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Abstract—The fundamental challenge in opportunistic net-
working, regardless of the application, is enabling node coopera-
tion to forward a message. While node cooperation is considered
as a fundamental property in such networks, ensuring such a
property between two devices in mobile opportunistic networks
remains largely unexplored. In this paper, we investigate the
potential impact of the lack of trust on node cooperation. We
adopt a real-trace driven approach to study and analyze the
trade-off between trust and success delivery rates in opportunistic
networks. We explore leveraging social information to establish
trustworthy communication for mobile opportunistic networks.
We propose six trust based filters that use three social-based
estimators of trust including common interests, common friends,
and the distance in the social graph, coupled with two major
techniques of trust establishment including Relay-to-Relay, and
Source-to-Relay. We show that our trust filters achieve a good
trade-off between trust and success rate by achieving more than
35% success rate compared to an un-trusted environment where
10% of the nodes refuse to cooperate in the absence of trust.

I. INTRODUCTION

The proliferation of mobile devices such as netbooks, smart
phones, laptops, sensors, wireless headsets, etc. makes op-
portunistically connecting theses devices a challenging area
of research for a large spectrum of applications. The most
challenging problem in such heterogeneous and opportunistic
networks remains the multi-hop data transfer decision-making
between devices since they are often disconnected from each
other. Typically, data is stored, carried, and forwarded over
time in an opportunistic hop-by-hop manner [3], [10]. In all
these scenarios, devices must cooperate in order to make end-
to-end message delivery possible and efficient.

In mobile opportunistic networks, nodes’ cooperation is
fundamental for the message delivery process. Therefore, the
lack of nodes’ cooperation (e.g., a node may refuse to act
as a relay and settle for sending and receiving its own data)
causes considerable delay degradation in the network. As we
demonstrate in this paper, there is a large potential impact
of excluding a few nodes (e.g., they do not cooperate in the
message delivery process) on the overall performance of the
network. To deal with this issue, opportunistic networks ought
to ensure node cooperation relying on two major strategies: (i)
enable trust across communicating entities, and (ii) integrate
incentives into the operation of opportunistic networks.
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Fig. 1: Trust establishment in opportunistic communication

In this paper, we focus on trust establishment in opportunis-
tic communication. The establishment of trust is more chal-
lenging in infrastructure-less networks such as opportunistic
networks where no centralized mechanisms can be easily de-
ployed. Fig. 1 shows an opportunistic communication scenario
between Alice and Bob. In the absence of trust, Alice will
try to maximize the probability of reaching Bob by sending
her message m to all other relay nodes Ri in the network.
To avoid unwanted communication and establish a trusted
environment that increases nodes’ cooperation, Alice will only
forward her message m to relay nodes that she can trust
(trusted relay TRi). However, this trust-based communication
environment may introduce additional delay by filtering out
unwanted communication opportunities (e.g., Bob could be
reached at time t1 � t through R2, but since Alice did not
trust R2, she will miss an opportunity to reach bob with shorter
delay).

We leverage social relationships between users to facilitate
and enable trustful communication between users. We propose
and study a set of social trust filters to identify the subset of
contacts between nodes that are allowed in the forwarding
path as shown in Fig. 1. We utilize explicit social infor-
mation coupled with real human mobility trace to establish
trustworthy communication between a particular node and:
(i) a relay (Relay-to-Relay based trust), or (ii) the source
node (Source-to-Relay based trust). Relay-to-Relay based trust
uses a transitive trust approach to establish a trusted path
between a source node S and a destination node D relying
on trusted communication between every two successive relay



nodes on this path. Source-to-Relay based trust requires a
pre-establishment of trust between the source node and all
relay nodes used in the forwarding path. We couple these
two approaches with three social-based trust filters (common
friends, common interests, the distance in the social graph) to
introduce and study six forwarding trustworthy techniques to
enable trustworthy communication.

We evaluate these six filters over real mobility datasets
coupled with social information [12], [4]. Our results depict
that simple social relationships between users can be utilized
to ensure trust in opportunistic networks. While these results
show a cost incurred for this trust manifested in additional
end-to-end delays, this cost is justified by the fact that in the
absence of trust, users may not cooperate and the performance
then drops significantly. Our trust filters, therefore, yield a fair
trade-off between trust and success rate by achieving more
than 35% success rate compared to an untrusted environment
where only 10% of the nodes refuse to cooperate in absence
of trust.

