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Abstract—
The fundamental challenge in opportunistic networking, re-

gardless of the application, is when and how to forward a
message. Rank-based forwarding techniques currently represent
one of the most promising methods for addressing this message
forwarding challenge. While these techniques have demonstrated
great efficiency in performance, they do not address the rising
concern of fairness amongst various nodes in the network. Higher
ranked nodes typically carry the largest burden in delivering mes-
sages, which creates a high potential of dissatisfaction amongst
them. In this paper, we adopt a real-trace driven approach to
study and analyze the tradeoff between the efficiency and fairness
of rank-based forwarding techniques in mobile opportunistic
networks. Our work comprises three major contributions. First,
we quantitatively analyze the tradeoffs between fair and efficient
environments. Second, we demonstrate how fairness coupled with
efficiency can be achieved based on real mobility traces. Third,
we propose FOG, a real-time distributed framework to ensure
efficiency-fairness tradeoff using local information. Our data-
driven experiment and analysis show that mobile opportunistic
communication between users may fail with the absence of
fairness in participating high-ranked nodes, and an absolute
fair treatment of all users yields inefficient communication
performance. Finally our analysis show that FOG ensures relative
equality in the distribution of resource usage among neighbor
nodes while keeping the success rate and cost performance near
optimal.

I. INTRODUCTION

Mobile opportunistic networks interconnect nodes with het-
erogeneous contact rates, unpredictable mobility, and limited
resources. These mobile nodes communicate relying on both
the transport of messages as well as multi-hop forwarding.
Current forwarding techniques [3], [26], [19], [21], [9] are
generally designed to efficiently select the most likely relay
nodes to deliver a message to its destination. Within those
techniques, rank-based forwarding [5], [7], [8] represent one
of the most promising methods for addressing this message
forwarding challenge. This methods differ in the type of in-
formation used (e.g., information acquired during contacts [7],
[8], or social interaction between users [5], [24], [23]) as
well as how it is used to rank nodes in the network. A
node with a lower rank will forward messages to nodes with
higher ranks. This solution, however, creates a high potential
of dissatisfaction among high ranked nodes that carry a heavier
burden compared to others. Providing fairness is therefore a
crucial goal if such techniques are to be adopted in the future.

In mobile opportunistic networks, node cooperation is fun-
damental for the message delivery process. Therefore, the
lack of node cooperation (e.g., a node may refuse to act
as a relay and settle for sending and receiving its own
data) causes considerable delay degradation in the network.
Fairness is then particularly important and challenging for
mobile opportunistic networks and especially for rank-based
forwarding algorithms since it acts as a major incentive for
users to continue participating in the communication process.
Previous studies have considered an absolute fair allocation
of users’ resources [1], [18], [20]. These studies have shown
that while absolute fairness ensures a global sense of fairness
among nodes, it deals with higher end-to-end delivery delays.
It is then primordial to consider whether there exists a tradeoff
relationship between fairness and efficiency. In this paper,
we discuss whether there exists such a tradeoff, and propose
FOG, a real-time distributed framework that enables existing
rank-based forwarding algorithms to be both fair and efficient
(i.e., high message delivery success rate, and small end-to-end
delay).

We adopt a real-trace driven approach to study and analyze
the tradeoff between efficiency and fairness for rank-based
forwarding techniques. Our work comprises three major con-
tributions:

• First, we quantitatively analyze the impact of an absolute
fair environment and an absolute efficient environment
on the overall network performance. Our results show
that in an unfair environment, selecting preferential, or
popular, relay nodes in forwarding decisions is efficient
and yields enhanced forwarding performance. In addition,
these nodes are critical to the network operation. Mobile
opportunistic communication may fail with the absence
of the sense of fairness among these popular nodes.
An absolute balancing of the across nodes, however,
causes significant end-to-end delay and severe perfor-
mance degradation (Section §III).

