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Abstract—
In opportunistic ad-hoc networks, multi-hop data transfer over

contemporaneous paths is unlikely since the devices are often
disconnected from each other. However, data can still be stored
and forwarded over time in an opportunistic hop-by-hop manner.
Previous work has considered how the availability of various
types of information such as social relationships can be used to
guide forwarding algorithm to make better decisions and bring
messages closer to the destination. This implicitly assumes that
opportunistic contacts relate with the social property of node.
However, the impact of such correlation between social and
contact properties on social forwarding performances remains
largely unexplored.

In this paper we argue that the relevance of such social
information (social inputs) is as important as designing a new
social forwarding algorithms. We examine multiple datasets
to determine the impact of correlation, if any, between social
information of individuals and their mobility patterns on the
forwarding performances. We propose methods which process the
social inputs to improve the relevance of such social information
to forwarding. We show that our processing methods could
improve the success rate performances of many social forwarding
algorithms by more than 30%.

I. INTRODUCTION

With the emergence of a new generation of powerful mobile
devices, new communication paradigms exploiting ad hoc
data transfer becomes possible. In such ad hoc opportunistic
network settings, end-to-end connectivity between devices
using multi-hop data transfer is unlikely since the devices
are often disconnected from each other. Devices in these
networks [9], [5] have to decide whether or not to forward data
to an intermediate node that they encounter. These forwarding
decisions are typically guided by the desire to deliver the
message as fast as possible while reducing the number of
replicas of data items in the network.

In the recent past, the use of social networking information
to optimize opportunistic forwarding decisions has become a
hot, but also challenging, research topic. The idea is to use
social interactions between participants to optimize message’s
forwarding decisions by anticipating the participant mobility.

There are basically two ways to capture social interactions
between participants: using contact statistics and derive social
interactions from them or by exploiting explicit social infor-
mation. [10] for example, proposes a method to approximate
the social interaction graph using contact statistics. With the
emergence of online social network platforms and applications
such as Facebook, Orkut, or LinkedIn, information about

social interaction is readily available and easily modeled as
a graph where two nodes are linked in the graph if they are
“friends” in the social network. While this approach is applied
and examined more and more often, the verification of the
relevance of such information for social forwarding in general
remains largely unexplored.

In this paper, we provide, to the best of our knowledge,
the first assessment of the adequacy of explicit social infor-
mation. We use multiple mobility traces that contain contact
information as well as information about the social interaction
between the participants. The social information includes very
strong properties like declared friendships, but also considers
common interests, common affiliations, and alike. We propose
two metrics to assess the matching of the contact and the social
graphs and to rank the quality of the information.

Instead of designing and evaluating a new social forwarding
scheme, our work consists on verifying the impact of the
relevance of such social information on the performance of
difference forwarding algorithms. The question is now why
if the social information used is not relevant to predict fu-
ture contacts? Can we process these information in order to
improve the final forwarding decisions?

The first insight in our work is to evaluate the impact of
the relevance of social information on forwarding decisions
and propose formal methods to improve theses decisions. We
show that the performances of social forwarding schemes
varies dramatically according to the nature of social interaction
used. We proposed methods to process the original social
information relying on either node’s contact properties or other
social properties in order to improve the relevance of such in-
formation to forwarding schemes. Our proposed methods may
helps different social forwarding algorithms (considered in this
paper) to outperforms theirs original success rate performances
by more than 30%. However, we argue that when social inputs
are totally irrelevant for prediction, forwarding decisions may
be falsified; we generally observed, in this case, that even
stateless probabilistic schemes outperforms social forwarding
algorithms.

Despite the fact that social information are used as a good
predictor for human mobility, social forwarding suffers in
large networks where the social graph consists of different
communities (e.g., people in Paris could be socially connected
to others in New York City but they are unlikely to meet each
others physically). We propose a two step technique that could
be integrated to most existing social forwarding schemes in
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order to improve theirs performances in large scale networks.
It consists on (i) keeping the original social forwarding inside
the communities, and (ii) circulating the messages among
other communities using particular nodes which will operate
as “bridges” connecting different communities.

The rest of the paper is organized as follows. We survey
related work in Section section II. Section III overviews the
basic idea behind our scheme and details our methodology.
Section IV studies the relevance of social attributes and their
impact on forwarding decisions. Section V investigates the
impact of our data processing methods on social forwarding
performances. In section VI, we expand our study for large
scale networks. We conclude the paper in Section VII.

