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Abstract: Portable devices have more data storage and increasing
communication capabilities everyday. In addition to classic infras-
tructure based communication, these devices can exploit human mo-
bility and opportunistic contacts to communicate. We analyze the
characteristics of such opportunistic forwarding paths. We establish
that opportunistic mobile networks in general are characterized by a
small diameter, a destination device is reachable using only a small
number of relays under tight delay constraint. This property is first
demonstrated analytically on a family of mobile networks which fol-
low a random graph process. We then establish the validity of this
result empirically with four data sets capturing human mobility, using
a new methodology to efficiently compute all the paths that impact
the diameter of an opportunistic mobile networks. We complete our
analysis of network diameter by studying the impact of intensity of
contact rate and contact duration. This work is, to our knowledge, the
first validation that the so called “small world” phenomenon applies
very generally to opportunistic networking between mobile nodes.



1. INTRODUCTION
The proliferation of powerful portable devices has cre-

ated a new environment for networking. As opposed to
conventional communication that relies on infrastruc-
ture, these devices can use hop-by-hop opportunistic
data forwarding between each other. In this environ-
ment, a device should decide whether or not to transfer
a message at the time it meets another one. How to
select the next hop towards the destination in a way
to minimize delay and maximize success rate is so far
unknown. It is in general difficult to design opportunis-
tic forwarding algorithms, as their performance depends
extensively on the characteristic of the mobility present
in the network [1]. We claim that it is critical to study
first the properties of the paths made available between
nodes by opportunistic contacts and mobility.

Among topological properties that directly impact
forwarding, it is essential to characterize the diameter
of an opportunistic network. The diameter bounds the
number of hops needed to construct a path over time
between two nodes. Note that as opposed to paths in a
static graph, the paths in opportunistic mobile networks
have both time-position and hop-number; we wish to
characterize both of them since each has a great impact
on the feasibility of forwarding. We define formally the
diameter for any opportunistic mobile network as fol-
lows: the number of hops needed to achieve a high pro-
portion (e.g. 99%) of the success rate of flooding, under
any time constraint. This work does not aim at char-
acterizing one forwarding algorithm, but instead it con-
tributes to a better understanding of the performance
of all algorithms with regard to hops and delays.

This paper makes the following contributions.

• We prove that the diameter for a family of op-
portunistic networks, described by a process of
random graphs, increases slowly with the network
size. A phase transition characterizes when paths
that are short both in terms of delay and hop-
number may be found. This result is analogous
to the short diameter observed among vertexes of
a random graph. We also prove that the hop-
number of the delay-optimal path varies little with
the contact rate, especially when the network is
sparse (i.e. when the contact rate is low) (§3).

• Since the definition of the diameter requires to
know at all time the delay-optimal path between
two nodes, we propose an efficient algorithm that
computes these paths exhaustively (§4).

• We apply our technique to four mobility traces.
The results validate the implication of our analy-
sis for measurement of human mobility in diverse
environments; we generally observe diameter be-
tween 4 and 6 hops (§5). Lastly, we investigate em-
pirically the impact of different characteristics of

opportunistic contacts (duration, intensity of con-
tacts) on the network diameter (§6).

To the best of our knowledge, this work presents for
the first time both analytical and empirical results val-
idating that the so called “small world” phenomenon is
relevant for delay-efficient opportunistic networking.

2. RELATED WORK
Opportunistic mobile networks can be seen as a class

of delay-tolerant networks. As opposed to other works
in this area, opportunistic forwarding do not make the
assumption that device mobility can be known in ad-
vance (e.g. [5]) nor that mobility may be partly con-
trolled to serve the network’s need (e.g. [19]). Pioneer
theoretical work was carried out by Grossglauser and
Tse who first established in [3] that mobility increases
the capacity of a network, when devices are densely
deployed and follow a regular mobility process. Most
of the forwarding algorithms proposed since that time
(see e.g. [1] and references therein) includes for each
packet a time-out and a maximum number of hops, to
avoid consuming too much resource. These parame-
ters should depend on the properties of paths available
thanks to the mobility, although this aspect remains lit-
tle known today. In [15], the authors advocate to use
opportunistic connections and social network properties
to improve data dissemination in disconnected mobile
networks. Our paper justifies that the small world phe-
nomenon can be beneficial in such context.

Previous works that characterize the impact of mobil-
ity on opportunistic forwarding have focused on the dis-
tribution of the time between two successive contacts for
the same pair, also called the inter-contact time [1],[7,
18, 16]. [18] identifies modes in the contact process
among buses, created by periodic schedule. In [16], us-
ing a data set extracted from students lectures schedule,
the authors studies minimal delay and a ”hop distance”
separately; the latter is computed using a static graph
extracted from the mobility. None of these previous
works has studied the delay and hop-number properties
of paths available over time in a general context. Pio-
neer experimental works collecting mobility traces did
not consider multi-hop paths properties [17, 4, 11, 2].

The characterization of paths length in a random
graph is not a new research topic [6], but to the best of
our knowledge, none of these works considered a graph
that evolves with time. Up to now, the characteriza-
tion of dynamic networks has considered contemporane-
ous paths in a graph with an increasing set of vertexes
[10]. One essential new feature in our model is that
the path itself is not drawn at a given point in time,
but should follow a sequence of steps in a chronological
way. These structures, known as temporal networks,
have been studied from an algorithmic standpoint [14,
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8], but none of these works analyzed large random struc-
ture that follow this property.

3. RANDOM TEMPORAL NETWORKS
We model opportunistic mobile networks as a tem-

poral network, i.e. a graph with a static set of nodes,
and a set of edges that may change with time. In this
paper we discuss the properties of sequences of edges
that verify a chronological property. These sequence
are generally called paths. As a consequence we need
to study jointly how paths behave with respect to time
and with respect to the sequence of nodes they follow.

We analyze in this section a family of simple tem-
poral networks, random temporal networks, which cap-
ture dynamic edges using a sequence of uniform random
graphs. In other words, we assume that during each
time slot, a contact between two nodes may occur with
a fixed probability, independently of other nodes and
other time slots. A couple of variants of this model are
presented to include the impact of continuous time, and
different assumptions on the latency/bandwidth found
locally. One of our main findings is a condition for the
existence of paths with constraints on both delay and
hop-number.

Before starting this study, note that random temporal
networks follow simplifying assumptions about mobility
that are not usually met in practice. This point is dis-
cussed further in §3.4. We present a more general model
of temporal network in §4. It is used to study properties
of paths found in empirical traces, where these assump-
tions need not hold.

3.1 Definitions & Assumptions
Consider a network made of N nodes. We are study-

ing the properties of large graphs, assuming that the
contact rate (i.e. the average number of contacts made
by a node in a unit of time) remains a constant λ. For
any functions f, g of N , we write f(N) = Θ(g(N)) if
there exist two positive constants c and C such that,
for N sufficiently large, we have c · g(N) ≤ f(N) ≤
C · g(N). This notation is typically characterizing two
functions that have the same order. It may happen
that two functions differ only up to the power of a log-
arithm. To denote this case, we introduce the notation
f(N) = Θ̃(g(N)) if there exist two positive constants
c, C and α, β such that, for N sufficiently large, we have

c(ln N)−α · g(N) ≤ f(N) ≤ C(ln N)β · g(N) .

Proposition 1. If f(N) = Θ̃(Na) with a ∈ R,
then a < 0 =⇒ lim

∞
f = 0, a > 0 =⇒ lim

∞
f = ∞,

Proof. This is obvious since the power is always in-
creasing or decreasing quicker than any power of a log-
arithm.