• Second, we discuss whether there exists a tradeoff re-
lation between fairness and efficiency in opportunistic
forwarding (Section §IV). Relying on our experimental
datasets, we consider an offline approach to construct
forwarding paths while ensuring both fairness and effi-
ciency. We show that, while a tradeoff between fairness
and efficiency may exist in a given dataset, a distributed



real-time approach is required in order for these paths
to be efficiently discovered while utilizing only local
information.

• Finally, we propose FOG, a real-time distributed frame-
work that enables existing rank-based forwarding algo-
rithms to be both fair and efficient. FOG relies on local
information of a given node to ensure a fair distribution
of the burden among its neighbor nodes. Our results show
that our proposed framework ensures relative equality in
the distribution of network resources while maintaining
a high success rate, and near optimal cost; only 3% to
7% delivery rate performance regression, and 2% to 6%
more message replicas in the network (Section §IV).

The remainder of this paper is organized as follows. Sec-
tion II provides a brief overview of rank-based forwarding
techniques and the experimental datasets used in our analy-
sis. Section III discusses the Fairness vs. Efficiency tradeoff
contributions. Our three contributions discussed earlier are
then detailed in Sections III, IV, and V respectively. We then
present the related work in the field of fair and efficient mobile
opportunistic forwarding in Section VI. Finally, Section VII
concludes the paper.

II. BACKGROUND & DATASETS

In this section we provide a brief overview on rank-based
forwarding algorithms, and present the experimental datasets
used in our analysis to improve the fairness of these forwarding
algorithms.

A. Rank-based Forwarding Algorithms

Rank-based forwarding techniques represent one of the most
promising methods for message forwarding in opportunistic
networks. They differ in the type of information used, as well
as how it is used, in order to rank nodes in the network. We
distinguish between two type of rank-based forwarding tech-
niques; contact-based ranking techniques, where information
learned during contact, are used to rank nodes, and social-
based ranking techniques, where social interactions between
users are used to rank the nodes.

1) Social-based Ranking Algorithms: There are three well-
known social-based ranking techniques that differ in the type
of social metric used:

• Degree-Based Forwarding: Consists of forwarding mes-
sages to socially well connected nodes. Paths are then
constructed according to a non-decreasing social node
degree rule (more details in [22]).

• Centrality-Based Forwarding: The main idea behind this
technique is that central nodes in social graphs are more
likely to socialize with other people and therefore more
likely to forward messages (more details in [5], [22]).

• PeopleRank: This is a distributed algorithm which ranks
nodes in the social graph similar to what PageRank [2]
does for web pages – i.e., it measures the relative “impor-
tance” of a node in the social graph (more details in [23]).

2) Contact-based Ranking Algorithms: In the following, we
present two of the most well-known contact-based ranking
algorithms in the literature. As the name indicates, they use
locally available contact information to rank nodes and decide
whether to forward a message when two nodes meet. These
two algorithms are:

• Last Contact (LC): Node i forwards messages to node
j if j has contacted any other node more recently than
node i [7].

• Frequency (FR): Node i forwards the message to node j
if j has more total contacts than node i [8].

B. Experimental Datasets

Our analysis is based on two datasets collected in confer-
ence environments [22], [4]. In addition to human mobility
information, our datasets contain social relationships between
the experimentalists. A summary of the corresponding param-
eters is provided in Table I.

CoNext07 Infocom06
duration 3 days 3 days
mobility patterns Bluetooth contacts Bluetooth contacts
social patterns MobiClique app. [22] Facebook
# connected nodes 27 47
# edges 115 219
average degree 9.5 9.3
social diameter 4 4
median inter-contact 10 min 15 min
median contact time 240s 150s

TABLE I
CHARACTERISTICS OF OUR EXPERIMENTAL DATASETS

CoNext07: This dataset [22] contains mobility information
and information about the social relationship between the
participants during the ACM CoNext 2007 conference. During
the experiment, the social networking application indicated
when a contact, or a contact of a contact, was within Bluetooth
range/neighborhood. This connection neighborhood was then
displayed on the user’s device which in turn could add
new connections or delete existing connections based on the
physical interaction consequent to the application notification.

