G. Similarly, we define the centrality of a vertex in the
temporal network Gt as

Ct(v) =
| { t, s, d ∈ V \ {v} , s 6= d | v ∈ π(s, d, t) } |

(|V | − 1)(|V | − 2) · T
,

where π(s, d, t) denotes the delay-optimal path starting
at time t from s to d, and T is the experiment duration.

Figure 3 compares the centrality of nodes, shown
jointly for social and contact graph, when initial and
final social graph are used. Centrality varies among
nodes: one node appears in almost 7% (resp. 3%) of
the shortest paths drawn in the final social graph (resp.
contact graph) while most others nodes appear in less
than 1% (resp. 0.5%) of them. For the final social
graph, the two measures correlate (and 96% of the pairs
of node compare in the same way according to both
measures).
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Figure 3: Joint values of the nodes centrality
in the social and contact graph: for final social
graph (main), initial social graph (small frame)

Centrality measures includes properties of multi-hop
path, it is less affected by limitations of Bluetooth than
the degree, and should be a more accurate measure.
Our results tend to indicate that beyond local discrep-
ancy, hierarchical relations between the nodes should
have profound relation in the two graphs.

4.3 Properties of contacts
We now study how properties of opportunistic con-

tacts depends on the social distance, defined between

two nodes on the social graph (friends have distance 1,
friends of friends have distance 2, etc.).

We have studied contacts according to their duration,
their frequency, and the time elapsed between two suc-
cessive contacts of the same pair (also known as inter-
contact time). Due to space constraints we present only
the values of the inter-contact time in Figure 4. The me-
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Figure 4: Inter-contact time seen for pairs with
different distance in the social graph

dian inter-contact time grows from 6 minutes between
two friends, to nearly an hour (ten times more) when
nodes have distance 3 or 4 in the social graph. We see
that contacts between friends are almost all separated
by less than an hour. We observed that the centrality
of a nodes also plays an important role. A typical node
with centrality around 6% has on average a contact ev-
ery hour, for every other node whatever be its social
distance from it. Nodes with medium or low central-
ity (around 2% or 0.5%), in contrast, sees on average a
contact every hour for each of their friend, but not with
the nodes at distance 2 and more from them.

Finally, we observe that contacts between friends are
significantly longer: 75% of the contacts with friends
are longer than 10 minutes, whereas 75% of the contacts
with nodes at distance 4 are shorter than 13 minutes.

4.4 Properties of Delay-Optimal Paths
We now study delay-optimal paths (as defined in Sec-

tion 3) as a function of the distance between the source
and the destination in the social graph.

Figure 5 (a) plots the CDF for the optimal delay seen
at all starting times, for sources and destinations with
different social distance. As expected, delay is smaller
for nodes that are closer. Note that this distribution
depends a lot on the centrality of the source, as shown
for two different nodes in Figure 5 (b) and (c). The

4



 0.01

 0.1

 1

6 h3 h1 hour10 min2 min

P[
De

la
y 

< 
D 

]

Delay D

social distance = 1
social distance = 2
social distance = 3

(a) A central source (0.058)

 0.01

 0.1

 1

6 h3 h1 hour10 min2 min

P[
De

la
y 

< 
D 

]

Delay D

social distance = 1
social distance = 2
social distance = 3
social distance = 4

(b) A non central source (0.004)

 0

 1

 2

 3

 4

 5

 6

 7

6 h1 hour10 min2 min

99
%

-d
ia

m
et

er

Maximum delay

social distance = 4
social distance = 3
social distance = 2
social distance = 1

(c) (1− ε)-diameter

Figure 5: Properties of delay-optimal paths for different distance in the social graph

delay from a central nodes to any other node is within
10 minutes roughly 20% of the time, even for nodes
at distance 3. In constrast, the delay falls under 10
minutes only for 10% of the time when the source is
non central, even to communicate with its friend.

The (1−ε)-diameter of a temporal network is defined
in [2]; it is the number of hops that is needed to achieve
a fraction at least (1 − ε) of the success ratio obtained
with flooding, for a given maximum delay. In other
words, this is the maximum number of hops k, necessary
to construct all paths needed to be almost competitive
with flooding, with a fixed maximum delay. Figure 5
plots the diameter (choosing ε = 1%) for pairs of nodes
at different social distance. Interestingly, the value of
the diameter is of the same order as the diameter of the
social graph, 4. Moreover it seems to follow the social
distance between the source and the destination, as each
additional hop increases the value of the diameter by 1.