3.1.1 Discrete-time model

This may be seen as a generalization of the uniform
random graph introduced by Erdős and Rényi. Let us
recall that a classical uniform random graph is a graph
G = (V, E) such that the set of edges E is a random
variable verifying:

• P [(u, v) ∈ E ] = p for any pair of nodes (u, v).

• The events { (u, v) ∈ E }, for all pairs (u, v), are
mutually independent.

Note that since we assume an average contact rate λ,
we have in this case p = λ

N−1 .
We define a random temporal network as a collection

of graphs { Gt = (V, Et) | t ∈ N } such that

• P [(u, v) ∈ Et ] = p = λ
N−1 for any pair (u, v).

• The events { (u, v) ∈ Et }, for all pairs (u, v) and
all time t, are mutually independent.

The pairs (u, v) may be directed or undirected with-
out changing any of the definitions above.

3.1.2 Continuous-time model

In the discrete-time model above, for any pair of
nodes (u, v) the set of indices t such that edge (u, v)
is in Et is a sequence of integers in N separated by ge-
ometric random variables. A natural generalization of
the model to a continuous time setting is then to as-
sume that, for any pairs of nodes (u, v), the times of
contact are separated by exponential random variables.
In other words, this process of time instants constitutes
a Poisson process.

A random temporal network (in continuous time) is a
process of graphs { Gt = (V, Et) | t ∈ R

+ } such that:

• N (u,v) = { t | (u, v) ∈ Et } is a Poisson process
with rate λ/(N − 1).

• Processes in the collection
{

N (u,v) | (u, v)
}

are
mutually independent.

This model may use either directed or undirected edges.
In the following, we present results mainly from the

model with discrete time. The equivalent results in con-
tinuous time, which are quite similar, are detailed in
Appendix A.2.

3.1.3 Paths in long contact case/short contact case

A path from u to v in a temporal network is a se-
quence u = u0 ;

t1 u1 ; · · · ;
tk uk = v such that:

(i) (ui−1, ui) ∈ Eti
for all i = 1, . . . , k,

(ii) ti+1 ≥ ti for all i = 1, . . . , k.

We assume that all contacts have a fixed duration
that is either one time slot (in the discrete time model)
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or negligible (in the continuous time model). To model
the impact of a limited local bandwidth, or local latency,
on the properties of paths, we introduce two cases.

We define the long contact case as the model where
any number of edges may be used in a single time slot, as
allowed by the definition of a path found above. In other
words we assume that a single time slot is sufficiently
long to exchange across several contacts.

On the contrary, we define the short contact case as
the model where only one contact may be used in a
single time slot. In other words, we require that all
paths verify, in addition to the conditions above:

(ii′) ti+1 ≥ ti + 1 for all i = 1, . . . , k.

3.2 Phase transition
In this section, we first prove a result on the expected

number of paths between two nodes, when delay and
hops are constrained. This result is then used to de-
scribe a phase transition for the appearance of paths in
a random temporal network.

3.2.1 Expected number of paths with constraints

We describe now our main analytical results, which
characterize the expected number of paths with con-
straints on both delay and hop-number. A source u
and a destination v are fixed in advance and without
loss of generality we assume that the packet is ready to
be sent at the source at time t = 0.

Since we are interested in large networks, with a con-
stant contact rate per node, we let N go to infinity and
limit the time and the number of hops allowed in the
paths by a slowly increasing function of N .

Lemma 1. Let us denote the maximum time tN and
number of hops kN of a path allowed in the network.
We assume that they are given as a function of N by:

{

tN = ⌊τ · ln(N)⌋ ,
kN = ⌊γ · tN⌋ = ⌊γ · τ · ln(N)⌋ ,

(1)

where τ and γ are two positive constants.
Let us denote by ΠN the number of paths from u to

v under the above constraints. Then, as N grows large

- for short contacts, E [ΠN ] = Θ̃
(

N−1+τ(γ ln(λ)+h(γ))
)

where h : x ∈ [0; 1] 7→ −x ln(x) − (1 − x) ln(1 − x).

- for long contacts, E [ΠN ] = Θ̃
(

N−1+τ(γ ln(λ)+g(γ))
)

where g : x ∈ [0; 1] 7→ (1 + x) ln(1 + x) − x ln(x) .

Proof. This proof follows from the memoryless prop-
erty of geometric and exponential distributions. We
first estimate the probability of success of a path whose
nodes are fixed in advance. The expectation is then
this probability multiplied by the number of possible
combinations. Stirling formula is used to complete the
argument. It can be found in Appendix A.

We have, as a direct consequence of Lemma 1.

Corollary 1. Under the assumption above we have,
in the short contact case

{

E [ΠN ] → 0 if 1/τ > γ ln(λ) + h(γ)
E [ΠN ] → ∞ if 1/τ < γ ln(λ) + h(γ) .

The first result implies that, when 1/τ > γ ln(λ)+h(γ):

P [ There exists a path with constraints (1) ] → 0

All these results holds for the long contact case when
replacing the function h by g.

Proof. The two first results follows directly from
Lemma 1 and Proposition 1. The last result is a conse-
quence from the Markov inequality, which may be writ-
ten here P [ΠN ≥ 1] ≤ E [ΠN ] .

3.2.2 Phase transition in the short contact case

The results from the previous section prove that, de-
pending on the values of the two constant numbers τ
and γ, as well as the contact rate λ, one of the two fol-
lowing statements holds: either there almost surely does
not exist a path satisfying the logarithmic bound (1); or
the number of paths that satisfy these conditions grows
on average to infinity with N . Moreover, one can tell
which statement holds simply by comparing the values
of 1/τ and γ ln(λ) + h(γ).

λ = 0.5
λ = 1.0
λ = 1.5

M = ln(1 + λ)

γ = λ
1+λ

γ

γ
ln

(λ
)

+
h

(γ
)

10.80.60.40.20

1.2

1

0.8

0.6

0.4

0.2

0

Figure 1: Phase transition (short contact case)

This result might be interpreted as follows. Note that
the short contact case implies γ ≤ 1. The function
γ ∈ [0; 1] 7→ γ ln(λ) + h(γ) admits a maximum, that is
given by M = ln(λ + 1) and this maximum is attained
when γ = λ

1+λ . This is illustrated on Figure 1 where the
value of this function of γ was plotted for three different
values of λ. We can deduce the following dichotomy:

4



• If τ < 1/M = 1/ ln(1 + λ), then 1/τ is always
larger than γ ln(λ) + h(γ) for any value of γ. As a
consequence, almost surely there does not exist a
path with delay less than τ ln(N) when N is large.

• If τ > 1/ ln(1+λ), then the super-critical condition
from Corollary 1 is verified for γ ∈ [γ1; γ2], an
interval which contains λ

1+λ . As a consequence,
the average number of paths with delay τ ln(N)
and γτ ln(N) hops is unbounded for large N ,

The delay-optimal path corresponds to the critical
value of τ for which a path is likely to be found. From a
heuristic standpoint, we then expect the delay-optimal

path to have delay t ≈ ln(N)
ln(1+λ) . When τ approaches

this critical value, the interval of possible values for γ
becomes small, and centered around λ

1+λ . Hence, we ex-
pect that the delay optimal path has hop-number given

by k ≈ λ ln(N)
(1+λ)·ln(1+λ) . As an example, when λ = 0.5, we

expect a delay growing with N as t ≈ 2.47 · ln(N) and
we expect a number of hops k ≈ 1.64 · ln(N).

3.2.3 Phase transition in the long contact case

In the long contact case, the expected number of
paths with delay and hop constraints, for large N , be-
comes large if 1/τ < γ ln(λ) + g(γ). In contrast with
the short contact case, the properties of this function of
γ change with the value of λ (see Figure 2). As a result,
we look at the cases λ < 1 and λ > 1 separately.