Infocom06: This dataset [4] was collected with 78 parti-
cipants during the IEEE Infocom 2006 conference. Experi-
mentalists were asked to carry an experimental device (called
iMote) with them at all times. These devices were logging all
contacts between participating devices. Questionnaires were
given to participants to fill theirs nationalities, languages,
countries, cities, academic affiliations and topic of interests.
Based on the forms filled by the experimentalists (e.g., fist
name, last name, interests, nationalities, affiliation, etc.), we
consider, in this paper, a social graph based on users Facebook
friendship graph (obtained offline and connecting all the
experimentalists). Note that we did not use the implicit social
information (i.e., based on interests and affiliation) which is
publically available in CRAWDAD1.

1http://crawdad.cs.dartmouth.edu/meta.php?name=cambridge/haggle
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Fig. 1. Fairness-Efficiency tradeoff in mobile opportunistic communication

III. FAIRNESS VS. EFFICIENCY

Our discussion of efficiency and fairness highly depends
on the definition of those two concepts. In this paper, we
let “efficiency” denotes the successful delivery ratio of a
given forwarding algorithm within t seconds. Higher efficiency
means shorter end-to-end delay and more successful message
delivery in the network.

To define fairness, one may consider it as a means to
provide users with incentives to collaborate in mobile oppor-
tunistic communication – i.e., encourage them to contribute
to forwarding messages and remain longer in the network.
We therefore define “fairness” as a relative equality in the
distribution of resource usage among neighboring nodes in the
network – i.e., a forwarding algorithm is “fair” if the capacity
assignment of a given node N in the network is equivalent to
those of N ’s neighbors.

As summarized in Figure 1, while rank-based forward-
ing techniques have demonstrated great efficiency in perfor-
mance [5], [24], [3], [23], they do not address the rising con-
cern of fairness amongst various nodes in the network. Higher
ranked nodes typically carry the largest burden in delivering
messages, which creates a high potential of dissatisfaction
amongst them. An absolute fair treatment of users, however,
causes significant end-to-end delay and message delivery per-
formance degradation [1], [18], [20]. Consequently, there is
no technique to date that ensures both fairness and efficiency.
It is therefore important to consider whether there exists a
tradeoff relation between fairness and efficiency. In this paper,
we answer the following question: Can we really fall in the
desired trade-off region of Figure 1 (Section IV)?

A. Absolute Efficiency

As discussed earlier, efficiency deals with high potential
of dissatisfaction among popular node. Let us assume that
dissatisfied nodes decide to boycott the forwarding process.
We show the impact that these popular nodes have on network
performance when they refrain from message forwarding;
popular node may be relevant but not critically needed for
a network.

Methodology: We use a technique, which we call “node
removal”, to exclude nodes from the forwarding process. We
study the impact of excluding popular nodes on the overall
forwarding performance by applying this technique to the
mobility traces we have. We also studied the impact of
removing the unpopular nodes. From the sequence of delay-
optimal paths in our datasets, we deduce the delay obtained
by the optimal path at all time. We uniformly combine all
the observations of a trace among all sources, destinations,
and for every starting time (the time in seconds when the
message m was generated by the source node S). We present
this aggregated sample of observations via its empirical CDF.
We plot the success rate of forwarding algorithms normalized
by the success rate of flooding within a given message delivery
delay. This technique is a relevant metric used to analyze
forwarding algorithms and is discussed with more details
in [4].

Figure 2 plots the empirical CDF of the normalized de-
livery success rate of the PeopleRank forwarding algorithm
(an example of an efficient rank-based forwarding algorithm
according to [23]). We have observed similar results for LC
and FR algorithms. Figure 2-(a) shows the impact of excluding
the most popular nodes on the successful delivery rate; 10%
popular removal consists of removing the 10% most popular
nodes from the original dataset (here, popularity rank is
given by the PeopleRank values [23]). We show that mobile
communication between users may fail with the absence of
fairness, where excluding the most popular nodes from the
forwarding process causes significant performance regress; if
only 10% of the most popular nodes boycott the forwarding
process, PeopleRank’s success rate performance degrades by
roughly 20% within a 10 minutes timescale.