II. RELATED WORK

Trust establishment in communication has been a very
challenging problem especially with the proliferation of com-
munication devices. This problem is further exacerbated with
online applications such as email, VoIP, P2P sharing systems,
and online social networks. Different approaches were recently
proposed to address this problem.

Content-based filtering is the most popular approach utilized
to especially combat email spam [11], [8]. Moreover, many
online content sharing systems such as YouTube and Flicker
use content filtering based on users’ rates; users rate the
content item they have viewed to other users to identify
relevant content and avoid unwanted content. Content filtering
approach, however, suffer from false positives and false nega-
tives concerns and relies on centralized servers which make it
difficult to adopt in fully distributed systems such as mobile
opportunistic networks. Another approach, which can be easily
deployed in a distributed manner, is simply charging the sender
of a message; we impose a cost on the sender. This approach
attempts to copy the postal service model and later on SMS.
They are based on the assumption that the cost will discourage
people from widely distributing content. [1], [14] claim that
it is surrealistic to adopt a decentralized payment system that
charges the sender per message sent.

Most relevant to online social networks, there is the White-
listing approach. This approach is mostly adopted in VoIP
systems, P2P content sharing systems, and online Social
networks. End-users must exchange a request invitation; if the
invitation is accepted the user is added to a white-list and
will be able to send messages. Hence, no communication is
allowed if one party declines the request invitation and the
user is blocked by adding him to a blacklist.

In the context of mobile Ad-Hoc networks and DTNs,
researchers have proposed many approaches for trust estab-
lishment based on mobility and contact characteristics [9],
or content-based reputation techniques [2], [15], [5]. In [5],

CoNext07 CoNext08 Infocom06
duration 3 days 3 days 3 days
mobility patterns Bluetooth

contacts
Bluetooth contacts Bluetooth

contacts
social patterns MobiClique

app. [12]
Facebook + Mobi-
Clique app. [12]

Facebook

# connected nodes 27 19 47
# edges 115 102 219
average degree 9.5 9.2 9.3
social diameter 4 4 4
median inter-contact 10 min 10 min 15 min
median contact time 240s 180s 150s

TABLE I: Characteristics of our experimental data sets

authors have considered how incentives can be integrated into
the operation of a mobile ad hoc network, using link and
node characteristics such as bandwidth and power usage to
determine prices in a distributed fashion. In DTNs, [15] shows
that by considering strategies that take into consideration the
nodes’ cooperation, one can aid the effects of non-cooperative
behavior in DTNs. Although these approaches uses contact
properties and the number of messages transferred to de-
termine cooperation metrics, we believe that explicit social
information could be considered as a better estimation for
trustful communication in mobile opportunistic networks.

III. DATA SETS & METHODOLOGY

We are interested in delivering data among a set of N
mobile wireless nodes. Communication between two nodes is
established when they are within radio range of each other.
Data is forwarded from source to destination using these
opportunistic contacts. We model the evolution of contacts
in the network by a time varying graph G(t) = (V,E(t))
with N = |V |. We assume that the network starts at time t0
and ends at time T (T can be infinite). We call this temporal
network [7] the contact graph. Paths in such temporal network
are constructed as a concatenation of contacts following a
chronological property. Among these paths, a path from s ∈ V
to d ∈ V starting at time t0 is delay-optimal if it reaches
the destination d in the earliest possible time. All the path
construction rules we consider fits in the following general
model: depending on the source s and the destination d, a rule
defines a subset of contacts between pairs of nodes (u → v)
which are allowed in forwarding path.

Our analysis relies on three datasets collected in conference
environments [12], [4]. In addition to human mobility infor-
mation, these datasets contain social relationships between the
experimentalists. A summary of the corresponding parameters
is given in Table I.

CoNext07 dataset [12] contains mobility information and
information about the social relation between the participants
during ACM CoNext 2007 conference. During the experiment,
the social networking application indicated when a contact, or
a contact of a contact, was in Bluetooth range/neighborhood.
This connection neighborhood was then displayed on the
user’s device which in turn could add new connections or
delete existing connections based on the physical interaction
consequent to the application notification.



CoNext08 dataset [16] was performed at ACM CoNext
2008 conference using 22 smartphones. Social profiles were
initialized based on the user’s Facebook profile. The social
network, then, evolved throughout the experiment as users
could make new friends and discover (and create) new groups
(i.e., interest topics) and leave others. For the analysis we
consider the collected contact trace and the final social graph
of 19 devices (the rest of devices were not collecting data on
each day of the experiment).