λ = 0.5
λ = 1.0
λ = 1.5

M = − ln(1 − λ)

γ = λ
1−λ

γ

γ
ln

(λ
)

+
g
(γ

)

21.510.50

3.5

3

2.5

2

1.5

1

0.5

0

Figure 2: Phase transition (long contact case)

• When λ < 1, the result is very similar to the short
contact case. The function of γ admits a maximum
M = − ln(1 − λ), attained when γ = λ

1−λ .

Following the same heuristic as the short contact
case, we expect the delay-optimal path to have

delay t ≈ ln(N)
− ln(1−λ) and k ≈ λ ln(N)

−(1−λ)·ln(1−λ) hops.

As an example, when λ = 0.5, we expect a delay
t ≈ 1.69 · ln(N) and the same number of hops.

• When λ > 1, we notice a difference with the short
contact case, since the function of γ is increasing
and unbounded. In that case, for any τ , even an
arbitrary small constant, some paths exist with a
delay less than τ ln(N).

To compute the hop-numbers of these paths, we
proceed as follows. Since 1/τ is large, γ should
then be sufficiently large to satisfy the condition
of the corollary. The function of γ is then close to
its asymptote γ 7→ 1+γ ln(λ). We deduce that the
smallest value of γ verifying the condition is 1−τ

τ ln(λ) ,

hence k = γτ ln(N) given by k ≈ ln(N)/ln(λ).

This last regime should not come as a surprise: in a
static random graph, there exists a phase transition
when λ approaches 1. In particular, when λ is greater
than 1, there almost surely exists a unique connected
component with a large size (see Theorem 5.4 p.109 in
[6]). In our model, since the long contact case allows
one to use any number of hops during the same time
slot, this property implies that there does exist paths
for any arbitrarily small τ . In other words, although
the network is still changing with time, it is essentially
“almost-simultaneously connected”.

3.3 Impact of the contact rate
We have seen above that the value of the contact

rate λ impacts qualitatively the phase transition in the
long contact case, as λ becomes larger than 1. More
generally, when λ is less than 1, it has a direct impact
on the delay of the paths present in a random temporal
network. We note in particular that as λ gets small,
the minimum value of τ for which a path may exist
(respectively 1/ ln(1+λ) and −1/ ln(1−λ) for the short
and the long contact case) becomes large.

In contrast with delay, the hop-number of a path
varies little as λ changes. In particular, when λ be-
comes small, the hop-number for the delay-optimal path
in both short and long contact cases no longer depends
on λ and it converges to ln(N).

One may think of the following explanation for this
result: As λ decreases, the network is essentially com-
pletely disconnected except occasionally for one or sev-
eral disjoint pairs of nodes. Therefore, if we rescale time
by merging periodically a fixed number of time slots to-
gether, the network appears to be very similar (a few
disjoint pairs of nodes) except for an appropriate scal-
ing of the contact rate. As a consequence, decreasing
λ linearly increases the time needed to create a path,
but is unlikely to impact the actual hop-number of this
path. The analysis above makes this intuition rigorous.

We summarize our results in Figure 3. The y-axis
represents the estimate of the hop-number for the delay-
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Figure 3: Hop-number of the delay-optimal path
seen as a function of the contact rate

optimal path, normalized by ln(N). We see that in both
dense and sparse regimes, short and long contacts are
in good agreement. They differ only near the critical
value λ = 1, where the long contact case has a singu-
larity. This singularity is not likely to occur in practice
as bandwidth limits the hops in a single time slot.

3.4 Discussions
We have studied the properties of random temporal

networks, as they become large. We have shown that
a source destination pair admits on average many for-
warding paths using a small number of hops and over a
short number of time-slots (i.e. both grow as the loga-
rithm of the network size). Note that the delay of the
optimal paths depends heavily on the contact rate be-
tween the nodes. On the other hand, the hop-number
of these paths seems rather insensitive to changes in
the contact rate λ, with the only exception of the long-
contact case around the value λ = 1.

Inspired by these results, one may compute the diam-
eter of a network using the paths with an optimal de-
lay, and deduce that temporal networks generally have
a small diameter, for almost any contact rate. However,
our model is based on several important simplifications
that may impact in general the delay and hop-number
of paths in opportunistic networks:

• Homogeneity: We have assumed that nodes con-
tact others uniformly at random. In practice this
is not true as people tend to come close to each
other according to their habits and the communi-
ties of interest that they share.

• Inter-contact time statistics: Since we assume
that contacts between nodes follow Bernoulli or
Poisson Processes, the distribution of time between

two contacts of a pair is light tailed. Previous ex-
periments have shown that this assumption holds
only at the timescale of days and weeks [1, 7].

It is nevertheless possible to extend all of the re-
sults we have obtained so far to contacts described
by a renewal process with general inter-contact
time distribution with finite variance. We expect
this to have a major impact on the delay of a path,
but a relatively small impact on hop-number.

• Stationarity: This model does not include peri-
odic diurnal cycles in the variation of the contact
rate that are typically found in human mobility.
The network may change from a highly mobile and
dense subset of contacts into a sparse and slowly
varying subset of contacts. Again, we expect this
effect to impact the delay of paths in temporal
network, but not much their hop-number.

In the rest of this article, after having formally defined
the diameter of any temporal network, we estimate its
value for mobility traces where in general none of these
assumptions holds. Our goal is to demonstrate that the
fundamental insight brought up by this simple model
translate in practice into similar qualitative trends.

4. NETWORK DIAMETER DEFINITION
AND MEASUREMENT METHOD

In this section, we first formalize our definition of net-
work diameter. We then describe an algorithm to study
efficiently and exhaustively the properties of delay op-
timal paths in opportunistic networks. This algorithm
is instrumental to study the diameter found in large
traces, as done in the next section. It is one of the
contributions of this work.

4.1 Definition of diameter
The diameter of a network is an upper bound on the

number of intermediate hops needed to find at least
one path between any two nodes. What is essentially
new in a temporal network is that one has to specify
whether this path should also satisfy a condition on its
time characteristics. Inspired by the results from the
previous section, we define the diameter such that we
require this path to be almost always optimal.

For k ∈ N ∪ {∞}, and t ≥ 0 let Π(t, k) be 1 if there
exists a path that uses at most k hops and succeeds to
deliver a packet within t seconds, let Π(t, k) be 0 other-
wise. This variable depends on the source, destination,
and starting time of the packet. For ε > 0, we define
the (1 − ε)-diameter as the integer k such that

∀t ≥ 0 , P [Π(t, k) = 1] ≥ (1 − ε) · P [Π(t,∞) = 1 ] ,

and k is the minimum number that verifies it.
This expression can be interpreted in two ways: in a

stochastic model of a stationary homogeneous network,
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like the one we studied in §3, the probability is chosen
according to the distribution of the random variables
Π(t, k) seen at any time between any two nodes. In a
mobility data set, we consider the empirical probability
combining uniformly observations for all sources, desti-
nations and starting times. In both case, this expres-
sion states that, for any delay-constraint, it is almost as
likely to find a successful paths within k hops than it is
with any more hops.

One may think of this definition as an example of
“competitive analysis” since the success ratio (i.e., the
probability to find a path within t seconds and at most
k hops) is not described in absolute term, but instead
is compared with an optimal strategy. It helps the def-
inition to adapt to variable environments. However,
it requires one to know beforehand the performance of
the delay-optimal paths at all time, which is why we
formally describe in the rest of this section how they
can be extracted from traces.