However, PeopleRank performance shows insignificant
regress when we exclude 10% of the most unpopular nodes;
only 1.5% less within a 10 minutes timescale. This result is
consistent with the fact that unpopular nodes do not contribute
much to the forwarding process as the popular nodes do.
Therefore, it is indeed shown that popular nodes in the network
are more suitable than others to deliver a given message to its
destination.

In Figure 2-(b), we plot the distribution of the successful
delivery rate of PeopleRank as a function of different popular
node removal percentages. As expected, excluding popular
nodes from the forwarding process deteriorates the success
rate, especially for small timescales. The probability to reach
a destination within 10 minutes drops from 96% to 83% when
5% of the popular nodes are excluded. Moreover, the success
rate regress is more severe when the most popular nodes
are removed; while we show a 13% regress (from 96% to
83% within 10 minutes timescale) when only 5% of the most
popular nodes are excluded, this regress is only 3% when we
exclude 5% of the remaining 90% popular nodes (i.e., we
compare 10% and 15% removal nodes curves).

Figure 2-(c) shows that excluding unpopular nodes from the
forwarding process does not seem to greatly impact the success
rate of PeopleRank. At times, this removal may even increase
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Fig. 2. PeopleRank performance with different node removal techniques (Infocom data set)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 min 10 min 1 hour 6 h 1 day

no
rm

al
iz

ed
 s

uc
ce

ss
 r

at
e

delay

Last Contact
Frequency

FAIR

(a) Comparing rank-based algorithms (Last Con-
tact, and Frequency) to FAIR success rate perfor-
mance (using Infocom06 data set)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20  25  30

M
es

sa
ge

 fo
rw

ar
de

d 
(%

)

PeopleRank

d=.4 [75%]
d=.6 [85%]
d=.8 [92%]
d=.9 [98%]
d=1 [96%]

(b) Normalized number of message forwarded and
normalized success rate (in brackets) with regards
of nodes’ rank (CoNext07 dataset)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20  25  30  35  40  45  50

M
es

sa
ge

 fo
rw

ar
de

d 
(%

)

PeopleRank

d=.4 [78%]
d=.9 [96%]

(c) Normalized number of message forwarded and
normalized success rate (in brackets) with regards
of nodes’ rank (Infocom06 dataset)

Fig. 3. Impact of fairness on the network performance

the performance when we remove only 5% of the most
unpopular nodes. In contrast, removing the most unpopular
nodes may, indeed, subtract high end-to-end delays from the
overall distribution (i.e., high delays are mainly caused by high
waiting times to reach infrequently seen destinations).

As a summary, we observe that popular nodes in the network
are more suitable than others to deliver a given message
to its destination; selecting preferential relays in forwarding
decisions gives better forwarding performance. It is indeed
important to further satisfy popular nodes. Providing fairness is
therefore crucial since the unfair treatment of users is consid-
ered as an disincentive to participation in the communication
process.

B. Absolute Fairness

While fairness is our goal, absolute fairness amongst all
nodes is not. In this section, we discuss the impact of absolute
fairness on the overall network performance. Let us assume
an absolute fair allocation of resources across nodes in the
network. We perform an offline study of the path availability
in our datasets, while each node forwards the same number
of messages compared to all other nodes in the network. We
ensure fairness by balancing cost across nodes. We call this

offline fair path establishment technique, the FAIR algorithm.
FAIR provides, by definition, a uniform fair allocation of user
resources among nodes in the network.

Figure 3-(a) compares two contact-based ranking algorithms
(i.e., LC and FR) to the FAIR algorithm using the Infocom06
dataset. We show how an absolute fair allocation of resources
leads to significant performance regression. The probability
of success within 10 minutes decreases from 72% to 43% for
Last Contact algorithm and from 60% to 43% for Frequency
algorithm. The reason behind this regression is that an absolute
fair balancing of cost across nodes causes significant end-to-
end delay and success rate performance degradation.

