
Sums of numerical powers in discrete mathematics:
Archimedes sums squares in the sand

David Pengelley�

First, what is a discrete sum of numerical powers?
These appeared early in mathematics from an ancient desire to know what we today call �closed

formulas�for sums like
Pn
i=1 i

2 = 1 + 4 + 9 + � � �+ n2, or
Pn
i=1 i

3 = 1 + 8 + 27 + � � �+ n3, or most
simply, just the sum

Pn
i=1 i = 1 + 2 + 3 + � � � + n: They are called �discrete� sums because the

items being added together have individual, separated, e¤ect on the result, unlike what happens
when we might think of a planar region as made up of adding together in�nitely many in�nitely
thin parallel slices, where no single slice seems to have any e¤ect at all on the total area as the
slices move continuously across to trace out the region. The term �discrete�is thus in contrast to
�continuous�. And our three discrete sums above are called �sums of powers�because in each case
the numbers being added are made from the natural numbers by a pattern based on a certain �xed
power (exponent), like 2 (for a sum of squares i2), 3 (a sum of cubes i3), or just the power 1, which
then sums just the natural numbers i themselves. In general,

Pn
i=1 i

k is called a sum of powers
whenever k is a �xed natural number.

The reading and activities in this project will engage you in rich and diverse ways with many
of the concepts, methods, notations, and ways of thinking in modern discrete mathematics, and
later also in combinatorics, all within the context of studying sums of numerical powers through
the writings of those who discovered new mathematics. You will study and apply summation
notation, reindexing, multiple connections to geometry, including to areas of regions with curved
sides, inequalities, telescoping sums, making conjectures from experimental evidence. And you
will seek patterns, developing your mathematical intuition and judgement. You will carry out
and contrast various ways of proving statements, from using geometry to algebra to proof by
generalizable example or by mathematical induction, work with systems of linear equations, and
see the interplay between the continuous and the discrete via connections to di¤erential and integral
calculus.

Before we go further mathematically, a little history: The discovery of closed formulas for
discrete sums of numerical powers, motivated by application to approximations for solving area
and volume problems, is probably the most extensive thread in the entire development of discrete
mathematics, spanning the vast period from ancient Pythagorean interest during the sixth century
b.c.e. in patterns of dots to the work of Leonhard Euler in the eighteenth century on a general
formula for discrete summations of almost any form. Initial sources from classical Greek, Indian,
and Arabic traditions include Archimedes�determination in the third century b.c.e. of the closed
formula for a sum of squares, then Nicomachus (�rst century c.e.), Āryabhat.a (499 c.e.), al-
Karaj̄¬(c. 1000 c.e.) on sums of cubes, and al-Haytham (965�1039) on the sum of fourth powers.
In the seventeenth century Pierre de Fermat (1601�1665) claimed that he could use the ��gurate
numbers�to solve this, �perhaps the most beautiful problem in all of arithmetic�. Fermat�s work
was followed shortly by Blaise Pascal�s extensive treatise (circa 1654) on this topic, which produced
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the �rst explicit recursive formula for sums of powers in any arithmetic progression using binomial
coe¢ cients, and which can be proved by mathematical induction. Pascal writes �I will teach how
to calculate not only the sum of squares and of cubes, but also the sum of the fourth powers and
those of higher powers up to in�nity�.

In the early eighteenth century, in his treatise on the beginnings of probability theory, Jakob
Bernoulli (1654�1705) conjectured the general pattern in the coe¢ cients of the closed-form polyno-
mial solution to the summation problem. The connection between probability theory and sums of
powers is via the combinatorial counting numbers. Here he introduces the all-important Bernoulli
numbers into mathematics. Leonhard Euler�s subsequent development of his general �summation
formula�around 1730 provided the �rst proof of Bernoulli�s conjecture. This Euler-Maclaurin sum-
mation formula also led to numerous other applications, including Euler�s spectacular solution of
the famous Basel problem, showing that

P1
i=1

1
i2
= �2

6 . Paradoxically, although Euler�s summation
formula almost always diverges, the method can provide arbitrarily accurate approximations to the
correct answer, with Euler saying that he will sum the terms just �until it begins to diverge,�and
�From this it is clear that, although the series : : : diverges, it nevertheless produces a true sum.�
This is a feature of so-called �asymptotic series,�an important and subtle modern applied concept
with crucial use in physics today. For a complete exposition of this entire story, see [7, ch. 1].