II. RELATED WORK

Mobile phones are no longer used only for calling or mes-
saging. Nowadays, mobile phones provide constant Internet
access and allow for a continuous maintenance of the online
social network sites. Specifically, the opportunistic nodes may
use information about the social network of the encountered
participant.

Several research works recently considered the problem
of designing mobile opportunistic forwarding schemes that
are aware of social properties [10], [7], [13], [14], [8]. In
these works, authors propose algorithms which make use of
social metrics such as betweenness centrality or node degree
in order to identify the set of node who are likely to relay
the message to its destination. This implicitly assumes that
opportunistic contacts relate with the social property that is
used to design one algorithm. Our work does not propose new
algorithms but it addresses the above issue more generally.
It helps to understand what type of social information is
the most relevant for forwarding, and analyze the impact of
choosing a “good” and meaningful social information on social
forwarding decisions.

Another series of papers are rather looking at the properties
of the social graphs only. Social scientists in [3], and [2],
make a difference between self-reported (e.g., facebook social
graph) and aggregated social graphs (i.e., contact graph is
aggregated into a social graph) for the same set of users. Their
analysis show that self-reported social graphs, which are cost-
less compared to aggregated social graphs, lead to satisfactory
relevance to social forwarding. Our work addresses the above
issue from a different viewpoint. Starting from an original
social graph, we study the relevance of such social information
to forwarding. Then, we consider a method to augment and
improve the relevance of such social inputs to improve social
decisions. We measure the impact of processed social inputs
on three social forwarding algorithms [7], [13], [14]:
• Degree-Based Forwarding: consists on forward messages

to socially well connected nodes. In fact, paths are
constructed according to a non-decreasing social node
degree rule (more details in [13]).

• Centrality-Based Forwarding: the main idea behind this
algorithm is that central nodes in social graph are more
likely to socialize with other people and then able to
forward messages (more details in [13], [7]).

• PeopleRank : Fully distributed algorithm which rank
nodes in the social graph similarly to what PageRank [4]
does for web page - i.e., it measures the relative “im-
portance” of a node in the social graph. Then message
forwarding decisions follows a non-decreasing rank rule
(more details in [14]).

III. MOTIVATION AND METHODOLOGY

Social interaction between people was largely used as a
good predictor for human mobility. Under such assumption,
social information is used to optimize opportunistic forwarding
decisions in Mobile Opportunistic Networks. Our main goals
are (i) to study the impact of the nature of social information
on forwarding performances, and (ii) discuss the different
methods to process and improve such social information in
order to offer better contact predictions to all social forwarding
algorithms.

A. Network Model

We are interested in delivering data among a set of N
mobile wireless nodes. Communication between two nodes is
established when they are within radio range of each other.
Data is forwarded from source to destination using these
opportunistic contacts. We model the evolution of contacts
in the network by a time varying graph G(t) = (V,E(t))
with N = |V |. We assume that the network starts at time
t0 and ends at time T (T can be infinite). We call this
temporal network [11] the contact graph. Each G(t) describes
the contacts between nodes existing at time t. Such a time-
varying graph model can be obtained from a mobility/contact
trace1 or from a mobility model along with knowledge of radio
properties (e.g., radio range).

We model social relationships between mobile nodes using
a non-time varying graph, which we denote as Gs = (Vs, Es).
In general, we assume that Vs ⊇ V , that is, some nodes in
the social graph will not be part of our mobile network set.
Social graphs reflect the interaction or interrelation between
persons. Such information is available either in online social
applications or could be extracted from the phone history or
other sources. A link in the social graph between two nodes
implies that these nodes are socially “connected” according
to one or more social attributes (e.g., friends in facebook or
sharing a common interest). Note that in this paper social
information is not deduced from contact properties between
nodes as in [8] (e.g., aggregation of contact graph into a social
graph).

B. Social Forwarding algorithms

Let’s consider a source node s which generated a message m
for a destination node d at time t0. We assume that each node
u ∈ G(t ≥ t0) can be a forwarder of a message m according to
the store-carry-forward scheme. We define a social forwarding
algorithm as a store-carry-forward algorithm which uses a
social utility function f(Gs) in order to identify the most likely
nodes to relay m (i.e., whether send m to the encounter node or

1http://www.crawdad.org, http://www.haggleproject.org
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not). It spreads the message m among nodes (relays) who have
specific social properties (relying on f(Gs)). Generally, m
follows a social forwarding path according to a non-decreasing
f(Gs) (e.g., non-decreasing betweenness centrality [10] or
non-increasing social distance2 to destination [13]).