Infocom06 dataset [4] was collected with 78 participants
during the IEEE Infocom 2006 conference. People were asked
to carry an experimental device (called iMote) with them at
all time. These devices were logging all contacts between
participating devices. Questionnaires were given to partici-
pants to fill theirs nationalities, languages, countries, cities,
academic affiliations and topic of interests. In this paper, we
consider a social graph based on users Facebook friendship
graph (obtained offline).

IV. TRUST VS. EFFICIENCY IN OPPORTUNISTIC
NETWORKS

In this section, we investigate the trade-off between trust and
efficiency in opportunistic networks. We propose and study
a set of social trust filters. These filters use explicit social
relationships between nodes to ensure a trust communication
in mobile opportunistic networks. We, first, motivate the use
of trust filters in opportunistic networks. We next evaluate,
based on real mobility traces, the performance of a trustful
communication in opportunistic networks (using different sets
of social trust filters).

A. Node Cooperation in Opportunistic Networks

The lack of trust between nodes may lead to potential
dissatisfaction amongst them. This may cause a decrease of
nodes’ cooperation in the forwarding process leading to con-
siderable delay degradation in the network. On the other hand,
a pre-established trust environment may encourage nodes to
cooperate, contribute to the forwarding process, and participate
longer in the system.

We now demonstrate that excluding a small set of popular1

nodes impact the overall message delivery performance in
the network. These nodes, while popular, are more exposed
than other to unwanted communication. They require (more
so than other nodes) an establishment of a secure and trusted
environment for opportunistic communication.

Fig. 2 shows the impact of the lack of cooperation of a
small set of popular nodes on the overall performance in
opportunistic networks. It plots the distribution of the success
delivery rate with and without these popular nodes. We observe
that the probability to reach a destination within 10 minutes
drops from 96% to 83% when 5% of the popular nodes are
excluded. Moreover, you may notice that the success rate
regress is more significant when we remove the most popular
nodes; while we show a 13% regress (from 96% to 83% within

1Nodes’ popularity computed based on the PeopleRank algorithm [13] that
measures the relative importance of a node in a mobile opportunistic network.
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Fig. 2: Impact of excluding nodes on the overall performance

HH
HHH

HHH
Trusted
Entity

Social
Filters

d-Distance Common
Friends

Common
Interests

Relay-to-Relay R2R: d-distance R2R: CF R2R: CI
Source-to-Relay S2R: d-distance S2R: CF S2R: CI

TABLE II: Social-based trust filters in opportunistic networks

10 minutes timescale) when only 5% of the most popular
nodes are excluded, this regress is only by 3% when we
exclude 5% of the remaining 90% popular nodes (i.e., we
compare 10% and 15% removal nodes curves).

To summarize, we observe that excluding a small set of
popular nodes from the message delivery process leads to a
major regression in the overall performance. It is therefore
crucial to further satisfy these nodes by ensuring a trusted
communication environment. In the following, we study the
trade-off between trust and efficiency in mobile opportunistic
networks using real mobility traces. We introduce six trust
based filters, and compare the performance of the resulting
trusted environment to the Epidemic routing where all nodes
cooperate (i.e., optimal, and idealistic environment).

B. Social-Based Trust Filters

We present a set of trust filters that uses social relationships
between users to establish trustful communication between
these users. Two users may trust each other if they share i
common interests, have f common friends, are friends, or if
they are both friends of the message’s sender user, etc.

We introduce, in Table II, two major techniques for trust
establishment: (i) Relay-to-Relay based trust, and (ii) Source-
to-Relay based trust. Relay-to-Relay based trust uses a transi-
tive trust approach to establish a trusted path between a source
node S and a destination node D relying on trusted communi-
cation between every two successive relay nodes on this path.
Source-to-Relay based trust requires a pre-establishment of
trust communication between the source and all relay nodes
used in the path. We couple these two techniques with three
social estimators of trust based on the distance in the social
graph, common interests, and common friends.
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Fig. 3: Performance evaluation of R2R: d-distance

We utilize two main metrics to evaluate the proposed trust
filters: (i) the normalized success rate within time t: the proba-
bility of f to successfully deliver the message to its destination
within time t normalized by the same probability given by
epidemic forwarding algorithm [17] (idealistic scenario with
no trust: optimal success rate within the same time t), and
(ii) the normalized cost: the fraction of contacts (i.e., number
of replica copies) used by f normalized by the fraction of
contacts used by epidemic forwarding (the most expensive).