This project focuses largely on just the �rst arc of this epic, namely the understanding of sums
of squares. Subsequent projects continue the story.

Sums of powers in the service of areas and volumes

The story of discrete sums of numerical powers winds through mathematics and several human
cultures for millenia. In classical Greek mathematics during the several centuries before the Com-
mon Era the analysis of discrete sums was part of one of the greatest achievements of antiquity,
a systematic means of approximating continuous objects in a way that actually led, astonishingly,
not just to approximations, but to the exact determination of areas and volumes of geometric ob-
jects with curved sides. In this project we will see Archimedes of Syracuse (c. 287�212 b.c.e.),
the greatest mathematician of antiquity, analyzing sums of squares to the purpose of �nding areas
and volumes. The theme of summing powers to �nd areas and volumes continued for almost two
millenia and eventually played a key role in the development of the di¤erential and integral calculus
in the seventeenth century. Finally, the formulas discovered for sums of powers were themselves
generalized to reveal a wonderful interplay, a dance, between continuous and discrete, that we began
to understand only through the eighteenth century work of Leonhard Euler, and which places each
partner in the dance on equal footing. This is fortuitous, perhaps even �tting, today, when digital
computers cause us to revert to a discrete way of viewing things much more than we otherwise
might. We will see ways in which the discrete perspective is often best understood with help from
the continuous, as well as vice-versa.

We will discuss shortly exactly why ancient mathematicians like Archimedes needed to know
formulas for sums of powers. But �rst, you may wonder what we even mean by having a �formula�
for one of these sums. Aren�t they already given by formulas? Yes, they are, but the formulas are
arbitrarily long, since they depend on the size of n. Just from a purely computational point of
view, how quickly could you (or even your calculator) calculate

P1;000;000
i=1 i, and how accurately?

Give it a try. Couldn�t there be problems of loss of signi�cant digits on a calculator or computer?
And without calculating the answer, could you even get any idea of how big it is? In short, our
description of these sums, although formulaic, is, to put it mildly, very hard to use.

Suppose, however, that someone told you that
Pn
i=1 i =

n2

2 . This would be incredibly useful;
would surely answer the questions raised above; and make actual computation almost trivial. For in-

2



stance, even in our heads we could then compute immediately that
P1;000;000
i=1 i = 500; 000; 000; 000.

If this were true, we would say that we have a �closed formula� n
2

2 for the sum of the �rst n nat-
ural numbers. By a closed formula we simply mean that we don�t have to perform an arbitrarily
long sequence of additions (an open process with a � � � ) to �nd the answer, provided we allow
ourselves standard arithmetic operations like addition, subtraction, multiplication, division, and
exponentiation. So �rst:

Exercise 1. Explore the closed formula n2

2 suggested for
Pn
i=1 i. Discuss how good or bad it is for

some small values of n, and as n grows. In fact, from some simple experiments and data you
can even conjecture how to �x it to be correct! Do that right now. Congratulations: but are
you sure that the new closed formula you have conjectured really always works, meaning for
all in�nitely many possible values of n? In fact why should we even have reason to hope in
the �rst place that there exists any closed formula at all for a sum like

Pn
i=1 i? (We don�t

expect you to answer that question!) Here we see that while it is tempting to think that
discrete mathematics is somehow �nite, we often have to deal with in�nity, since to �nd a
closed formula means to �nd one that works for all in�nitely many n simultaneously.

Now let us brie�y see exactly why such formulas were so important to the mathematics of
antiquity.

By the time of Euclid�s writing of the Elements around 300 b.c.e., a powerful theoretical
method had been perfected for �nding areas and volumes of objects with curved sides. It is today
called �the method of exhaustion�, and it involves approximating curved objects by polygons (in the
plane) or polyhedra (in three dimensions), i.e., by straight-sided objects whose areas and volumes
were already known. The method could then often be used, amazingly, to con�rm the exact, not
just approximate, area or volume of the curved object, if the straight-sided objects could be made
to �exhaust�the curve-sided one. For details, see [8]. Archimedes carried this to a high art, proving
many of the area and volume results students learn today in school. His achievements were without
equal until the seventeenth century, and included areas bounded by parabolas and spirals, and
volumes of surfaces of revolution of conics (i.e., of parabolas, ellipses, and hyperbolas).