4.2 Paths in temporal networks
Each data set may be seen as a temporal network.

More precisely we represent it as a graph where edges
are all labeled with a time interval, and there may be
multiple edges between two nodes. A vertex represents
a device. An edge from device u to device v, with label
[tbeg; tend], represents a contact, where u sees v during
this time interval. The set of edges of this graph there-
fore includes all the contacts recorded by each device.

Paths associated with a sequence of contacts:
We intend to characterize and compute in an efficient
way all the sequences of contacts that are available to
transport a message in the network. Note that we allow
simultaneous contacts to be used, as in the long contact
case defined in §3.1. It is possible to include a positive
transmission delay in all these definitions, we expect
that the diameter will be smaller in that case.

A sequence (ei = (ui−1, ui, [t
beg

i ; tendi ]))i=1,...,n of con-
tacts is valid if it can be associated with a time re-
specting path from u0 to un. In other words, it is
valid if there exists a non-decreasing sequence of times
t1 ≤ t2 ≤ . . . ≤ tn such that t

beg

i ≤ ti ≤ tendi for all i.
An equivalent condition is given by:

∀i = 1, . . . , n, tendi ≥ max
j<i

{

tbegj

}

. (2)

The time-respecting path associated with a sequence
of contacts (e1, . . . , en) is not unique, but we can char-
acterize all of them as follows. Let us formally define the
last departure of this sequence as LD(e) = mini { tendi };

and the earliest arrival as EA(e) = maxi

{

tbegi

}

.

From the definition of a time respecting path, we have

(i) All paths associated with this sequence of contacts
verify t1 ≤ LD and tn ≥ EA.

This property shows that the last departure is in fact

the maximum possible starting time of a path using
this sequence of contacts. Similarly the earliest arrival
denotes the minimum possible ending time for a path
using this sequence. These two optimums are attained,
as one can immediately check the following.

(ii) If LD ≤ EA, there is a path with t1 = LD, tn = EA.

(iii) If EA ≤ LD, there is a path with t1 = t2 = . . . =
tn = t for all t ∈ [EA; LD].

Concatenation: Concatenating two sequences of con-
tacts that both verify Eq. (2) does not necessarily create
a compound sequence that verifies Eq. (2). As an exam-

u0 ; u1 ; u2 ; u3 and u3 ; u4 ; u5

(u1, u2)

(u2, u3)

(u3, u4)

(u4, u5)

(u0, u1)

8642
time t

Figure 4: Examples of impossible concatenation

ple, Figure 4 presents two sequences of contacts, from
u0 to u3 and from u3 to u5, that are both valid and
cannot be concatenated. Note in this case that the last
contact of the first sequence, (u2, u3, [2; 6]), can be con-
catenated with the first contact of the other sequence,
(u3, u4, [1; 8]). However the two sequences as a whole
cannot be concatenated, because of constraints related
with other contacts.

We can characterize exactly when concatenation be-
tween two sequences is possible:

(iv) Two sequences (e), (e′) of contacts such that un =
u′

0 and that both verify Eq. (2) can be concate-
nated into a sequence of contacts e

′ ◦ e satisfying
Eq. (2) if and only if EA(e) ≤ LD(e′).

When the condition above is verified, we can deduce
the values LD, EA associated with the concatenated se-
quence as follows: EA(e′ ◦ e) = max(EA(e), EA(e′)), and
LD(e′ ◦ e) = min(LD(e), LD(e′)) (see examples in Fig-
ure 5). Note that EA = tbeg ≤ tend = LD for a sequence
made with a single contact, but sequences with multiple
contacts, like Figure 5 (a), might not verify EA ≤ LD.

4.3 Delay-optimal paths
So far we have been describing a method to char-

acterize when a sequence of contacts supports a time-
respecting path, and when we can concatenate them.
However, computing all of them in general is very costly.
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(a)

EA1 LD1

EA2 LD2

LDEA

(u1, u2)

(u0, u1)

(u0, u1, u2)

EA2

EA1 LD1

LD EA

LD2

(b)

Figure 5: Two examples of concatenation

In this section, we formally define paths that are opti-
mal in terms of delay, and therefore are susceptible to
impact the diameter of the network. Later, we focus on
computing only those paths.

Delivery function: As a consequence of (ii) and
(iii), for a message created at u0 at time t, if t ≤ LD

then there exists a path associated with the sequence
of contacts e, that transports this message and delivers
it to un at time max(t, EA). Otherwise, when t > LD,
no path based on these contacts exists to transport the
message. The optimal delivery time of a message cre-
ated at time t, on a path using this sequence of contacts,
is given by

del(t) =

{

max(t, EA) if t ≤ LD ,
∞ else.

Similarly the optimal delivery time for any paths that
use one of the sequences of contacts e1, . . . , en is given
by the minimum

del(t)=min{max (t, EAk) , 1 ≤ k ≤ n s.t. t ≤ LDk}
(3)

where, following a usual convention, the minimum of an
empty set is taken equal to ∞.

Optimal paths: We say that a time respecting path,
leaving device u0 at time tdep, arriving in device un

at time tarr, is strictly dominated in case there exists
another path from u0 to un with starting and ending
times t′dep, t

′
arr such that (t′dep ≥ tdep and t′arr ≤ tarr) ,

and if at least one of these inequalities is strict. A path
is said optimal if no other path strictly dominates it.

According to (ii) and (iii) above, among the paths as-
sociated with a sequence of contacts with values (LD, EA)
the optimal ones are the following: if LD ≤ EA, this is the
path starting at time LD and arriving at time EA. Oth-
erwise, when LD > EA, all paths that start and arrive at
the message generation time t ∈ [EA; LD] are optimal.

An example of delivery function is shown in Figure 6.
Note that the value of the delivery function (y-axis) may
be infinite. Pairs (LD1, EA1) to (LD3, EA3) satisfy EA ≤
LD, they may correspond to direct source-destination
contacts, or sequence of contacts that all intersect at
some time; the fourth pair verifies LD4 < EA4, hence it
does not correspond to a contemporaneous connectivity.
The message needs to leave the source before LD4, and
remains for sometime in an intermediate device before

EA4 > LD4

∞

LD4LD3LD2LD1

time t

del(t)

EA3 < LD3

EA2 = LD2

EA1 < LD1

Figure 6: Example of a delivery function, and
the corresponding pairs of values (LDi, EAi)i=1,2,3,4.

being delivered later at time EA4.

4.4 Efficient computation of optimal paths
We construct the set of optimal paths, and delivery

function for all source-destination pairs, as an induction
on the set of contacts in the traces. We represent the
delivery function for a given source-destination pair by
a list of pairs of values (LD, EA). The key element in
the computation is that only a subset of these pairs is
needed to characterize the function del. This subset
corresponds to the number of discontinuities of the de-
livery function, and the number of optimal paths that
can be constructed with different contact sequences.

We use the following observation: We assume that
the values (LDk, EAk)k=1,...,n, used to compute the de-
livery function as in (3), are increasing in their first
coordinate. Then, as k = n, n− 1, . . ., we note that the
k th pair can always be removed, leaving the function
del unchanged, unless this pair verifies:

EAk = min { EAl | l ≥ k } . (4)

In other words, a list such that all pairs verify this con-
dition describes all optimal paths, and the function del,
using a minimum amount of information.

As a new contact is added to the graph, new se-
quences of contacts can be constructed thanks to the
concatenation rule (fact (iv) shown above). This cre-
ates a new set of values (LD, EA) to include in the list
of different source-destination pairs. This inclusion can
be done so that only the values corresponding to an
optimal path are kept, following condition (4).