In this paper, we are not proposing and evaluating a new
social forwarding algorithm. Rather, our insights are that the
relevance of social attributes is as important as designing
a social algorithm to improve the efficiency of forwarding
decisions. We study in this paper the impact of the quality of
different social attributes on the performance of different social
forwarding algorithms. Then, we propose different processing
methods to augment such social information in order to
improve forwarding decisions.

C. Motivation

First, we visualize using simplified examples how different
social attributes could behave when used as inputs for social
forwarding.

We establish a “stable” representation of the contact graph
in order to visualize the structure difference between social
and contact graph. Therefore, we define a frequency-dependent
contact graph Gθc(Vθ, Eθ) where eu,v ∈ Eθ if, and only if, the
contact rate between u and v is at least θ (we define a contact
rate between two nodes u and v in the contact graph as the
average number of contacts made between the two nodes in a
unit of time). Fig. 1(a) shows a simple example of a “stable”
contact graph (n = 4) including different contact rates between
the four nodes.

Note that, for example, if we consider θ equal to 0.7,
G0.7
c (V0.7, E0.7) consists only of eA,D and eB,C . The resulting

graph Gθ could be considered as a social graph as described
in [8]- i.e., a contact graph G(t) = (V,E(t)) is aggregated
into a social graph Gs = (Vs, Es). This aggregation guaran-
tees good correlation between social and contact graphs and
then better prediction based on social information. However,
in reality social attributes may not correlate at all with contact
properties; this paper considers this general case. We consider
also in Fig. 1 three social graphs connecting the four nodes in
Fig. 1(b)-(d). One could notice that frequently seen nodes in
the contact graphs have a strongly expected social relationship.
For example, a higher contact rate between nodes A and D is
translated into a social edge in Fig. 1(b), and Fig. 1(c). How-
ever, nodes A and D are not socially connected in Fig. 1(d)
which also shows a social connection between nodes B and
D although they do not meet frequently (contact rate between
nodes A and D is equal to 0.01). We claim that it is critical to
study empirically the commonality between social information
defined by Online Social Networks and opportunistic contacts
created by human mobility.

We define a Closeness Error that indicates how closely
the social and the contact graph are matching. We measure
the matching accuracy between two graphs G(V,E) and

2the social distance defined between two nodes on the social graph (friends
have distance 1, friends of friends have distance 2, etc.).
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G′(V ′, E′) as follows:

CE(G,G′) =
|E \ E′|+ |E′ \ E|

|E ∪ E′|
(1)

CE deals with the fraction of dissimilar edges in the two
graphs G and G′. CE takes values between 0 and 1. If the
graphs are identical, CE is 0. The more the graphs differ, the
more the value of CE is close to 1.

θ = 0.1 θ = 0.5 θ = 0.7

CE(CGθ, SG1) 0.6 0.5 0.75
CE(CGθ, SG2) 0 0.2 0.5
CE(CGθ, SG3) 0.6 0.6 1

TABLE I
CLOSENESS ERROR

Table I shows the different closeness factors in function of
the social graph used. One could notice that the social graph
given by Fig. 1(c)) gives the best matching with the contact
graphs. Indeed, this social graph is strongly correlated with the
contact graph since frequently seen nodes in the contact graph
are represented by a social connection in the contact graph.
However, the two other social graphs have “anomalies”. Note
that, the structure difference between aggregated graphs (Gθ)
and social graphs may consist of many different edges which
could be translated to a bad forwarding prediction if such
social attributes are used as inputs for forwarding algorithms.

To summarize, the inputs of social forwarding algorithms
are as important as the design of the algorithm itself. In fact,
social forwarding algorithms make forwarding decisions based
on the social attributes (inputs) as illustrated in Fig. 2 described
below. Forwarding algorithms consist basically on:

• The inputs: social information and contact properties.
• The output of forwarding algorithm consists on making

a decision to allow (or not) message to be forwarded to
an encounter.

• The algorithm itself selects the most likely forwarders of
a message based on the inputs (predictors). In this paper,
we consider the algorithm as a black box as described in
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Fig. 2. Our focuses draw up the social information used
as inputs for such algorithm (Fig. 3)
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Forwarding
Algorithm

decision
social attributes

Fig. 2. Social Forwarding Algorithms

Our method consists on measuring the relevance of social
information for forwarding and process such information in
case of inefficiency in order to improve the inputs of the
algorithm (as described in Fig. 3). Processing the social
information consists on combining different social attributes
or social and contact properties to emphasize strong social
interaction between two participant.
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Fig. 3. Processing social data

IV. PRIMINARY OBSERVATIONS

In the previous section, we illustrated the impact of the
nature of social attributes on forwarding decisions (Fig. 1).
In this section, we further develop our first observations
examining real mobility traces of a set of participants and
their explicit social interactions (for more details, please refer
to the Appendix section of this paper). We examine using a
formal method to what extend the social attributes are good
predictors for human mobility. Then, we verify the impact of
different social attributes on social forwarding decisions.