It should be no surprise that sums of squares of numbers played an important role in Archimedes
accomplishing these things. We know that parabolas, ellipses, and hyperbolas are the three types
of what are called �conic sections�(or simply conics), because they are the curves cut from a cone
by a planar section, and that each type can be interpreted as the locus of points satisfying a speci�c
equation in the sectioning plane using planar cartesian coordinates. We also know that the cartesian
equations of these conic sections are all second degree polynomial equations, i.e., involving only
squares and �rst and zeroth powers of the variables. For instance, we know that one very simple
parabola in the plane has equation y = x2. Archimedes wrote in two treatises speci�cally about
�nding the area bounded by a parabola and any line cutting across it. We will not display here
exactly what he did or how he did it [8], but we will explore just enough of the mathematics to see
how analysis of the area of a region bounded by a parabola could have led him to need a closed
formula for the sum of squares

Pn
i=1 i

2. In fact the importance of the connection between a sum
of powers and an area is more than just historical in nature: we will see that it has direct import
also for our understanding of formulas for discrete sums of powers.

Exercise 2. Draw for yourself the region bounded below by the x-axis, on the left by the y-axis
(x = 0), on the right by the vertical line x = 1, and above by the parabola y = x2. Notice that
since it is sitting inside half a unit square, its area must be less than one half. Can we calculate
it? If you have studied calculus, you will recall that we can approximate numerically the area
of this curve-sided parabolic region, by inscribing or circumscribing the region with abutting
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rectangles.1 So cut the horizontal interval 0 � x � 1 into n equal subintervals (the number
n of subintervals is arbitrary, and could be as large as we wish). For each subinterval build a
rectangle with its base on that subinterval along the x-axis. Choose the top of each rectangle
in either one of two ways: all to be just high enough to be at or above the parabola on their
respective subintervals, thereby barely circumscribing the entire region with rectangles, or all
to be just low enough to fall at or below the parabola on their respective subintervals, thereby
barely inscribing the entire region with rectangles.

Now work out detailed mathematical expressions for the sums of the areas of the separate
circumscribed and inscribed rectangular approximations, and note how they compare with
the area of the curved-sided region. In the end, and after a bit of extra algebraic manipulation
of the summations, the upshot should be that you produce this:Pn

i=1 i
2

n3
� 1

n
< Area of the curve-sided parabolic region <

Pn
i=1 i

2

n3

Now on the one hand this bodes excellently for �nding the area of the parabolic region, because
its two bounding expressions are the same except for a di¤erence of 1=n. In other words, we have the
numerical value of the area we seek trapped between numbers whose di¤erence becomes negligible
as n grows. So by taking n as large as we wish, we can trap the area as closely as we please; our
chosen geometric rectangles did a mighty good job. In fact this shows that numerically, the area of

the parabolic region is actually being approached on the nose by the algebraic expression
Pn
i=1 i

2

n3
as

n grows larger and larger. If we could only calculate the actual number that is being approached
thereby, we would know the area of the region. But there is the rub; we are stuck because we have
little understanding of the value of the sum of the �rst n squares, especially in comparison with
the denominator n3. Now we see exactly why Archimedes might have wanted a closed formula for
the sum of squares!2

Archimedes sums natural numbers: the Pythagorean tale of triangular numbers

In 216 b.c.e., the Sicilian city of Syracuse allied itself with Carthage during the second Punic war,
and thus was attacked by Rome, portending what would ultimately happen to the entire Hellenic
world. During a long siege, soldiers of the Roman general Marcellus were terri�ed by the ingenious
war machines defending the city, invented by the Syracusan Archimedes. These included catapults
to hurl great stones, as well as ropes, pulleys, and hooks to raise and smash Marcellus�s ships, and
perhaps even burning mirrors setting �re to their sails. Finally though, probably through betrayal,
Roman soldiers entered the city in 212 b.c.e., with orders from Marcellus to capture Archimedes
alive. Plutarch relates that �as fate would have it, he was intent on working out some problem with
a diagram and, having �xed his mind and his eyes alike on his investigation, he never noticed the
incursion of the Romans nor the capture of the city. And when a soldier came up to him suddenly
and bade him follow to Marcellus, he refused to do so until he had worked out his problem to a
demonstration; whereat the soldier was so enraged that he drew his sword and slew him�[5, p. 97].