We show that our method can also be used to iden-
tify all paths that are optimal inside certain classes, for
instance the class of paths with at most k hops. This
can be done by computing all the optimal paths associ-
ated with sequences of at most k contacts, starting with
k = 1, and using concatenation with edges on the right
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to deduce the next step.
Compared with previous generalized Dijkstra’s algo-

rithm [5], this algorithm computes directly representa-
tion of paths for all starting times. That is essential
to have an exhaustive search for paths, and estimate
the diameter of a network at any time-scale. We found
algorithm UW2 in [14] to be the closest to ours. We
have introduced here an original specification through
a concise representation of optimal paths which makes
it feasible to analyze long traces with hundred thou-
sands of contacts. Recently we have found that another
algorithm has been developed independently to study
minimum delay in DTN [18]. It works as follows: a
packet is created for any beginning and end of contacts;
a discrete event simulator is used to simulate flooding;
the results are then merged using linear extrapolation.

5. EMPIRICAL RESULTS
In this section we present first our data sets. Then

we analyze the characteristics of optimal paths in op-
portunistic networks using the methodology described
in the previous section.

5.1 Mobility data sets
We use four experimental data sets. Three have been

collected by the Haggle Project [1]. They include two
experiments conducted during conferences, Infocom05,
Infocom06, and one experiment conducted in Hong-Kong.
The fourth data set has been collected by the MIT Re-
ality Mining Project [2]. Table 1 summarizes important
characteristics of these data sets.

In the Haggle experiments, people were asked to carry
an experimental device (i.e., an iMote) with them at all
times. These devices log all contacts between experi-
mental devices (i.e., called here internal contacts) using
a periodic scanning every t seconds, where t is called
granularity. In addition, they log contacts with other
external Bluetooth devices (i.e., external contacts) that
they meet opportunistically (e.g., cell phones, PDAs,
laptops).

In Infocom05, Infocom06 the experimental devices
were distributed to students attending the conference
for several consecutive days. The largest experiment is
Infocom06 with 78 participants. By default we are pre-
senting here results for internal contacts only; results
with internal and external contacts are very similar.

In Hong-Kong, people carrying the experimental de-
vices were chosen carefully in a Hong Kong bar to avoid
social relationships between them. These people re-
turned the iMote at the same bar a week later. As a
consequence, there are only few internal contacts, which
is why we are presenting here results with both internal
and external contacts.

Note that we may not collect all opportunistic en-
counters between participants of the experiment, be-

cause of the time between two scans, hardware limita-
tions, software parameters, and interference [13]. For
the same reasons, it is also possible that some contacts
appear shorter than they are. In addition, we do not
have access to the contact history of the external de-
vices and, as consequence, we miss some of the direct
contacts between them as well. We examine the impact
of this “sampling” effect in §6.

The Reality Mining data set includes records from
Bluetooth contacts and GSM base stations for a group
of cell-phones distributed to 100 MIT students during 9
months. We only show results from the Bluetooth data
set. We also made the same observations on the GSM
data set, as well as other publicly available data sets,
including traces from campus WLAN in Dartmouth [4]
and UCSD [11]. These results can be found in Ap-
pendix B.

5.2 Preliminary observations
Figure 7 shows the next time the device is in range of

another device (z-axis) as a function of time (x-axis), for
six representative participants (y-axis) chosen in three
data sets. Hence, the diagonal on this plot represents a
period of uninterrupted contact, while the steps corre-
spond to period with no contact at all.

Arrival Time

6(Infocom)

5(Infocom)

4(Reality Mining)

3(Reality Mining)

2(Hong Kong)

node 1(Hong Kong)

12am
12am

12am Departure Time

infty

12am

12am

12am

Figure 7: Time of the next contact with any
other device, as seen by six participants in Hong

Kong, Reality Mining, and Infocom05.

These results confirm that the data sets we have used
exhibit variable contact characteristics over time. The
nodes in Hong Kong and Reality Mining exhibit low
contact rate and they go through periods of complete
disconnection that might sometimes last during more
than one day (e.g. node 1). We also notice some periods
of high contact rate, where the node is always in reach
of one or several devices. These periods are usually
rare and short in Hong Kong and Reality Mining. In
contrast, nodes in Infocom05 are almost always in a
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Experimental data set Infocom05 Infocom06 Hong-Kong Reality Mining BT
Duration (days) 3 4 5 246

Granularity (seconds) 120 120 120 300
Number of experimental Devices 41 78 37 100

Number of internal Contacts 22,459 182,951 560 54,667
Rate of contact (only internal contacts) 1.10 1.70 8.6 ×10−3 15 ×10−3

Number of external Devices 223 4,649 831 N/A
Number of external Contacts 1,173 11,630 2,507 N/A

Rate of contact (incl. external contacts) 1.39 2.53 98 ×10−3 N/A

Table 1: Characteristics of the four experimental data sets

high contact period, except at night.

 1e-04

 0.001

 0.01

 0.1

 1

12h3h1hour10min2min1min

C
C

D
F

Contact duration

Reality Mining
Hong Kong
Infocom05
Infocom06

Figure 8: Distribution of contact duration

Figure 8 plots distributions of contact duration for
the four data sets. This figure shows that contact dura-
tion vary a lot in all traces (from a couple of minutes up
to several hours). Above 75% of contacts (143,502 con-
tacts) in Infocom06 are only one slot long (i.e. 2 min-
utes). This can be partly explained by the sampling
effect mentioned in §5.1. However we still find around
0.4% (765 contacts) that are longer than one hour. This
has two important consequences: First, a path compu-
tation technique representing each contact as an inter-
val of time, rather than a collection of discrete instan-
taneous contacts, should scale more easily. Second, it is
an issue whether the contacts that are short are actu-
ally useful to carry data. Removing those short contacts
may actually impact the diameter of the network. We
discuss these points further in §6.2.

5.3 Properties of Delay-optimal Paths
Following the methodology described earlier, we com-

pute the sequence of optimal paths found between any
source and destination in the network, varying the max-
imum number of hops in a path between 1 and 4, and
infinity. Figure 9 shows, for a given source-destination
pair in Hong Kong, the delivery function when paths

with different number of hops (i.e. intermediate relays)
are used.

Arrival Time

inf 

4 

3 

hops = 2 

single hop

12am12am12am12am12am12am Departure Time

inf

12am

12am

12am

12am

12am

12am

Figure 9: Example of a delivery function, for
a given source-destination pair during Hong-

Kong, for paths with various number of hops.

In the example shown here, there is no path from the
source to the destination when using paths with less
than 3 hops. When 4 hops can be used, the number of
optimal paths increases to 5. We see on this figure that
there is no optimal path with more than 4 hops, as the
delivery function is identical when the maximum hop is
set to four or infinity. Similar results were obtained for
all traces, they can be found in Appendix B.

5.3.1 Distribution of delay

From the sequence of delay-optimal paths we deduce
the delay obtained by the optimal path at all time. We
combine all the observations of a trace uniformly among
all sources, destinations, and for every starting time (in
seconds). We present this aggregated sample of obser-
vations via its empirical CDF in Figure 10, where the
maximum hop-number varies between 1, 4 or 6, and in-
finity. Note that the value of the CDF for a given time
t is equal to the probability to successfully find a path
within time t, when sources, destinations and message
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Figure 10: CDF function for the optimal transmission delay, observed for all source-destination pairs.

generation time are chosen at random. The case where
no path exists is accounted for in the distribution by
an infinite value. We have decided to present the dis-
tribution on a [2 minutes,1week] time period, as paths
with larger delay are not likely to be of any use. We
computed the value of the diameter at confidence level
99% and indicated them under each figure.

We notice first, that for all time-scale and all data
sets, the difference of the CDF between 4 to 6 hops
and unlimited hops is very small (as predicted by the
value of the diameter). Apparently, the results we have
obtained analytically for a simple family of temporal
networks hold for a more general family of networks.