A. Relevance of social attributes

Studing the relevance of social input to opportunistic net-
works returns to finding an answer the following question: “Is
the social information shared by two individuals u and v a
good predictor for their future physical meetings?”

Bayesian probability theory allows to verify such hypoth-
esis. We apply the Bayesian inference (BI) rule to obtain
the correlation between the contact frequency (given by the
datasets) and the predictive distributions based on our social
attributes (predictors). We approach this issue by expressing
contact frequency and social relationships in terms of proba-
bility.

BI is the statistical inference in which observations are used
to infer the probability that a hypothesis may be true. In this
paper, we use BI to verify the inference of social predictors
on human mobility. The Bayesian inference rule is given by:

P (I|C) =
P (C|I) P (I)

P (C)
(2)

where
• I represents a specific hypothesis, that for two node u and
v, I(u, v) is true if and only if they are socially linked
relying to this attribute I .

• P (I) is the probability that two participants u and v are
socially linked relying to I .

• P (C|I) is a conditional probability that u and v are in
contact if the hypothesis I is true. In technical terms,

P (C|I) =
Π(u, v)

Π
|(u, v) ∈ Es

where Π(u, v) is the accumulated contact time between
nodes u and v, and Π is the duration of the entire
experiment.

• P (C) is the marginal probability: the probability that
u and v are in contact under all possible hypotheses.
P (E) =

∑
P (C|Ii)P (Ii).

Note that, the higher the value of BI (BI ∈ [0; 1]) the
more the contact information accounts for the social relation
between the nodes. We apply the BI rule, described above in
Eq. 2, to identify the most relevant social predictor for contact
patterns.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25  30  35  40

B
ay

es
ia

n 
In

fe
re

nc
e 

(i)

Social attribute i

Infocom
CoNEXT07

Fig. 4. Bayesian inference of social interests

In the following, we evaluate different forwarding algo-
rithms by analyzing real traces. Specifically, we use the follow-
ing experimental datasets: MobiClique, and Infocom06. Each
dataset includes both, a mobility or contact trace and different
social interaction graphs (more details in the Appendix of this
paper).

Table II summarizes the characteristics of the used data
sets. We differentiate the way the social interactions between
participants are defined in each dataset. We define a social
connection as implicit when the two persons share some
common interests (deduced interaction). We define a social
connection as explicit only when the two nodes declared
(self reported) a direct connection - for example links in
applications like Facebook.

Fig. 4 plots the Bayesian inference distribution with respect
to the social attribute. Note that in each dataset, the social
attributes are ranked in the x-axis such that the final distribu-
tion is decreasing. We observe that only few social attributes
(around 10% to 20 % of the examined social attributes) lead
to a good fit (BI greater than 0.5). Moreover, we notice
that the most accurate fit in our data sets are given by
explicit social attributes, and friend relationship lead to the
best fit. Furthermore, more than 20% of social attributes can be
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MobiClique Infocom(Int.) Infocom(FB)
duration 3d 3d 3d
# connected nodes 27 65 47
# edges 115 835 219
average degree 9.5 25.7 9.3
median inter-contact 10mn 15mn 15mn
median contact time 240s 150s 150s

TABLE II
DATASET PROPERTIES

considered as inaccurate to predict contact properties of nodes
(BI below 0.2). Such social attributes could falsify forwarding
decisions instead of guiding to contact prediction.

Next, we measure the impact of the nature of such social
attributes on the performances of forwarding algorithms. The
performance of a forwarding algorithm is determined by two
conflicting factors: (i) the message delivery delay; and (ii)
the success rate normalized by the success rate of Epedimic
forwarding. In the following, we assess the performance with
regard to these two performance indicators.