Despite the great success of Archimedes�military inventions, Plutarch says that �He would
not deign to leave behind him any commentary or writing on such subjects; but, repudiating as
sordid and ignoble the whole trade of engineering, and every sort of art that lends itself to mere

1 If you are tempted to point out that the area can be found using antidi¤erentiation and the fundamental theorem
of calculus, you are right, but you are cheating on what Archimedes knew by almost two-thousand years.

2 In fact Archimedes�geometric approximation method was quite di¤erent from ours. He inscribed triangles inside
the region between the parabola and a sectioning line. But it still ultimately led him to need to know good bounds
for a sum of squares.
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use and pro�t, he placed his whole a¤ection and ambition in those purer speculations where there
can be no reference to the vulgar needs of life� [5, p. 100]. Perhaps the best indication of what
Archimedes truly loved most is his request that his tombstone include a cylinder circumscribing
a sphere, accompanied by the inscription of his remarkable theorem that the sphere is exactly
two-thirds of the circumscribing cylinder in both surface area and volume!

Archimedes was the greatest mathematician of antiquity, and one of the top handful of all
time; his achievements seem astounding even today. The son of an astronomer, he spent most of
his life in Syracuse on the island of Sicily, in today�s southern Italy, except for a likely period in
Alexandria studying with successors of Euclid. In addition to his mathematical achievements, and
contrasting with the view expressed by Plutarch, his reputation during his lifetime derived from
an impressive array of mechanical inventions, from the water snail (a screw for raising irrigation
water) to compound pulleys, and his fearful war instruments. Referring to his principle of the lever,
Archimedes boasted, �Give me a place to stand on, and I will move the earth.�When King Hieron
of Syracuse heard of this and asked Archimedes to demonstrate his principle, he demonstrated
the e¢ cacy of his pulley systems by single-handedly pulling a three-masted schooner laden with
passengers and freight [5]. One of his most famous, but possibly apocryphal, exploits was to
determine for the king whether a goldsmith had fraudulently alloyed a supposed gold crown with
cheaper metal. He is purported to have realized, while in a public bath, the principle that his
�oating body displaced exactly its weight in water, and realizing he could use this to solve the
problem, rushed home naked through the streets shouting �Eureka! Eureka!�(I have found it).

The treatises of Archimedes contain a wide array of area, volume, and center of gravity determi-
nations, including the equivalent of many of the best-known formulas taught in high school today.
Archimedes also laid the mathematical foundation for the �elds of statics and hydrodynamics and
their interplay with geometry, and frequently used intricate balancing arguments. A fascinating
treatise on a di¤erent topic is The Sandreckoner, in which he numbered the grains of sand needed
to �ll the universe, by developing an e¤ective system for dealing with large numbers. Even though
he calculated in the end that only 1063 grains would be needed, his system could actually calcu-

late with numbers as enormous as
��
108
�108�108 . Archimedes even modeled the universe with a

mechanical planetarium incorporating the motions of the sun, the moon, and the ��ve stars which
are called the wanderers�(i.e., the known planets) [3].

We are ready to start reading what Archimedes wrote about sums of powers. At the beginning
of his treatise titled On Conoids and Spheroids, Archimedes states two inequalities that he will use
in his later proofs, and whose own proof is implicitly embedded in some of his later results [1, v.
11, p. 455][2, p. 119]. He writes, translated from the ancient Greek:

11111111

If any number of magnitudes be given, which exceed one another by an equal amount equal to the
least, and also other magnitudes, equal in number to the former, but each equal in quantity to the
greatest, all the magnitudes each of which is equal to the greatest will be less than the duplicate of
all those exceeding one another by an equal amount and more than the duplicate of these minus the
greatest. [2, p. 119]

11111111

Before trying to understand these inequalities, let us consider a related statement of equality
rather than inequality, that we will write in the same style as Archimedes. Although Archimedes
only actually explicitly stated the inequalities above, his proof shows that he fully understood the
following equality, how to prove it, and that the two inequalities would follow immediately from it.
We�ll call this Archimedes�equality.
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11111111

If any number of magnitudes be given, which exceed one another by an equal amount equal to
the least, and also other magnitudes, equal in number to the former, but each equal in quantity to
the greatest, all the magnitudes each of which is equal to the greatest, plus the greatest, will be the
duplicate of all those exceeding one another by an equal amount.