Second, we do observe some difference across data
sets. The Infocom05 data set is by far the best con-
nected: a direct contact to the destination may be found
within 1 day with probability 65%, whereas this is the
case in less than 3% for both other data sets. In ad-
dition, the relative improvement introduced by using
paths with several hops is not the same depending on
the time-scale and the data sets. This improvement
seems almost negligible in Hong-Kong for small timescales
(less than an hour), whereas in Infocom05 this is where
it is the largest. For large timescales (more than 6
hours), we have the exact opposite. We conjecture that
it is related to the contact rate, or contact intensity,
between the participating nodes (high in conference, as
may be seen in Table 1, low in other data sets) and ex-
plore this further in §6.1. Note that we have observed
variation inside the same data set as well, for instance
when studying the CDF of the minimum delay during
day time only (see [12]). The result confirms the cor-
relation between multi-hop delay improvement at small
time-scale and high contact rate.

These results validate the small value of the diameter,
as predicted by our model, for all the environments we
have studied. We have identified trends in the impact of
the contact rate that we wish now to verify empirically.

5.3.2 Distribution of delays during day-time

Most devices having no contact at night (or being
always in contact with a single device), we plot in Fig-
ure 11 the delay distribution of the optimal path, as it
is seen during day time only (i.e. from 08:00 to 20:00
every day), in Infocom05. Note that we look at the
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Figure 11: CDF of the optimal delay distribu-
tion during day time for Infocom05

delay of the optimal path, even if this path arrives af-
ter 20:00 to avoid the border effect created by a finite
range. The proportion of delays under 12 hours does
not change (50% with single hop, about 70% when sev-
eral hops are used), but the delays that are seen in the
range [2mn; 12h] are generally shorter. When paths
with up to 4 hops are used, almost 30% of the devices
can communicate in less than 10 minutes, and 50% (in-
stead of 28%) in less than an hour. The improvement
for 4-hops paths below 1 hour is now 2 to 4 times higher
than the number of direct contacts.

Since the contact rate of a node is typically higher
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during daytime, these results confirm the correlation
between multi-hop delay improvement and high contact
rate.

6. MOBILITY CHARACTERISTICS AND
NETWORK DIAMETER

The previous section assumes that all the contacts
found in a trace can be used to exchange information
between two nodes. In practice, some contacts may
not be available for forwarding, because of a collision
or if these contacts are too short. In this section we
apply a “contact removal” technique to a mobility trace:
Each contact is either kept or removed according to
a given rule fixed in advance. In a second step the
diameter and the delay for this network are measured,
using the same methodology as before. One could also
add or move contacts in a trace, but we choose here not
to do that because it seems harder to interpret results
where some contacts are created artificially. We present
in this section only results based on the second day of
Infocom06 to start from a data set with a large number
of contacts.

6.1 Contact rate
We vary the rate of contacts in a network by removing

each contact independently with the same fixed prob-
ability p. Figure 12 plots the empirical CDF of the
minimal delay, or delay obtained with optimal paths,
for Infocom06, before and after probabilistic contact re-
moval with p = 0.9 and p = 0.99. We have performed 5
independent experiences and we show the average value
of the CDF.

As expected, removing contacts deteriorates the de-
lay performance, especially for small time-scale. The
probability to reach a destination within 10 minutes
drops from 35% to 0.2% when 99% of the contacts are
removed, while the probability of success within in 6
hours decreases from 90% to 15%. On the other hand
random contact removal does not seem to impact the
diameter of the network, which remains under 5 hops.
Moreover, as contacts are removed the improvement in-
troduced by using several intermediate hops becomes
less important at small time-scale, and remains impor-
tant at large time-scale. This confirms the intuition
that improvement at small time scales is related to high
contact rate values (as seen in §5.3.1).

6.2 Contact duration
We now remove each contact if it lasts less than t sec-

onds, where t is a fixed threshold. Figure 13 presents
the empirical CDF of the minimal delay after we re-
move contacts that last less than 2, 10 and 30 minutes
(respectively 75%, 92% and 99% of contacts removed).
Contacts that are less than 2 minutes are those with a
device seen during a single scan. When these contacts

are removed, the success probability is divided by two
at any time scale, but all the results we have obtained
remain.

Interestingly the diameter changes when we only keep
contacts that last more than 10 minutes. First note
that the probability to find a path with delay less than
10 minutes remains above 5%, while it was 2% when we
had removed 90% of contacts randomly. In other words,
keeping only the longest contacts maintain more avail-
able paths within a small delay. However this comes at
the cost of an increased diameter.

One explanation for this phenomenon is that contacts
are with different types: long contacts with less mobile
nodes, or familiar people, and short contact where peo-
ple are met that are belonging to any other part of the
group. This result suggests that opportunistic schemes
have to take advantage of short contacts (less than 10
minutes), not only because there are many, but also
because those may help to keep the diameter small.

As a summary, Figure 14 plots the diameter (with
confidence level 99%) for each delay separately. As sug-
gested before by a comparison between data sets, we
observe that the diameter decreases with delay for high
contact rate. In contrast, the diameter increases with
delay when the contact rate is low. In between, we find
an intermediate regime where the diameter might be
larger for a narrow range of time. We conjecture this is
because the network remains connected but lacks short-
cuts between far-away nodes.

7. CONCLUSION
This work establishes the existence of the so-called

“small-world” phenomenon in opportunistic mobile net-
works. In particular, we have shown both analytically
and empirically that the network diameter, that we de-
fine as a general bound on the number of hops needed
to successfully transmit a message under constrained
delay, is generally small compared to the number of
devices in the network. From a theoretical perspective,
we have proved that the diameter grows slowly with the
network size in a simple random case. We have also ana-
lyzed multiple human contact traces and observed that
the network diameter generally varies between 3 and
6 hops, for networks containing from 40 up to a hun-
dred of nodes. This result holds for sparse and dense
networks, and the diameter varies only a little when
contacts are removed.

This result has important impacts on how to design
forwarding algorithms in opportunistic networks. In
particular, it indicates that messages can be discarded
after a few number of hops without occurring more than
a marginal performance cost.

We now describe some important future extensions
for this work. First, note that Corollary 1 proves that
the expected number of paths becomes large under super-
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Figure 12: Empirical CDF of minimum delay when contacts are removed randomly (Infocom06)
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Figure 13: Empirical CDF of minimum delay when short contacts are removed (Infocom06)
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Figure 14: Diameter as a function of delay

critical condition, but it does not prove that a path
exist almost surely. Proving this last result is more dif-
ficult, and beyond the scope of this paper as the classi-
cal concentration method known as “second moment”
(e.g. p.54 in [6]) does not apply. Second, this paper
proves that short paths generally exist between any two
nodes, but it does not indicate whether these paths can
be found efficiently by a distributed algorithm using
local information in the nodes. This topic has been ad-
dressed on static graphs with a more complex model [9],
but the extension of these results to temporal networks
remains an open problem. Third, we wish to study the
impact of the heterogeneity of contact rates among the
nodes.
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APPENDIX

A. ANALYSIS OF RANDOM TEMPORAL
NETWORKS

A.1 Proof of Lemma 1
We prove the results first in the short-contact case

and with the discrete time model. Extensions are shown
later to other setting (continuous time, long contact).

A.1.1 Success probability for a given path

We wish to characterize the number of paths that can
be drawn between u and v using exactly k hops, and at
most t time slots:

u = u0 ;
t1 u1 ;

t2 . . . ;
tk−1 uk−1 ;

tk uk = v .

Let us fix in advance u = (u1, . . . , uk−1) a sequence
of intermediate relays

Proposition 2. Assuming a discrete time model and
short contact, a path following the sequence u can be
constructed over time ]0; t] with a probability.