PeopleRank [23] uses a simplistic technique in order to in-
crease fairness across nodes. We study the impact of such tech-
niques on the PeopleRank performance. PeopleRank allows us
to tune the amount of the social information used through a
damping factor d. [23] shows that social forwarding schemes
are effective only for very accurate social information. The
damping factor is then used to compensate the mismatch of
the social interaction between users and their mobility patterns.
Consequently, the more fairness we want, the closer to 0 we
will chose the damping factor.

In Figure 3(b), we plot the number of message forwarded



per PeopleRank node (nodes are ranked from the unpopular
to the most popular node in the network) with regards to the
damping factor d. This result is normalized by the number
of messages forwarded if we run an epidemic forwarding
algorithm. In addition, we indicate the normalized success
rate (within 10 minutes) regarding each damping factor d
in brackets on Figure 3(b)’s labels. We observe that the
more unfair PeopleRank is (higher values of d), the better
performance it can achieve; while PeopleRank algorithm is
given the best distribution of resources among the nodes (less
than 25% difference between the highest and the lowest used
nodes in CoNext07 dataset when d = 0.4), it achieves only
75% of success rate performance within 10 minutes timescale.
However, PeopleRank running with d = 0.9 gives 23% more
success rate performance, and an important resources usage
disproportion among the nodes (more than 55% difference).
Similar results have been obtained in Figure 3(c) for the
Infocom06 dataset. To summarize, an absolute fair balancing
of cost across nodes causes significant end-to-end delay and
success rate performance degradation.

IV. CAN WE BE BOTH EFFICIENT & FAIR?

In this section we quantitatively identify the tradeoff re-
lationship between fairness and efficiency. We first provide
some intuition regarding the desired fairness we seek while
introducing our satisfaction index metric. We then discuss an
offline approach to verify, based on our experimental datasets,
the availability of paths that would satisfy both efficiency and
fairness.

A. Desired Fairness & Satisfaction Index

In a mobile opportunistic network, we can roughly divide
nodes into three different categories with respect to their pop-
ularity ranking; popular, semi-popular and unpopular nodes
(as shown in Figure 4). While ranking nodes in the network
may be considered to efficiently forward messages in DTN,
it creates a high potential of dissatisfaction amongst nodes
since they forward more messages compared to others (as
shown by the solid line in Figure 4). On the other hand, an
absolute fair allocation of resources yields poor forwarding
performance (dashed line in Figure 4). Inspired by the previous
results shown in Figure 2, we believe that the desired fairness
is different from an absolute fair distribution of resources
(optimal fairness). It is indeed important to increase the
satisfaction of popular nodes by reducing their cost. Unpopular
nodes, however, are unlikely impactful if they were involved in
the forwarding process. Therefore, our goal is to further satisfy
popular nodes by moving from a situation where popular nodes
carry the largest burden in delivering messages to a “fair
distribution” of this burden among popular and semi-popular
nodes as shown by the red dotted line in Figure 4.

To reach this desired situation, we need a metric by which
we can assess the level of fairness amongst the nodes. We
define a satisfaction index (SI) as the difference between
the message load distribution given by the forwarding pro-
cess (current fairness) and uniform distribution among nodes
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Fig. 4. Node categories with respect of their popularity rank

(desired fairness). Our goal is to construct paths between any
source and destination that verify the condition below:

∃C ≥ 0,∀i ∈ 1..n,

SI(Ni) = load(Ni)−
n∑

j=1

load(Nj) ≥ 0− C (1)

where Ni represents a node i in the network, n is a total
number of nodes, load(Ni) is the current load at node Ni,
and C is a positive constant integer. The goal is then to verify
if there exists a relatively small positive integer C, such that
we can construct paths between any source-destination pair
and satisfy Equation 1.

B. Availability of Fair and Efficient Paths

We consider an offline approach to construct forwarding
paths that ensures both fairness and efficiency based on global
network information. In order to distribute the burden among
semi-popular and popular nodes, we change the common for-
warding rule used by most rank-based forwarding algorithms:
Node A decides whether to forward a message m when
it meets node B according to this inequality: rank(B) >
rank(A). This rule will exclude semi-popular nodes if m was
generated by a high ranked node. We then apply the following
rule: rank(B) > rank(A)− ε, where ε is a positive number,
or a linear function. In this section, our goal is not to give a
“magic” number or function of ε since this largely depends on
the mobility characteristic present in the dataset. However, we
discuss the fairness-efficiency tradeoff feasibility in a given
dataset.