11111111

In fact this equality was understood already by the Pythagoreans, a mysterious group led by
Pythagoras in ancient Greece around the sixth century b.c.e. For them number was the substance
of all things, and geometric patterns seen in dots or pebbles in the sand showed them relationships
between numbers. Soon you too will see the geometric connection here, embodied in what is called
a �triangular number�.

Let us try to understand the text of Archimedes�equality, and connect it to more modern ways
of thinking and expressing things. In classical Greek mathematics �magnitude�had a potentially
broad meaning, but here we will interpret it just to mean a line segment of some �nite length.

Exercise 3. Draw a picture of the given magnitudes, setting them side by side with one end of
each all in a row, and illustrate with marks on the line segments the �which�condition stated
about just how they exceed one another. Also draw a picture of the �other� magnitudes
given, and then draw a picture of what the text claims is the duplicate of what. Then �nd a
way to see visually that this is true by drawing the duplicate and displaying a geometric way
to rearrange the set of duplicated magnitudes to show what is claimed. You may wish �rst
to do some small examples, then a general picture with explanation.

Exercise 4. What kinds of things are actually �equal�here by virtue of the words �will be�of the
claim? Is it lengths, or line segments, or numbers, or some combination of these? In what
sense is �will be�true? In what sense is �equal�the case?

Exercise 5. Explain why there are in�nitely many possibilities for the particular set of line seg-
ments satisfying the �which�condition of the claim. In fact the possibilites are in�nite in at
least two quite di¤erent ways; explain these. Do you consider that your picture provides a
proof of the claim for all of the in�nitely many possibilities? In other words, does it provide a
completely convincing argument that is general enough to convince anyone that the claimed
result is true for all the possibilities? Why?

Exercise 6. Now also use your picture to explain and prove the two inequalities that Archimedes
wrote at the beginning. Hint: Notice that his �nal words �the duplicate of these minus the
greatest� could be interpreted in English in two di¤erent ways; only one will give a true
inequality.

Exercise 7. Interpreting each line segment as having a length which is some numerical multiple
of a �xed unit length for measurement, and supposing there are n lines in general, write
Archimedes�equality from above as a modern numerical equality involving lengths represented
by numbers. Do this with + � � �+ notation, and then with summation notation. Manipulate
your equality algebraically to solve for a closed form expression for

Pn
i=1 i . In other words,

obtain an equality of the form
Pn
i=1 i = �some closed formula�(by a closed formula we mean

one that has no arbitrarily long sum indicated by + � � �+ ). Today we would say that you
have found a polynomial formula for the sum of the �rst n natural numbers, no matter what
n is. What is the polynomial, written in standard polynomial notaton? What degree is it?
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What is its leading coe¢ cient? What is its constant term? Is it the same as the formula you
conjectured earlier to �x the suggested n2

2 ?

Exercise 8. Interpret Archimedes� two inequality statements as algebraic inequalities involvingPn
i=1 i (this may involve some reindexing), and prove these algebraically from your closed

formula for
Pn
i=1 i.

Exercise 9. Now redraw your original picture proof of Archimedes�equality from a di¤erent point
of view. First let�s simplify things a little by decreeing that the smallest of the line segments in
the series will be chosen as our unit of length for measurement. A line segment has length but
no width. Give each of them unit width in your original picture, i.e., fatten each line segment
into a rectangle. Thus turn your proof into a statement about equality of two areas. Give a
verbal explanation of how the rectangles �t together to make equal areas, and enhance your
picture with shadings for the rectangles demonstrating how things match up. Also explain
how your picture shows that the sum

Pn
i=1 i is actually the area of a certain right triangle.

What is its length and width? Explain how these are related to the algebraic form of the
closed formula you found for the sum. This connection is why

Pn
i=1 i is called a triangular

number.