P

[

Bin

(

t,
λ

N − 1

)

≥ k

]

.

Proof. Let N u a process of time instants defined as
follows.

T1 = inf
{

t > 0
∣

∣

∣
N (u0,u1)(t) = 1

}

,

T2 = inf
{

t > T1

∣

∣

∣
N (u1,u2)(t) = 1

}

,

· · · · · ·
Tk = inf

{

t > Tk−1

∣

∣

∣
N (uk−1,uk)(t) = 1

}

,

Tm = inf
{

t > Tm−1

∣

∣

∣
N (uk−1,uk)(t) = 1

}

,

Since all processes N (u,v) are independent and each
constitutes a Bernoulli process, the process N u is a
Bernoulli process as well. As we have ξuN (t) = 1 if and
only if N u(]0; t]) ≥ k, we have:

P [ξuN (t) ] = P

[

Bin

(

t,
λ

N − 1

)

≥ k

]

.

which proves the proposition.

A.1.2 Preliminary results

Proposition 3. If tnpn/kn → 0 (resp. λn/kn → 0)
as n → ∞, then we have as n grows large,

P [Bin (tn, pn) ≥ kn ] ∼ P [Bin (tn, pn) = kn ] and

P [Poisson (λn) ≥ kn ] ∼ P [Poisson (λn) = kn ] .

Proof. If we denote for simplicity the LHS above by

Sn and the RHS by Tn, we have for the binomial case

Sn − Tn =
∑

l≥kn+1

(

tn
l

)

(pn)
l
(1 − pn)

tn−l

=
pn

1 − pn

∑

l≥kn

(

tn
l + 1

)

(pn)
l
(1 − pn)

tn−l

≤ pn

1 − pn

tn
kn

∑

l≥kn

(

tn
l

)

(pn)l (1 − pn)tn−l .

This proves Sn − Tn ≤ cnSn, with cn = pn

1−pn

tn

kn
→ 0 as

n grows large.
For the Poisson case, the method is similar, we have:

Sn − Tn =
∑

l≥kn+1

e−λn
(λn)l

l!

≤ λn

kn + 1

∑

l≥kn

e−λn
(λn)

l

l!
.

Again we have Sn − Tn ≤ cnSn, with cn = λn

kn+1 → 0
as n grows large.

In other words, whenever the average number of suc-
cesses pntn (or the intensity of the Poisson process) de-
creases to zero faster than kn increases to ∞, the chance
to succeed kn or more times is the same than to succeed
exactly kn times.

We also use the following elementary fact

an =n→∞ O(ln(n)) =⇒
(

1 +
an

N

)an

∼n→∞ 1 (5)

It may be deduced from

an ln
(

1 +
an

N

)

∼ (an)
2

N
∼ 0 .

A.1.3 Expected number of paths

We recall that we denote by ΠN the number of paths
from u to v verifying the following constraints:

{

tN ≤ τ · ln(N) ,
kN = ⌊γ · tN⌋ = ⌊γ · τ · ln(N)⌋ ,

As there exist exactly
∏k

i=2(N − i) sequences u of pos-
sible intermediate relays, the expected value of ΠN is
given by

(

k
∏

i=2

(N − i)

)

P

[

Bin

(

tN ,
λ

N − 1

)

≥ kN

]

(6)

From Proposition 3 and Eq.(5) we deduce

E [ΠN ] ∼ NkN−1

(

tN
kN

)(

λ

N

)kN

∼
(

tN
kN

)

λkN

N
(7)

Note that

(

tN
kN

)

= tN !
kN !(tN−kN )! such that we can ap-

ply Stirling formula three times to obtain:
(

tN
kN

)

∼ 1√
2π

(tN )tN +1/2

(kN )kN +1/2(tN − kN )tN−kN+1/2
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(

tN
kN

)

∼ 1√
2π

(τ ln(N))−1/2

(γ)kN +1/2(1 − γ)tN−kN+1/2

(

tN
kN

)

∼ 1
√

2πτγ(1 − γ)

(ln(N))−1/2

(γ)kN (1 − γ)tN−kN

Note that we have:

−(kN ) ln(γ) − (tN − kN ) ln(1 − γ) = τ ln(N)h(γ) ,

where we recall that h : x 7→ −x ln(x)−(1−x) ln(1−x).

This implies

(

tN
kN

)

∼ (ln(N))−1/2N τh(γ)

√

2πτγ(1 − γ)
such that

E [ΠN ] ∼ (ln(N))−1/2

√

2πτγ(1 − γ)
N−1+τγ ln(λ)+τh(γ) . (8)

A.1.4 long contact case

For the long-contact case, if one chooses a sequence
of k intermediate relays the probability to succeed to
construct a path over this sequences in time ]0; t] is
given by

P

[

Bin

(

t + k − 1,
λ

N − 1

)

≥ k

]

. (9)

It comes from the following observation: Let us first
consider the sequences of times:

T1 = inf
{

t > 0
∣

∣

∣
N (u0,u1)(t) = 1

}

,

T2 = inf
{

t ≥ 0
∣

∣

∣
N (u1,u2)(t) = 1

}

,

· · · · · ·
Tk = inf

{

t ≥ Tk−1

∣

∣

∣
N (uk−1,uk)(t) = 1

}

,

and for m > k,

Tm = inf
{

t > Tm−1

∣

∣

∣
N (uk−1,uk)(t) = 1

}

,

Note the following difference with the times introduced
when studying the short contact case: two or more suc-
cessive times Ti might be equal. One now considers the
times { T ′

i | i ≥ 1 } as given by

T ′
1 = T1; T ′

2 = 1 + T1; . . . ; T ′
k = (k − 1) + Tk .

These times constitute a Bernoulli process. A path may
be found for the sequence u in ]0; t] if and only if this
process contains more than k points in ]0; t + k − 1]. It
happens with probability Eq.(9).

Based on Proposition 3 and Eq.(5), we have:

E [ΠN ] ∼ NkN−1

(

tN + kN − 1
kN

)(

λ

N

)kN

. (10)

(

tN + kN − 1
kN

)

= tN−1
tN+kN

(

tN + kN

kN

)

∼ 1
γ+1

(

tN + kN

kN

)

We have
(

tN + kN − 1
kN

)

∼ 1

(1 + γ)
√

2π

(tN + kN )tN+kN +1/2

(kN )kN +1/2(tN )tN +1/2

(

tN + kN − 1
kN

)

∼ (τ ln(N))−1/2

(1 + γ)
√

2π

(γ + 1)tN+kN+1/2

(γ)kN +1/2

Note that we have:

(kN + tN ) ln(γ + 1) − (kN ) ln(γ) = τ ln(N)g(γ) ,

where we recall that g : x 7→ (1 + x) ln(1 + x) − x ln(x).

We deduce

(

tN + kN − 1
kN

)

∼ (ln N)−1/2N τg(γ)

√

2πτγ(1 + γ)
,

and E [ΠN ] ∼ (ln(N))−1/2

√

2πτγ(γ + 1)
N−1+τγ ln(λ)+τg(γ) .

(11)

A.2 Continuous Time Model
A variant of the model we have analyzed using dis-

crete time slots is to assume Poisson point processes
for the contacts between pairs of nodes, as defined in
§3.1.2. This allows to see the impact of the granularity
at which paths may be constructed using contacts. The
qualitative properties remain roughly the same, with a
few differences, that we now describe in more details.