C. Relay-to-Relay based Trust

The basic filters to estimate trust communication between
two nodes i and j utilize simple social properties between
these two nodes i and j. Following, a set of social estimation
of trusted communication between these two nodes.

1) R2R: d-Distance: The distance in the social graph
between two nodes can be a good trust estimation metric.
The shorter the social distance they have from each others,
the more they trust each others; friends (dist = 1) trust
each others more than friends-of-friends (dist = 2). Where
dist(i, j) measures the shortest distance between two nodes
in a graph.

We introduce the d-distance trust filter ds such that only the
contacts < i, j > allowed in the forwarding process satisfies
d–distance(i, j) = dist(i, j) ≥ d, where d = 1..D is an
integer no greater than the diameter D of the social graph.

We plot in Fig. 3 the success delivery rate and the cost of ds
filter approach. Our results show that trusted communication
may not be efficient, and the more trust a node expects the
less success delivery rate it gets. For example, if we only
allow direct friends to be involved in the forwarding process
(i.e., d = 1), we reduce the cost to less than 40% compared
to flooding. However the success rate within a 10 minutes
timescale decreases to roughly 70%. Moreover, if we relax
such assumption and allow friends-of-friends to be involved
in the forwarding process we increase the success rate and
achieve more than 80% while using only 50% of the total
contacts used in Epidemic forwarding.
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Fig. 4: Performance evaluation of R2R: common interests

2) R2R: Common Interests: Common interests between
two nodes has been largely considered as a good approxi-
mation of social similarities [12], [6]. People sharing one or
many common interests tend to go to similar locations, events,
etc. Note that using common interests as an approximation of
social similarity between two users does not require an ex-
plicit confirmation from both users. We consider the common
interest based filter ci such that < i, j > contacts are allowed
in the forwarding process ⇐⇒ ci(i, j) =

∑
I

1i,j∈s(I) ≥ K,

where s(I) is the set of users that subscribe to the interest I .
Fig. 4 evaluates the common interest based filter perfor-

mance. All the data sets show similar results; the more
common interests the filter requires the worse the success
rates the system achieves; with roughly 50% cost (no less
than 3 common interests) the overall success rate is no more
than 80%. Moreover, if only users that share no less than
5 interests could participate, the performance drops to less
than 30%. Besides the fact that this filter is using implicit
social information where there is no explicit social connection
between the end users, this filter gives poor results compared
to the friendship filter (d− distance).

3) R2R: Common Friends: Friendship is usually con-
sidered as a good approximation of a strong social bond
between people. However, a typical friendship graph may
contain strong relationships such as family members or best
friends, and also “wayward” friends or family members that
someone may not communicate with at all. In social network
theory, social relationships are viewed in terms of nodes and
ties. Researchers differentiate then between weak and strong
ties in social networks. In this paper, we focus more on strong
social ties since people may not trust friends if they do not
communicate often. Common friends was largely used by
online social networks such as Facebook, LinkedIn, etc in their
content recommendation systems.

We introduce the common friends based filter which allows
only < i, j > contacts in the forwarding process ⇐⇒
cf(i, j) =

∑
n

1n∈F (i)∩F (j) ≥ K, where F (i) is the set of

node i’s friends.
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Fig. 5: Performance evaluation of R2R: common friends
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Fig. 6: Comparison of Relay-to-Relay based trust techniques

We show in Fig. 5 that by only allowing nodes that share no
less than 2 friends we reduce the cost by a factor of 3 and we
achieve roughly 80% of the optimal success rate. Moreover,
if k = 3, the normalized success rate is no less than 60%
with no more than 20% of the total number of contact used
in Epidemic forwarding.

4) R2R: Combination: Inspired by the previous results
that show that friendship based filters (i.e., the d-distance
or the common friends) give better cost/success rate perfor-
mance compared to implicit social based filters (i.e., common
interests), we propose a combination of the two previously
described friendship based filters. Note that < i, j > contacts
selected by the common friends filter implicitly verify the
following dist(i, j) ≤ 2. We propose a combination of 1-
distance and common friends based filters.