Exercise 10. Let�s �nd another proof of your equality, apparently purely algebraically. Consider
the expression

nX
i=1

h
(i+ 1)2 � i2

i
:

Rewrite it two completely di¤erent ways, as follows.

On the one hand, notice that it is a �telescoping sum�, i.e., that all but two terms cancel out;
to see this, �rst work out some examples for small n, then make a general calculation using
+ � � �+ notation, and �nally use summation notation and reindexing (Hint: you could split
the sum into two sums, then reindex one with j = i+ 1, carefully adjusting the endpoints of
the summation, and then see what you have).

On the other hand, you could expand (i+ 1)2 with the binomial theorem, then simplify and
discover that you can solve for

Pn
i=1 i . Voilà! This is wonderful, but it all seems like a rabbit

pulled out of a hat. So let�s see next if we can visualize some of it geometrically.

Exercise 11. Draw a picture of two squares, one inside the other, sharing their bottom left corner,
so that the area of the L-shaped region between them is (i+ 1)2 � i2. An L-shaped region
like this is called a �gnomon�3. Now draw a picture of nested such squares, with successive
non-overlapping gnomons inbetween them, for i ranging from 1 to n, so that all the gnomons
together have area equaling the telescoping expression we started with above, and that �t
together to make almost one large square. This would have been very familiar to classical
Greek mathematicians, so now imagine you are one: Start completely over just with this
geometric picture, and from it, explain how to deduce your formula for

Pn
i=1 i (Hint: Each

gnomon can be thought of as two equal rectangles joined by a small square).

Exercise 12. (For those who have studied mathematical induction) Suppose you had a guess for
your equality above,

Pn
i=1 i = �some closed formula�, but you weren�t sure by any means,

3 In ancient Babylonia, gnomon probably meant an upright stick whose shadow was used to tell time (a sundial).
In Pythagoras�time gnomon meant a carpenter�s square; do you see the connection? And in the time of Euclid and
Archimedes, it meant what was left of a parallelogram when a smaller similar parallelogram was removed from one
corner. [6, p. 31]
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geometrical or otherwise, whether it is true or not for all natural numbers n. Verify the truth
of your formula for all such n using the method of mathematical induction.

We have seen several ways to �nd and/or prove a closed formula for the sum of the �rst n
natural numbers, interpreted a lot geometrically, and seen that the sum is related to the area of a
triangle. Let us now move on to Archimedes�claim about a sum of squares.

Archimedes sums squares in the sand

Also in his treatise On Conoids and Spheroids, and as Proposition 10 in his treatise On Spirals [1,
v. 11, p. 456][2, p. 122], Archimedes states and proves his claim about a sum of squares:

11111111
If a series of any number of lines be given, which exceed one another by an equal amount, and the

di¤erence be equal to the least, and if other lines be given equal in number to these, and in quantity
to the greatest, the squares on the lines equal to the greatest, plus the square on the greatest and the
rectangle contained by the least and the sum of all those exceeding one another by an equal amount
will be the triplicate of all the squares on the lines exceeding one another by an equal amount. [2, p.
122]

11111111
By �line�Archimedes means a line segment. By the �square on a line�Archimedes means a

square whose side length is the length of the line, and by the �rectangle contained by two lines�he
means a rectangle with its two perpendicular sides given by their lengths.

Exercise 13. As before, draw a picture of the two geometric constructs that Archimedes is saying
�will be� each other. In your picture, go ahead and make the simplifying choice that the
smallest line represents the unit of length. Archimedes� claim will be that two constructs
made of rectangles have the same total areas.

Exercise 14. Archimedes provides a quite elaborate proof of his claim, with no picture. Student
Kathe Kanim recently found in Archimedes�rather algebraic proof the insight and inspiration
for a geometric �picture proof�, as displayed in Figure 1 [4]. It seems that she may have
rediscovered the picture that was in Archimedes�mind as he was drawing in the sand more
than two thousand years ago. Mark up the displayed picture to explain why it proves what
Archimedes claims. Notice that it only proves the claim for a particular number of �lines�.
How many? The picture nonetheless should convince you that the claim is true for any
number of lines. Explain why it does that. Could you draw the picture necessary to prove it
for nine lines? nineteen thousand lines? Explain why you are sure of that. The fact that you
are convinced means that this has the nature of a �proof by generalizable example�, which
was a common method of proof in mathematics until perhaps one or two hundred years ago.
However, as mathematics became more highly developed, elaborate proofs by this method
became less acceptable, because they rely on an intuitive sense that the example generalizes,
but intuition can lead one astray or not be the same to everyone when things are complicated.
Thus today we require proofs that do not rely just on the reader�s acceptance of the intuitive
generalization of an example.