B. Impact of social attributes on forwarding decisions
The trace collection is one part of the challenge. It is also

difficult to prepare the data set for later analysis. Key here
is to establish a benchmark, i.e., a baseline performance used
to compare the different methods. In our case, we have to
determine the “optimal” forwarding paths given the mobility
patterns and the connectivity properties. We establish this
benchmark as follows: We compute offline, for all starting
times (the time when the message is ready to be sent) and all
source-destination pairs, the set of delay-optimal paths. Paths
may use either a single contact, or a sequence of contacts
in a time-respecting manner. In other words, we compute the
optimal delivery time of a message sent by a node A to a node
B (A 6= B) for all possible starting times. Then, we compute
the success rate as the delivery probability with a given end-
to-end delay bound following the same construction rules as
described in [6].

We compare three social forwarding algorithms PeopleRank
[14], Degree-Based Forwarding [13], and Centrality-Based
Forwarding [13] (e.g., Bubble Rap [10], SimBet [7]) using
different social inputs. Degree-Based Forwarding, Centrality-
Based Forwarding, and PeopleRank use a non-decreasing
utility function relying on respectively node degree, node
betweenness centrality and PeopleRank metric which was
proposed in [14] as a relative importance of a node in a social
network.

Fig. 5 plots the success rate of the three forwarding al-
gorithms normalized by the success rate of flooding as a
function of the message delivery delay (two contact traces and
different social inputs). In Fig. 5(a)-to-(c), we plot the success
rate performances of the three forwarding algorithms in the
Infocom06 dataset using three different social inputs. In this
figure, we examine the impact of social input selection on the
forwarding performances.

Clearly, the algorithms perform differently from one social
input to another. The friend relationship information improves

the performance by roughly 15% for a 10-minutes timescale.
Note that links in the social graphs formed by friend relation-
ships (MobiClique experiment) could be considered as strong
links because they have been confirmed explicitly by the two
individuals (in contrast to interest-based relationship which
is an implicit definition of social relationship between two
individuals). In the MobiClique experiment, the two social
graphs used for comparison rely on explicit social interaction
which could explain the negligible performance difference for
the MobiClique dataset in Fig. 5(d)-to-(f).

Second, one could show that PeopleRank algorithm out-
performs the other algorithms according to the same social
inputs. In fact, as described in details in [14] PeopleRank is
implicitly combining social and contact properties thanks to
its opportunistic update process. It favors the most frequently
seen friends to update theirs rank more often, and so implicitly
making difference between strong and weak ties in the social
graph.

To summarize, the contact graph may be approximated by
an “implicit” social graph or an “explicit” social graph. How-
ever, “explicit” social inputs are more relevant for forwarding
in opportunistic networks. As we showed in the first part of
the analysis, there is a structural difference between the two
graphs. However, some social attributes are more relevant for
forwarding than other. In case of irrelevancy, social inputs may
falsify the forwarding prediction. Next, in the remainder of this
paper we try to exploit this by processing the different social
inputs in order to improve the forwarding decisions.

V. PROCESSING THE SOCIAL INFORMATION

We describe methods to process and improve the social
inputs and study the impact of such processing on social
forwarding performances (end-to-end delay and success rate
).

A. Processing the Social Information

In order to improve the matching of the social and the
contact graph, one has to identify the most relevant links in
the social graph. There are basically two ways of achieving
this: either one reduces the number of edges in the graph
such that only the strongest links remain in the graph, or the
processing step has to put more weight on the contacts that
represent strong interaction. Although the first technique is
simpler, we believe that the second technique is more efficient
since the weights are used to rank different social connections
to neighbors. So, forwarding algorithms may use this rank to
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Fig. 5. Impact of social attributes on forwarding

identify the set of nodes that are more likely to forward the
message to the destination. To implement the second approach,
we consider a weighted social graph Gs, where we associates
a weight w(i,j) to every edge e(i, j) in the graph. Weights
are computed according to the additional social links (if there
are any). In this paper, we consider additional social attributes
such as interests, affiliation, nationality, etc., as well as contact
properties of nodes such as contact rate, contact time, and
inter-contact time to compute the weight of a social interaction
between two nodes in the social graph.

1) Combining multiple social attributes: In the previous
section (more specifically in Fig. 4), we have shown that
some social inputs lead to poor contact prediction and impact
negatively the final forwarding decision. In this section, we
describe a technique to augment such social information by
combining multiple social sources. There are many ways to
combine the available social information. In the following we
describe the two methods considered in this paper:
• Geographic Classification: Since the dartmouth cam-

pus area is roughly 1300x1300 square meters, people
attending the campus every day are mostly visiting the
same places. Usually, these places are selected in the
way that minimizes the walking distance. To capture
this classification, we looked at splitting the Dartmouth
campus area into regions (Northwest NW, Northeast NE,
Southwest SW, and Southeast SE)3. A node i belongs to a
region R if it has been connected to more access points
belonging to the corresponding region compared to the
other regions.