Figure 5 plots the normalized number of messages for-
warded per node with respect to different values of ε. We show
that when ε = 0.2, PeopleRank ensures a better distribution of
the burden among popular and semi-popular nodes compared
to the original forwarding rule (when ε = 0). On the other
hand, the distribution of the number of messages forwarded
by unpopular nodes seems rather insensitive to the variation
of ε; it is indeed unlikely to meet these unpopular nodes, and
the message will be delegated directly to popular and semi-
popular nodes.

We now consider ε to be a function where increasing the
nodes’ rank r linearly increases ε value. We denote ε(α, β) as
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a function of the rank r, given by: ε(α, β) = α ∗ r + β. The
above forwarding rule can then be given by:

rank(B) > (1− α) ∗ rank(A) + β (2)

In Figure 6, we test different values of α and β, and plot
the satisfaction index SI with respect to PeopleRank ranking.
We show that the new rule given by Eq. 2 ensures a better
distribution of the burden among the nodes and achieves a
comparable success rate performance (only 1% or 2% less
than optimal success rate performance). The new forwarding
rule provides a fairly good satisfaction index performance as
described in Equation 1 using a relatively small C constant
(C = 8 for ε(0.3,−0.1), and C = 13 for ε(0.2, 0)).

To summarize, our offline data driven approach shows that
fair and efficient paths may exist in the network. However, it
does not indicate whether theses paths can be found efficiently
by a distributed algorithm.

V. A REAL-TIME DISTRIBUTED FRAMEWORK FOR
FAIRNESS-BASED FORWARDING

We now propose a real-time distributed framework that
helps rank-based forwarding algorithms utilize potential nodes

to forward messages while satisfying the fairness property
given by Equation 1. We call our systematic framework,
Fairness-based Opportunistic networkinG (FOG).

A. The FOG Framework

Whenever two nodes are within close proximity of each
other, they separately run an update process. They first update
their relative maximum burden max and relative minimum
burden min per unit time. They then decide whether or not to
forward a message m if the following condition is verified; (i)
the encounter node Nj is the destination node of the message
m, or (ii) Nj is higher ranked compared to Ni and its burden
(burden(Nj)) did not exceed the relative average. Finally, the
receiver of the message should update its actual burden value.

We note that, while the offline technique use different
parameters to measure the satisfaction index SI among all
nodes, FOG as a fully distributed framework, relies on local
information at the node to estimate the distribution of the
burden among neighboring nodes. We believe that nodes are
satisfied by comparing themselves to their neighbors and
acquaintances and require only relative equality amongst their
neighbors in the network.

B. FOG Evaluation

In the following, we evaluate the performance of three state-
of-the-art social forwarding algorithms (PeopleRank, LC, and
FR) relying on the two previously described datasets (Info-
com06, and CoNext07). We also use a data-driven artificial
trace to evaluate the scalability of FOG in large scale social
networks.

1) FOG in Small Social Environments: We adopt a real-
trace driven approach to analyze and evaluate the tradeoff
between the efficiency and fairness of FOG in order to provide
a more realistic evaluation platform. We compare FOG’s
performance to the offline approach based on the real mobility
traces shown in Table I.

In Figure 7, we compare the SI and the message distribution
among nodes using FOG and the offline approach. In addition,
we compare the success rate of these forwarding algorithms.
We show that FOG outperforms all the offline rules we have
tested and achieves one of the best SI/success rate tradeoffs.
FOG also ensures a more fair distribution of the burden among
the nodes; the SI of popular and semi-popular nodes remain
close to zero and verify Equation 1 with a relatively small
constant C = 3. FOG is explicitly prohibiting forwarding
messages when the burden is not fairly distributed among
neighbors; popular nodes are more likely to meet all other
nodes as well as each other. The burden is therefore fairly
distributed among them. We note that, FOG is also efficient
given that it keeps the success rate close to the optimal
(2% less compared to the original PeopleRank success rate
performance).