To summarize our results, nodes may be ranked ac-
cording to their centrality, their rank in the social graph
and in the contact graph coincide more or less. Oppor-
tunistic contacts as well as the optimal paths which may
be constructed between two nodes depends on their cen-
trality and on the social distance between them.

5. PATHS CONSTRUCTION WITH OSN
The observations we made in the previous section can

be used to design heuristic rules to construct efficient
paths based on relationship in the social network. So far
we have studied the properties of delay-optimal paths
in the temporal network. Such paths offer the best pos-
sible delivery ratio, but they can only be found a pos-
teriori, or otherwise using flooding. In this section, we
present early results on the constructive properties of
forwarding paths.

All the construction rules we consider fits in the fol-
lowing general model: depending on the source s and
the destination d, a rule defines a subset of directed

pairs of nodes (u → v) so that only the contacts occur-
ring for pairs in the subset are allowed in forwarding
path. We consider the following construction rules.

neighbor(k): (u → v) is allowed if and only if u and v
are within distance k in the social graph.

destination-neighbor(k): (u → v) is allowed if and
only if v is within distance k of d.

non-decreasing-centrality: (u → v) is allowed if and
only if C(u) ≤ C(v).

non-increasing-distance: (u → v) is allowed if and
only if the social distance from v to d is no more
than the one from u to d.

We always assume in addition that pairs (u → d) are
allowed for all u, as any opportunity to complete the
path with a single hop should not be missed. We have
considered other rules as well (non-decreasing-degree, or
strictly-decreasing-distance), which could not be shown
for lack of space.

Each rule above defines a heuristic method to se-
lect among all the opportunistic contacts the ones that
are crucial in order to connect source and destination
quickly over time. Our objective is to design a rule that
reduces as much as possible the contacts used, while
allowing quasi-optimal delay. For comparison we in-
troduce two measures for each rule: (1) its selectivity,
which is measured by the fraction of the directed pairs
(u → v) that it allows, and (2) its success ratio which
is the probability that a path exists and follows this
rule, with a maximum delay (e.g. ten minutes). Typ-
ically this success can be normalized by the success of
flooding.

The results for a selected set of rules may be found in
Figure 6, where we show the delay distribution for two
rules, as well as a comparison of selectivity and normal-
ized success ratio (measured at ten minutes). For com-
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Figure 6: Performance of different path construction rule.

parison, we have presented in some of them the perfor-
mance (delay or success ratio) obtained when selecting
contacts randomly according to the same selectivity.

We have tested all rules mentioned above, and also
combined several rules together (defined by intersec-
tion) to study their complementarity. The most im-
portant observations follow.

• The neighbor rule performs reasonably well in com-
parison with other, and significantly better than a
random choice. This result is encouraging as peo-
ple that are neighbors (e.g. friends, or friends of
friends) are more likely to cooperate (and trust
each other) in order to construct a path over time.

• The rule based on centrality outperforms all the
rules we have tested (reaching more than 95% of
success with half of the pairs). It is better than the
rule that uses the social distance to the destina-
tion for similar selectivity. This result is counter-
intuitive as the scheme based on distance depends
on the destination, whereas non-decr.-centrality
is destination unaware. Note that even the rule
based on degree, which is even simpler, outper-
forms the one based on distance.

• The combination of neighbor and centrality rules
naturally improves selectivity, offering more flexi-
bility and achieves one of the best trade-offs.

Therefore, we can conclude, based on these evidences
that for the context of a community event like a con-
ference, the primary factor to decide whether a node is
a good next hop is its centrality. In addition, it seems
that the best performance trade-off is obtained when
several complementary rules are combined.

6. DISCUSSION
This paper presents initial comparison results of a

social network, as defined by users in an OSN appli-

cation, and measurement of opportunistic contacts be-
tween these users. Our results, which are limited to a
single event happening inside a community, highlights
more generally the importance of central nodes and
proves that using social neighbors to communicate (as
in a traditional OSN) can be effective.
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