Exercise 15. From Archimedes�claim deduce an equality involving
Pn
i=1 i

2, and therefrom deduce
a closed formula for a sum of squares. Feel free to use the formula you already proved earlier
for

Pn
i=1 i. Is your new closed formula a polynomial? What degree is it? What is its leading

coe¢ cient? What is its constant term?

8



Figure 1: Sum of squares
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Exercise 16. Just as with the sum of natural numbers, Archimedes had a pair of inequalities
related to the triplicate of a sum of squares. He used these in his proofs about areas and
volumes, where his trapping arguments only required inequalities. Conjecture his inequalities
by modeling them directly on the inequalities he gave earlier for a sum of natural numbers
and his statement about a sum of squares. The inequalities should involve the triplicate of
a sum of squares and �the squares on the line equal to the greatest�. Then prove your two
inequalities geometrically from the picture proof. Also prove your inequalities algebraically
from your new formula for a sum of squares.

Exercise 17. Prove your formula for a sum of squares by generalizing algebraically the telescoping
sum approach used earlier for a sum of natural numbers. Notice that you will again use your
knowledge of the formula for a sum of natural numbers. For the sum of natural numbers
you interpreted this telescoping approach geometrically using nested squares and gnomons.
Discuss what would be involved geometrically to do this for your telescoping proof for a sum
of squares?

Exercise 18. (For those who have studied mathematical induction) Verify the truth of your formula
for

Pn
i=1 i

2 for all natural numbers n using the method of mathematical induction.

Exercise 19. Recall that we saw that with a closed formula for arbitrary sums of squares in hand,
we (and Archimedes) might be able to calculate the area of a region bounded on one side by a
parabola. In particular, we determined that the area of the region that we studied underneath

the parabola will be the number approached by
Pn
i=1 i

2

n3
as n grows larger and larger. Now

that you know a formula for a sum of squares, you can calculate this. Figure out exactly what
that number being approached actually is, on the nose. Congratulations, you have computed
the precise area of this curve-sided region. For those of you who have learned calculus, you
know that this can also be obtained by antidi¤erentiation and the fundamental theorem of
calculus; but to do so would be cheating by almost 2,000 years, wouldn�t it, since you have
just done it à la Archimedes, but the calculus approach was not discovered until the middle
of the 17th century.

Thinking towards higher powers

In later episodes of our story, we will see formulas for sums of cubes and of fourth powers appear in
India and the medieval Arabic world, then more general approaches emerge in the mathematics of
renaissance Europe, combine with calculus and combinatorics, and move into the heart of modern
mathematics.

For the moment, let us ask a few questions about how our discoveries so far may generalize to
cubes, fourth, and higher powers of the natural numbers:

Exercise 20. Do the geometric proofs for sums of natural numbers and of squares look promising
for generalizing to sums of higher powers? Why or why not?

Exercise 21. What about the telescoping sum approach? Discuss how this could be carried to
higher powers. What will the challenges and di¢ culties be? For instance, suppose you wish
to �nd a formula for the sum of fourth powers. What will you need already to know in order
to use the telescoping sum approach for fourth powers? Thinking about implementing this
approach in general, what does it tell you about the question of whether there is always a
polynomial formula for sums of powers of any exponent? Does it also tell you about the
degree of such a polynomial? Anything else?
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Exercise 22. Mathematical induction seemed to work well for proving the formulas for sums of
natural numbers and sums of squares. What would be impossible about trying to use it at
this point for a sum of cubes?

Exercise 23. By some reindexing and/or algebraic manipulation of the inequalities of Archimedes
that you already have, �ll in the ?? below to rewrite Archimedes�pairs of inequalities for
sums of natural numbers and sums of squares as two double inequalities for all n:

?? <
nX
i=1

i < ?? and ?? <
nX
i=1

i2 < ?? ,

where each ?? should be a simple polynomial-like expression. Depending on how you decide
to approach this, you actually may not end up with exactly the same inequalities as other
people do. Nonetheless, if you are consistent in your approach, you should immediately see a
conjecture that generalizes yours to inequalities surrounding

Pn
i=1 i

k, where k could now be
any positive power. State it.