3http://www.dartmouth.edu/∼maps/campus/close-ups/index.html

• Activity-Based Classification: The Dartmouth College
campus has over 160 buildings. Usually people visit-
ing the campus are interested in few buildings. People
could be classified relying on their activity interests.
For example, the campus contains more than a dozen
athletic facilities and fields. Most of them are located
in the southeast corner of campus. Athletic people are
more likely to meet each others and be classified in an
athletic community. We consider people more connected
to athletic building’s access points as part of the athletic
community. Similarly we define academic and residential
communities.

Fig. 6 plots the normalized success rate of the three
forwarding algorithms after processing the social inputs with
the two methods described before (Geographic, and Activity-
based classification). One may notice that the Activity-Based
Classification does not improve considerably algorithms’ per-
formances. It even decreases the success rate of the Degree-
Based Forwarding by 3% for the 10 minute timescale (see
Fig. 6(c)). Indeed, combining did not lead always to a per-
formance improvement, and it was shown that combing the
two most relevant social inputs even decreased the forwarding
performance. However, Fig. 6 shows that the second method
improves the matching of the social information and the per-
formances of our three forwarding algorithms. The forwarding
algorithms outperform the original performance (i.e., without
combination) by about 10 to 20% for the 10 minute timescale.
We find that with the Geographic Classification-, the processed
information enforces the common edges (strong ties) in the
social graphs and extends it with complementary edges which
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Fig. 6. Impact of combining social attributes on forwarding (Infocom06)

are considered as weak ties in the social graph.
2) Combining social and contact properties: The “pure”

social forwarding algorithm described above favors socially
well connected nodes. However, such social information de-
fined by online social network applications does not always
lead to a very accurate prediction of physical contact oppor-
tunities. In fact, people interact with each other in different
ways; some have regular physically meetings, some are con-
nected only in a virtual online environment, and some are
connected without ever communicating with each other. Since
the purpose of this study is to propose a solution for improved
message forwarding, we came up with the idea to combine the
use of contact information and social networking information.
Specifically, we consider the contact rate as a weight of social
interaction between two nodes; w(i,j) is the fraction of times
node i and node j were in contact with each other. More
formally:

w(i,j) =
π(i, j)∑

j∈F (i) π(i, j)
(3)

where π(i, j) denotes the number of times node i and node j
are in contact (i.e., they get close to each others) with each
other, and F (i) is the set of social neighbors that links to node
i.

In Fig. 7, we plot the normalized success rate of the
three forwarding algorithms with reference to the combination
of social and contact properties in the Infocom06 data set.
We notice that by augmenting the social inputs with contact
properties, the performance of the three considered algorithms
is improved by 10 to 20% (in term of success rate compared
to the performance of the original social input within the
10 minute timescale). Moreover, the combined solution leads
to a better performance than the pure combination of social
information (1 to 3% improvement of the success rate ).

Note that PeopleRank favors implicitly frequently seen
social neighbors in its update process. It uses implicitly contact
properties in addition to social inputs to make forwarding
decisions.

B. Randomize social inputs

As discussed before, in some settings, the social graph does
not at all match the contact graph of the participants. In those

cases, some randomness in the structure of the social graph
helps to improve the forwarding performance and to overcome
the inaccuracy of the social graph.
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Fig. 8. Impact of damping factors

As described in [14], PeopleRank is a social forwarding
algorithm where a damping factor d is used to control the
amount of randomness introduced in the forwarding decision.
Specifically, PeopleRank is based on the following formula to
determine the social rank of every node:

PeR(i) = (1− d) + d
∑
j∈F (i)

PeR(j)
|F (j)|

where F (i) is the set of social neighbors that links to node
i. When d is equal to 0, all nodes are used for forwarding
with the same probability, values close to 1 will prefer the
socially best connected nodes. Fig. 8 plots the success rate
of PeopleRank normalized by the success rate of flooding
within a delay of ten minutes for different damping factor
values. It can be seen from this plot that optimal damping
factor values change with the different traces. We conjecture
that the reason for this difference lies in the accuracy of the
social inputs used for PeopleRank forwarding. Fig. 8 also
shows that the curves decrease for a damping factor close to 1.
This effect can be explained by the fact that a damping factor
d equal to 1 considers exclusively socially connected nodes
and could miss other potential forwarders such as familiar
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(b) Centrality-Based Forwarding
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(c) Degree-Based Forwarding

Fig. 7. Impact of combining contact properties on forwarding (Infocom06)

strangers introduced in [12]. This means that even when social
inputs considered exhibit an optimal correlation to contact
graph, some randomized forwarding decisions are beneficial.