In order to compare the combination filter to all previous
approaches, we aggregate all results from all datasets in only
one plot (Fig. 6). The x-axis is the normalized cost and on
the y-axis we have the corresponding normalized success
rate. We observe that the closer the dots are to the top
left corner, the better the performance achieved; only a few
contacts were efficiently used to forward messages to all the
destinations. We show that the success rate of Relay-to-Relay
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Fig. 7: Comparison of Source-to-Relay based trust techniques

filters exponentially increase with the cost; a near optimal
performance is achieved within a cost of 70%. This implies
that this technique while filtering out many communication
opportunities is able to deliver a message with a near-optimal
success rate performance. We show also that the combination
filter outperforms all other filters proposed and achieves the
best cost success rate trade-off.

In the figure, we use “x% untrusted environment” to denote
the network configuration where x% of the most popular
nodes are dissatisfied and decide to not participate in the
forwarding process in an epidemic setting. We compare the
performance of our filters to the performance of 5% and
10% untrusted environment. We observe that it is possible
to ensure trust with almost an optimal success delivery rate
within a 10 minutes timescale, and outperform the 10%
untrusted environment by roughly 35% (with the same cost).
Moreover, our filters achieve the same success rate given by
10% untrusted environment with 50% less contacts.

D. Source-to-Relay Based Trust

The Relay-to-Relay based trust technique implicitly as-
sumes that contacts are independent from each others, and a
node j should only trust the node i from which it will receive
the message. Opposed to Relay-to-Relay based trust which
uses hop-by-hop trust establishment, source based filters use
an “end-to-end” trust approach. It estimates trust between the
actual node and the source S. We compare again the three
trust filters; distance in the social graph, common friends and
common interests as shown in Table. II. While receiving a
message, a relay node filters out all messages generated by an
untrusted source node S (filtering untrusted contacts between
the source and the relay node Ri that receives the message).

We compare in Fig. 7 the distribution of both cost and
success rate of the Source-to-Relay filters. Overall, we observe
that Source-to-Relay filters yield a poor performance; as
opposed to Relay-to-Relay technique Source-to-Relay success
rate increase linearly with the cost. The distance filter achieve
no more than 42% success rate when d=1 (i.e., only the
friends of the source node S are allowed to forward messages).
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Moreover, the common friends technique outperforms the two
other techniques. However, it achieves only 50% success rate
with 50% of the contacts. Finally, we also show that our
filters still outperform the 5% and 10% untrusted environment
performance by 5% to 12%.

E. Comparison

In order to compare our two proposed trust approaches, we
aggregate all results from all datasets in only one plot (Fig. 8).
We show that the common friends-based filter outperforms
all the other studied approaches. It achieves one of the best
cost/success rate trade-offs with more than 60% of success rate
using no more than 30% of the contacts. Moreover, the S2R:
d-distance gives the worst performance and achieves only 50%
of the optimal success rate using roughly 50% of the contacts.
However, since it is hard to measure trust quantitatively, this
plot cannot show the best trust estimation approach. On the
other hand, we show that Source-to-Relay based trust – which
can be considered as a good approximation of trust – leads to
a poor cost/success rate performance.

V. CONCLUSION AND FUTURE WORK

The proliferation of online social network platforms and
applications such as Facebook, Orkut, or MySpace, makes
information about the social interaction of users easily acces-
sible. In opportunistic networks, such information can be uti-
lized for many purposes such as predicting future encounters
of participating devices. In this paper, we have studied trust
establishment in opportunistic networks via multiple social-
based trust filters. Our work highlights the trust/efficiency
trade-off in mobile opportunistic networks where social rela-
tionships between people can be considered to establish trust
in opportunistic networks. We have shown that we can ensure
trusted communication in opportunistic networks but this may
cause additional end-to-end delay (i.e., cost). Our trust filters,
however, achieve a good trade-off between trust and success
rate by achieving more than 35% success rate compared to
an untrusted environment when 10% of the nodes refuse to
cooperate in the absence of trust.

This work represents the very first step towards the idea
of leveraging social networking information for enabling node
cooperation in mobile opportunistic networks. There are sev-
eral venues we plan to pursue in our future work. First,
in this paper data sets represent a mobility trace within a
single and small community. In a future work, it is important
to investigate the performance of these trust filters in large
scale networks. Second, an important research direction is to
indicate whether these trust filters can be efficiently estimated
and implemented using a distributed algorithm running with
local information at the nodes. Finally, detailed mechanisms
for sharing and transmitting this social information upon which
trust is based is crucial.
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