Prove your conjecture as follows, by again appealing to the interplay between continuous
and discrete, and allowing yourself to use the di¤erential and integral calculus from the later
seventeenth century. Recall how we approximated the area under the parabola y = x2 between
x = 0 and x = 1 using n abutting rectangles. Do the same thing for the so-called �higher
parabolas�y = xk, but now use the interval between x = 0 and x = n (or maybe n�1 or n+1,
depending on your particular inequalites). Inscribe and circumscribe n (or n� 1) rectangles,
and calculate the comparisons you get between two sums of powers and the area under the
curve. Also calculate the area under the curve using calculus (the 2,000 year cheat!). Reindex
the sums and inequalities as necessary to prove your conjecture.

In the few decades just prior to the invention of the fundamental theorem of calculus, various
mathematicians worked to �nd areas under curves like y = xk. In particular, Gilles Persone de
Roberval (1602�1675) claimed that he could do so using inequalities like those you conjectured
surrounding

Pn
i=1 i

k, which however he perhaps deduced by other, entirely algebraic, means;
in other words, his route was the opposite of yours, deducing the area under the curve from his
inequalities, rather than the inequalities from the area [7]. We, however, can view Roberval�s
inequalities as an aid to us in discrete mathematics, imported from the continuous, i.e., from
the calculus.

Exercise 24. You are in a position to make some conjectures about formulas for sums of higher
powers. A conjecture is an educated guess based on reasoning from what you already know,
such as observing possible patterns. Of course a conjecture requires proving or disproving.
Based on the formulas you know for

Pn
i=1 i and

Pn
i=1 i

2, as well as your analysis about
generalizing the telescope approach, and Roberval�s inequalities, make some conjectures about
a formula for the sum

Pn
i=1 i

k of the k-th powers of the �rst n natural numbers. Will it be
given by a polynomial in the variable n? What will be its degree? What will be its leading
coe¢ cient? its constant term? its term right after the leading term? and the next one? Give
reasons for your conjectures, of course.

Exercise 25. Suppose we have conjectured that a sum of cubes is given by a formula that is a
fourth degree polynomial:

Pn
i=1 i

3 = a4n
4+a3n

3+a2n
2+a1n+a0, and we suspect that a4 = 1

4
and a0 = 0. Then we could pick 3 small values for n, calculate both sides of the equality
for each, thus obtaining 3 linear equations in 3 unknowns, and then see if these enable us to
determine uniquely what the coe¢ cients aj would have to be. Then we would have a guess for
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a formula, in fact the only possible guess, and could try proving it by mathematical induction.
Do this.

Notes to the instructor

This project is the �rst in a sequence on the topic of sums of numerical powers.
The audience for this project is students of introductory discrete mathematics. The project is

quite �exible, and the instructor should be able to pick and choose, if desired, from the various
activities o¤ered. For a shorter project the instructor can choose selectively from this module.
Students may need substantial guidance with some parts, and the instructor should be sure to
work through all the details before assigning any student work.

The goal is for students to learn many basic notations, techniques, and skills in the context of
an historically and mathematically authentic big motivating problem with multiple connections to
other mathematics. Hopefully this will be much more e¤ective and rewarding than simply being
asked to learn various skills for no immediately apparent application. Many of the techniques �rst
introduced in a discrete mathematics course simply arise naturally as needed in this project, like
reindexing summation notation, inequalities, and telescoping sums. Instead of separately covering
various such topics and techniques, that class time could simply be spent on the project, and
students will learn those things in the process.

The project also asks students to conjecture from patterns they generate, develop their math-
ematical intuition and judgement, and try proving their conjectures, i.e., putting students in the
creative driver seat. The setting of sums of powers in the context of primary sources allows a
richness of questions and interpretations, especially includes deep connections to geometry and the
two-way interplay with calculus, as well as basic algebra and linear algebra, and a richness of proof
techniques, including natural comparison of the e¢ cacy of various proof methods.
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