Inspired by the damping factor idea for PeopleRank , one
could define a probabilistic social graph Gds(V,E

d) such that
edges between two nodes i and j exit with a probability d
if i and j are socially connected (e(i, j) ∈ Gs) and with a
probability 1− d otherwise.
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Fig. 9. Impact of social randomization technique on the centrality-based
algorithm

To evaluate the randomization technique, we consider the
most inaccurate social attribute for the Infocom dataset (given
by Fig. 4). In this specific case, we compare the previous
combination techniques to randomization in Fig. 9. As ex-
pected, the original input lead to the worst performances
where the normalized success rate of the centrality-based
algorithm remains below 35% for the 10 minute timescale.
Moreover, combination techniques described previously does
not improve the success rate performance by more than 10
to 20% within the same timescale (which correspond to a
success rate of less than 50%). Indeed, the original social
graph may contain inaccurate social edges that lead to wrong
contact prediction. Previous techniques consist on emphasizing
the strong ties from the weak ones. However, when the original
social information is mainly inaccurate, the previous process-
ing techniques are not able to deal with an improvement of the
forwarding performance. Fig. 9 shows that randomization is an

option in case of matching inaccuracy. It helps the forwarding
algorithm to outperform its original performance by more than
35%.

C. Limitations

In large networks, the transmission of messages through
the most socially important people will ultimately consume
most of theirs resources. Moreover, it is hard to defend
the assumption that a subset of socially well ranked nodes
will meet physically all other nodes in very large networks.
Next, we verify this assumption in a large network with
multiple social communities. We highlight the limitation of
some social forwarding algorithms in large scale networks.
Then, we propose a technique which spreads the messages
among multiple communities.

We have used the WiFi access network of Dartmouth
college [1] to consider a larger experimental data set. We
assume that two nodes are able to communicate if they are
attached at the same time to the same access point (The
Dartmouth college wireless network is composed of about 550
access points). The Dartmouth college covers multiple student
residences, sport infrastructures, administrative buildings, and
academic buildings.

Since here we are measuring the scalability of social for-
warding algorithms, we considered an optimal scenario where
the social inputs are well correlated to the contact patterns
(collected from real mobility data set). We artificially created
multiple social graphs with regard to the contact rates between
the nodes. We have seen in the previous sections that such
accurate social inputs lead to a good forwarding performance
in “single community” data sets.

Fig. 10 plots the normalized success rate of the three
forwarding algorithms with respect to the Dartmouth data set.
One could notice that within a 10 minute timescale 25% to
55% more losses than with Epidemic forwarding despite the
fact that social inputs match with the contact properties of
nodes. In fact, due to the social forwarding algorithm, many
contact opportunities are not used as the nodes are not in the
same social network. In next section, we present a two step
technique that solves the scaling and this performance issue.
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Fig. 10. Scalability issues

VI. MULTI-COMMUNITIES SOCIAL FORWARDING

Forwarding in mobile adhoc networks faces extreme chal-
lenges from potentially very large number of mobile nodes,
and limited communication resources such as bandwidth and
energy. Such conditions make forwarding more challenging in
large scale networks. In previous section (Fig. 10), we have
noticed that using social inputs in large scale areas may present
weaknesses. Our main guess is that in large scale networks
when multi-communities (let’s assume that communities rep-
resents cities in real world) may exist social prediction present
limitation and two people socially connected may not meet
frequently because they could be long away from each others.

Fist of all, we verify the performances of social forwarding
in a single community. To do so, we consider different com-
munities in the Dartmouth data set (described in details in the
previous section). We take into consideration two community
classifications:

• Geographic classification: we look at splitting the Dart-
mouth campus area into regions (Northwest NW, North-
east NE, Southwest SW, and Southeast SE)4. A node
i belong to a region R if it has been connected to
more access points belonging to the corresponding region
compared to the other regions.

• Activity based classification: we consider people more
connected to residential building’s access points as part of
the residential community. Similarly we define academic
and athletic communities.

Fig. 11 plots the normalized success rate of PeopleRank
per geographic community in Dartmouth data set. PeopleRank
acheave above 92 to 97% of the optimal success rate given by
flooding within 10 minutes timescales (it represents 20% more
success rate compare to the multi-communities performance
given by Fig. 10).