A.2.1 Expected number of paths

Lemma 2. In the model with continuous time, let us
denote by ΠN the number of paths from u to v that uses
kN hops and arrives before time tN . If we assume

{

tN = τ · ln(N) ,
kN = γ · tN = γ · τ · ln(N) ,

where τ and γ are two positive constants.
Then, as N grows large

- for short contacts, E [ΠN ] = Θ̃
(

N−1+τ(γ ln(λ)+h′(γ))
)

where h′ : x ∈ [0; 1] 7→ x − x ln(x) + x ln(1 − x).

- for long contacts, E [ΠN ] = Θ̃
(

N−1+τ(γ ln(λ)+g′(γ))
)

where g′ : x ∈ [0; 1] 7→ x − x ln(x) .

Proof. This follows the same argument as in the
proof shown in §A.1. The main difference is that the
long contact case is simpler. We start by this case.

For each sequence u of k intermediate relays, the
probability to have a path following this sequence in
the long contact case and for continuous time is:

P

[

Poisson

(

tλ

N − 1

)

≥ k

]

.

This comes from the same observation, one construct a
Poisson process associated with that sequence, using all
the processes associated with all pairs of nodes used in
the paths. Once this process is made, a path succeeds
following this line if and only if the process for this
sequence includes at most k points in the interval ]0; t].
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As a consequence, we have following the same argu-
ment as before

E [ΠN ] ∼ NkN−1e
λtN
N−1

1

kN !

(

λtN
N − 1

)kN

∼ 1

N

(λtN )
kN

kN !
.

Note that

(tN )kN

kN !
∼ 1√

2πkN

(

e · tN
kN

)kN

∼ (ln N)−1/2

√
2πτγ

(

e

γ

)kN

.

We deduce the following asymptotic approximation.

E [ΠN ] ∼ (ln N)−1/2

√
2πτγ

N−1+τγ(ln(λ)+1−ln(γ)) .

In the short contact case, since we assume that a
period of unit time needs to be elapsed between two
successive contacts used by a path, the probability to
successfully construct a path for a given sequence of k
nodes is given by:

P

[

Poisson

(

(t − k + 1)λ

N − 1

)

≥ k

]

Following the same analysis we find

(tN − kN + 1)kN

kN !
∼ ey/(1−γ)(ln N)−1/2

√
2πτγ

(

e
1 − γ

γ

)kN

.

and hence

E [ΠN ] ∼ ey/(1−γ)(ln N)−1/2

√
2πτγ

N−1+τγ(ln(λ)+1+ln( 1−γ
γ

)) .

A.2.2 Phase transition in short-contact case

The phase transition in the short contact case is very
similar to the one we have obtained when we model the
network using a discrete time. We plot the function
of γ associated with this phase transition in Figure 15.
For any λ, the function is concave, with a unique max-
imum. However, the exact value of the maximum M ,
and the associated value of γ where it is attained, are
only known implicitly.

M = ν and γ̃ =
ν

ν + 1
, (12)

where ν is the unique solution of νeν = λ .

Since there is a unique maximum, we observe the
same dichotomy than in the discrete time model de-
pending on whether τ < 1/M or τ ≥ 1/M . The delay
optimal path then has a delay tN ≈ 1/ν ln(N) and a
number of hops equal to kN ≈ 1/(ν + 1) ln(N).

Note also that when λ becomes close to 0, ν ∼ λ, so
that kN ∼ ln(N), which is in agreement with the result
obtained with a discrete time model.

A.2.3 Phase transition in long-contact case

When contacts are long, for any value of λ, the func-
tion of γ associated with the phase transition admits
a maximum M = λ attained when γ = λ. This is

λ = 0.5
λ = 1.0
λ = 1.5

M

γ

γ

γ
(l

n
(λ

)
+

1
+

ln
(1

−
γ

)
−

ln
(γ

))

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 15: Phase transition (continuous time,
short contact case)

in contrast with the discrete time model, since no spe-
cial regime is found when λ > 1. We represented this
function in Figure 16. For any value of λ, the path

λ = 0.5
λ = 1.0
λ = 1.5

M = λ

γ = λ

γ

γ
ln

(λ
)

+
γ
−

γ
ln

(γ
)

43.532.521.510.50

2

1.5

1

0.5

0

Figure 16: Phase transition (continuous time,
long contact case)

with an optimal delay occurs when tN ≈ ln N
λ and uses

kN ≈ ln(N) number of hops. Note that for this model,
the number of hops in the optimal path does not depend
on λ.

To summarize our results in the continuous case, we
plot the number of hops in the optimal paths, normal-
ized by ln(N), as a function of the contact rate λ. In the
long contact case, the number of hops does not depend
on λ. The short contact case behaves in a very similar
was as the discrete time model. As expected, when the

18



contact rate is low, both models are in good agreement.

short-contact
long-contact

λ

k
ln(N)

1010.10.010.001

2

1.5

1

0.5

0

Figure 17: Hop-number of the delay-optimal
path seen as a function of the contact rate (con-
tinuous time)

B. RESULTS FROM OTHER TRACES
The results we establish have been validated on some

other data sets (Reality Mining using GSM, and UCSD).
Since they are very similar, we have decided not to in-
clude them in the main text. We now detail the results
we obtained for all the traces.

B.1 Comparison between data sets
Information about the two other data sets we have

used may be found in Table 2. These two data sets do
not collect direct contact between mobile devices but
they record the association (GSM cell tower, WiFi ac-
cess points) at all times. As in [1], we have assumed
that two devices connected simultaneously to the same
AP or the same GSM tower are in contact.

Note that UCSD contain more than 250 experimen-
tal devices in total, it is the largest network we have
studied so far. Since the Reality Mining traces with
GSM association is very long we have extracted a week
of the data sets to complete the computation quickly.
To illustrate each data set, we present several examples
of a delivery function in Figure 18-24. This provides
examples of networks both with high and low contact
rate. Period with very small delays becomes larger as
we allow a few number of hops.

B.2 Delay distribution and diameter
In the following we present for each trace (1) an ex-

ample of a delivery function for one source destination
pair, (2) the empirical delay distribution observed over
the whole trace, and (3) the diameter computed using
confidence level 99%, seen at all different timescales.
We show these results for the following data sets: Info-
com05, Infocom06, Hong Kong, Reality Mining GSM,
UCSD, Dartmouth (see Table 2).

Summary of the main results: Both Reality Min-
ing GSM and UCSD follow the same behavior than Re-
ality Mining BT, and they confirm the results we have
already presented. We observe that the diameter varies
very little with the time-scales in both cases (it remains
equal to 3 for Reality Mining GSM and stays between
4 and 3 for UCSD, 2 and 5 for Darmouth).

We see important differences in the profile of con-
nectivity that is shown on a source destination pairs.
Nevertheless, the same properties are found with re-
gards to contact rate: traces with a high contact rate
exhibit diameter that are decreasing with the timescale,
traces with a low contact traces exhibit diameter that
are increasing with the time scale.
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Experimental data set Reality Mining GSM UCSD Dartmouth
Network type GSM (Cell phone) WiFi (PDA) WiFi (Laptop/PDA)

Duration (days) 7 77 7
Granularity (seconds) 10 120 300

Number of experimental Devices 95 273 202
Number of internal Contacts 6,650 172,034 6,235

Rate of contact (only internal contacts) 2.45 ×10−2 5.23 ×10−2 3.52 ×10−2

Table 2: Characteristics of other data sets
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Figure 18: Delay & Diameter (Infocom05)
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Figure 19: Delay & Diameter (Infocom06)
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Figure 20: Delay & Diameter (Reality Mining

BT)
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Figure 21: Delay & Diameter (Reality Mining

GSM )
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Figure 22: Delay & Diameter (Hong Kong)
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Figure 23: Delay and Diameter (UCSD)
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Figure 24: Delay & Diameter (Dartmouth)
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