2) Scalability of FOG: In order to study the scalability of
our approach, we use a large scale artificial data-driven trace
in our evaluation.
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San Francisco
CoNext07 Infocom06 Dartmouth

duration 3d 3d 3d
mobility pattern Bluetooth Bluetooth WiFi
# nodes 27 47 100
median inter-contact 10mn 15mn 6mn
median contact time 240s 150s 160s

TABLE II
PROPERTIES OF THE SAN FRANSISCO MODIFIED DATA SET

The artificial data set used in our analysis is based on
real human mobility information. We use the taxicabs San
Francisco data set and incorporate traces for the duration of 3
days. Cabs interconnect different areas of San Francisco such
as the airport, downtown, and the sunset area. We artificially
add real human mobility patterns in each of the areas based
on real traces (Infocom06, CoNext07, and Dartmouth campus;
see Table II for more details). The resulting data set contains 3
communities interconnected by these cabs. Contacts between
cabs and nodes within an area are added based on the same
contact distribution of the corresponding area.

We evaluate the performance of FOG integrated with each
of the three rank-based forwarding algorithms in large scale
networks relying on the San Francisco modified dataset. Fig-
ure 8 plots for each rank-based algorithm (a) the normalized
number of messages forwarded, and (b) the normalized success

rate performance using the original algorithm and the FOG-
based extension. We show that FOG-based extensions ensure
better distribution of resources among the nodes while keeping
the success rate performance close to optimal (original); we
also show that FOG-FR (i.e., FOG-based extension of FR
algorithm) ensures fair allocation of the forwarding burden
with a minimal decrease in success rate by only 4% within a
10 minutes timescale compared to the original FR success rate.
Finally, we note that FOG-PeopleRank gives a significantly
high improvement compared to the FAIR algorithm (described
in Section III) in large scale networks: +20% in the success
rate within a 10 minutes timescale. In PeopleRank, socially
well ranked nodes carry the highest burden since they are
more likely to forward a message to its destination. FOG-
PeopleRank is therefore ensuring an acceptable tradeoff be-
tween efficiency and fairness in large scale networks.

3) Cost of FOG: Cost, in addition to end-to-end delay and
success rate metrics, is a very important evaluation metric in
opportunistic networks. We define the cost of a forwarding
algorithm as the fraction of contacts involved in the forwarding
process. FOG is designed to fairly distribute the burden among
semi-popular and popular node. In this section, we study the
impact of the fair distribution of the burden given by FOG on
the overall cost.

Figure 9 compares the cost of FOG-PeopleRank to FAIR
(absolute fairness) and the original version of PeopleRank
using three different data sets (Infocom06, Conext07, and
modified SF data sets). The original version of PeopleRank
performs well and achieves the best normalized cost in all sce-
narios we have tested; PeopleRank, as a social-based ranking
algorithm, was designed to provide a fairly well cost/efficiency
tradeoff. We note that rank-based forwarding algorithms can
be fair and keep the cost and the performance close to the
optimal. FOG-PeopleRank outperforms the FAIR algorithm
while using only 2% to 6% more replicas of the message m
compared to the cost of the original PeopleRank algorithm.

It is crucial to be aware that, while the total number of
replicas in the network increases, the cost increase per node
is not significant as shown in the previous plots. Moreover,
as the number of nodes in the network grows, reflecting
more realistic deployment environments, the increase in cost
becomes significantly smaller.

VI. RELATED WORK

Most interactions between people rely on the establishment
of the sense of fair treatment. Computer networking com-
munication, and more particularly peer-to-peer file sharing
applications and services take into consideration the fair treat-
ment of users. Fairness is therefore particularly important and
challenging since it is considered a major incentive for peer-
to-peer service usage in today’s Internet. Theses challenges
are more critical in infrastructure-less wireless networks given
the lack of centralized and trusted mechanisms that control
the fair treatment of users. With the recent shift in research
interest from centralized services to distributed services in
mobile communication, fairness is becoming an interesting
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Fig. 8. Comparison of FOG and offline approach performance (using the modified SF dataset)
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field of investigation in many research topics such as resource
allocation, congestion control, and network routing.