We were motivated by satisfactory performances of social
forwarding within single community, we propose a two step
forwarding mechanism. Such mechanism could be applied
easily to almost all social forwarding algorithms, and consists
of:

4http://www.dartmouth.edu/∼maps/campus/close-ups/index.html
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Fig. 11. Forwarding performances per community

• Step1: Social forwarding algorithms operate normally
within the same community. Indeed, messages will be
forwarded socially toward nodes which belong to the
same community.

• Step2: Particular nodes will operate as a bridge and cir-
culate the message to the other communities, and within
these communities messages will be forwarded socially
(Step1). Bridge nodes are characterized by high mobility
in the dataset, and may belong to many communities (e.g.,
according to the first definition of community, bridges are
nodes moving around the center of the campus).
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Fig. 12. Two steps forwarding

Fig. 12 plots the normalized success rate of two steps
PeopleRank algorithm in Dartmouth data set. One could notice
that the two step algorithm outperforms the original one
for all timescales (5 to 30% of success rate improvement).
Furthermore, such improvement differs from one definition
of communities to another. Geographic definition gives better
performances because in the Dartmouth campus building are
not regrouped geographically3, and then message could take
time to reach other member of the same community. However,
combining the two definition of communities leads with the
best success rate and more than 30% improvement compared
to the second definition.
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VII. CONCLUDING REMARKS

The rise of online Social Network platforms and applica-
tions such as Facebook, Orkut, or MySpace, makes informa-
tion about the social interaction of user “easily” accessible
(online, or directly through the information stored on mobile
devices). In opportunistic networks, such information can then
be used to predict future encounters of participating devices. In
this paper, we have studied how different definitions of social
connections between participants impact the performances of
social forwarding algorithms.

We have measured the matching accuracy between partici-
pants’ contact patterns and their social relations, considering
cases where social information is defined explicitly by the
user and cases where links between participants is implicitly
deducted using common interests. Our results are based on
human contact data sets and the associated social information
of the experimentalists.

To summarize our findings, social inputs may be considered
to guide and improve forwarding decisions in mobile oppor-
tunistic networks. However, in some cases social interaction
information alone is not sufficient for forwarding and needs
to be processed in some way with additional information. We
have proposed and tested different rules to process these social
attributes in order to augment their relevance for opportunistic
forwarding. Indeed, we have shown that processing social
inputs may improve the original success rate performance by
40%.

However, despite the fact that social information are used
as a good predictor for human mobility, social forwarding
suffers in very large networks where multiple communities
and multiple social graph within the communities exist. We
have proposed a two step technique which could be integrated
to most social forwarding algorithms in order to solve the
scaling issues. It was shown that such a technique helps social
algorithms to spread messages among the communities and
uses the social properties within communities to predict future
contacts. It helps social forwarding algorithms to outperforms
their original performances (considering a single community
social graph) by roughly 30%.
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APPENDIX

We have chosen to evaluate our forwarding algorithm using
analysis on real traces. In the following, we present the
datasets used to evaluate the performances of opportunistic
forwarding algorithms.

MobiClique data [13] Contains mobility information and
information about the social relation between the participants.
Visitors of a the CoNext conference were asked to carry a
Smartphone device during three consecutive days with the
MobiClique application installed. Prior to the experiment start,
each participant was asked to indicate the participants of all
CoNext participants he knew or had a connection to. During
the experiment, the social networking application indicated
when a friend, or a friend-of-friend, was in Bluetooth range.
The MobiClique dataset was collected on 28 Windows Mobile
devices that were given to a preselected set of participants
the first day of the conference. Each device was used for an
average of 2.2 days since people arrived and left at different
times.

Infocom06 dataset [6] was collected with 78 participants
during the IEEE Infocom 2006 conference. People were asked
to carry an experimental device (i.e., an iMote) with them
at all time. These devices were logging all contacts between
participating devices (i.e., called here internal contacts) using
a periodic scanning every 2 seconds. In addition, they logged
connections established with other external Bluetooth-enabled
devices (e.g., cell phones, PDAs). For this study, we are using
results for internal contacts only. Questionnaires were given
to participants to fill theirs nationalities, languages, countries,
cities, academic affiliations and topic of interests. Based on
theses information, we consider three different social graphs
for this experiment; based on (1) their common topics of
interest when two users are sharing k common interest, (2)
their Facebook connectivity (obtained offline), and (3) their
social profile (union of nationality, language, affiliation, and
city).