In peer-to-peer mobile networks such as mobile ad-hoc
networks (MANETs) [6], [17], [11], [16], wireless sensor net-
works [25], [15], [12], or delay tolerant networks (DTNs) [14],
[19], multi-hop wireless communication between users may
fail with the absence of the sense of fairness between partic-
ipating nodes. In DTNs, a device has to decide whether or
not to forward data to an intermediate node that it encounters.
Such forwarding decisions are typically guided by the desire
to reduce the number of replicas of data items in the network

to conserve bandwidth as well as by the desire to reduce end-
to-end delay.

Current forwarding techniques in DTN are generally de-
signed to efficiently, and excessively over-use popular nodes
to guide and improve forwarding decisions [7], [8], [26],
[1], [19], [21], [9], [27]. Rank-based forwarding techniques
currently represent one of the most promising methods for
addressing the message forwarding challenge [5], [23], [3].
Nodes in these techniques are ranked based on their social
profiles or contact history to identify those that have a higher
probability of successfully forwarding the message to the
destination. While these techniques have demonstrated great
efficiency in performance [5], [24], [23], [3], they do not
address the rising concern of fairness amongst various nodes
in the network. Higher ranked nodes typically carry the largest
burden in delivering messages, which creates a high potential
of dissatisfaction amongst them. Providing fairness is then
an important networking goal since the unfair treatment of
users is considered as a disincentive to participation in the
communication process. It has been shown that ranking-based
forwarding algorithms provide good performance relying on
identifying and overusing popular nodes in the network [5],
[24], [23]. Such well ranked nodes are more likely than others
to deliver a message to its destination in a shorter delay. As a
direct consequence, an absolute fair treatment of users causes a
significant end-to-end delay and message delivery performance
degradation. It is then primordial to consider whether there
exists a tradeoff relationship between fairness and efficiency.



Fair sharing of resources has been largely studied in the
context of classical networks. Previous work has been inspired
by the well known max-min fairness [28] or Jain’s fairness
index [13] in order to improve a fair allocation/scheduling of
resources in the Internet. In the context of wireless networks,
researchers use the link quality variation of access points to
maximize aggregate throughput [18], [20] . In the context
of DTNs many assumptions are made regarding resource
constraints (storage and bandwidth), and strictly adhere to
max-min fairness for end-to-end delay minimization [10], [1].
In this paper, we address the above issue more generally. We
assume unlimited resources in the network and propose a real
time distributed framework to improve forwarding decisions
in order to avoid dissatisfaction among popular nodes, and
therefore ensure an efficiency-fairness tradeoff using local
information.

VII. CONCLUSION

Our work addresses the rising concern of fairness amongst
various nodes in mobile-based opportunistic networks. Rank-
based forwarding algorithms are typically designed to reduce
the number of data replicas in the network to conserve
bandwidth and reduce end-to-end delay. In these algorithms,
higher ranked nodes carry a much heavier burden in delivering
messages, which can create high levels of dissatisfaction
amongst them. In this paper, we have adopted a real-trace
driven approach to study and analyze the tradeoff between the
efficiency and fairness of rank-based forwarding algorithms
in mobile opportunistic networks. Our preliminary results
show that mobile opportunistic communication between users
may fail with the absence of the perception of fairness.
Furthermore, an absolute fair treatment of users also yields
inefficient communication performance. Our offline approach,
which relies on real mobility traces, shows that a tradeoff
between fairness and efficiency can be considered in the
forwarding process. We have proposed a real-time distributed
framework called FOG to ensure efficiency-fairness tradeoff
using local information within a node’s neighborhood. Our
analysis shows that FOG ensures relative equality in the
distribution of resource usage among neighbor nodes while
maintaining a high delivery success rate, and cost performance
close to optimal.
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