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1 Introduction

On virtually the same day in 1847, two major new works on logic were published by prominent
British mathematicians: Formal Logic by Augustus De Morgan (1806–1871) and The Mathematical
Analysis of Logic by George Boole (1815–1864). Both authors sought to stretch the boundaries of
traditional logic by developing a general method for representing and manipulating logically valid
inferences or, as DeMorgan explained in an 1847 letter to Boole, to develop ‘mechanical modes of
making transitions, with a notation which represents our head work’ [18, p. 25 ]. In contrast to De
Morgan, however, Boole took the significant step of explicitly adopting algebraic methods for this
purpose. As De Morgan himself later proclaimed, “Mr. Boole’s generalization of the forms of logic
is by far the boldest and most original . . . ” (as quoted in [13, p. 174]).

Boole further developed his bold and original approach to logic in his 1854 publication An In-
vestigation of the Laws of Thought1. In this work, Boole developed a system of symbols (×,+) rep-
resenting operations on classes (or sets) which were symbolically represented by letters. In essence,
his logical multiplication xy corresponded to today’s operation of set intersection, and his logical
addition x + y to today’s operation of set union.2 Using these definitions, Boole then developed
the laws of this ‘Algebra of Logic,’ many of which also held true in ‘standard algebra’. Other laws,
however, differed substantially from those of standard algebra, such as the Idempotent Law3: x2 = x.

As noted by Boole, the Idempotent Law holds in standard algebra only when x = 0 or x = 1. He
further commented [4, p. 47] that for

. . . an Algebra in which the symbols x, y, z, &c. admit indifferently of the values 0 and 1,
and of these values alone . . . the laws, the axioms, and the processes . . . will be identical in
their whole extent with the laws, the axioms, and the processes of an Algebra of Logic.

∗Department of Mathematics and Physics; Colorado State University-Pueblo; Pueblo, CO 81001 - 4901;
janet.barnett@colostate-pueblo.edu.

1For further details on Boole’s work in logic and modifications made to it by John Venn (1834–1923) and C. S.
Peirce (1839–1914), see the project “Origins of Boolean Algebra in the Logic of Classes: George Boole, John Venn and
C. S. Peirce,” Janet Barnett author.

2For various technical reasons, Boole restricted his use of + to classes which were disjoint. Most of his immediate
followers, however, relaxed this restriction, so that their use of + corresponded exactly to today’s operation of set
union. British mathematician John Venn (1834–1923) discussed this issue in detail in the second (1894) edition of his
Symbolic Logic [20, pp. 42-46]. Ultimately, Venn adopted an unrestricted use of + ‘partly . . . because the voting has gone
this way, and in a matter of procedure there are reasons for not standing out against such a verdict . . . ’.

3For Boole, the Idempotent Law followed directly from the definition of xy as ‘the whole of that class of objects to
which the names or qualities represented by x and y are together applicable ’, from which ‘it follows that if the two symbols
have exactly the same signification, their combination expresses no more than either of the symbols taken alone would do.’
(See [4, p. 31].) Selecting the sheep from the class of sheep, for instance, gives us just the class of sheep, so that x x = x.
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In the early twentieth century, this special two-valued ‘arithmetical algebra’ became important in
the axiomatization of boolean algebras; Edward V. Huntington, for example, employed it as a model
for one of three postulate sets for boolean algebra in his 1904 paper Sets of Independent Postulates
for the Algebra of Logic4. In that work, Huntington defined addition and multiplication (which he
denoted by ⊕ and � respectively) by the following tables [10, p. 293]:

⊕ 0 1
0 0 1
1 1 1

� 0 1
0 0 0
1 0 1

For Huntington, these tables defined a completely abstract (i.e., meaningless) system. For Boole,
the equalities represented in these tables (e.g., 1 + 1 = 1)5 would have represented statements about
sets (i.e., the union of the universal set with itself is again the universal set). In this project, we
will see how this same two-valued system was employed in another concrete application of boolean
algebra in the mid-twentieth century: the design and analysis of circuits.

2 Claude Shannon, Boolean Algebra and Circuit Design

The algebraic methods introduced by Boole for the study of logic attracted considerable attention
from mathematicians in the years following publication of Laws of Thought. Alongside the various
refinements and extensions made to Boole’s system during these years, mathematics itself underwent
significant changes, becoming both increasingly abstract and more formal in its approach to proof. In
keeping with this trend, there came a loosening of the ties between the algebraic system introduced
by Boole and logic as a concrete interpretation of that system. In his classic The Algebra of Logic of
1914, for example, French mathematician Louis Couturat (1868–1914) went so far as to declare [6,
p. 1]:

The formal value of this calculus and its interest for the mathematician are absolutely
independent of the interpretation given it and of the application which can be made of
it to logical problem. In short, we shall discuss it not as logic but as algebra.6

4For further details on Huntington’s work , see the project “Boolean Algebra as an Abstract Structure: Edward V.
Huntington and Axiomatization,” Janet Barnett author.

5In Boole’s ‘Algebra of Logic’, the symbols ‘0’ and ‘1’ denoted two special classes: ‘nothing’ (‘empty set’) and
‘universe’ (‘universal set’) respectively. To justify the use of these symbols, Boole used the analogy between the roles
played by these numbers in algebra and the roles played by these special classes in logic [4, p. 47–48]. He argued, for
example, that since 0y = 0 in standard algebra, then ‘. . . we must assign to the symbol 0 such an interpretation that the
class represented by 0y may be identical with the class represented by 0, whatever the class y may be. A little consideration
will show that this condition is satisfied if the symbol 0 represent Nothing.’ A similar analysis of the algebraic equation
1y = y led him to conclude that ‘. . . the class represented by 1 must be “the Universe,” since this is the only class in which
are found all the individuals that exist in any class.’

6Similarly, Huntington opened his 1904 paper with the following declaration [10, p. 288]: ‘The algebra of symbolic
logic, as developed by Leibniz, Boole, C.S. Peirce, E. Schröder, and others is described by Whitehead as “the
only known member of the non-numerical genus of universal algebra.” This algebra, although originally studied merely
as a means of handling certain problems in the logic of classes and the logic of propositions, has recently assumed
some importance as an independent calculus; it may therefore be not without interest to consider it from a purely
mathematical or abstract point of view, and to show how the whole algebra, in its abstract form, may be developed
from a selected set of fundamental propositions, or postulates, which shall be independent of each other, and from
which all the other propositions of the algebra can be deduced by purely formal processes. In other words, we are to
consider the construction of a purely deductive theory, without regard to its possible applications.’
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It was not long, however, before individuals interested in problems outside of mathematics proper
gained exposure to boolean algebra and its unique properties, thanks in part to the work of Couturat
and other mathematicians interested solely in its formal algebraic structure. A 1949 list of some of
the applications which resulted from that exposure — applications largely undreamed of by Boole
and his Victorian colleagues — included “an axiomatic formulation of biology, the study of neural
networks in the nervous systems, the analysis of insurance policies, probability and set theory, etc.
[16, p. 588]”. The compiler of this list, American mathematician and electrical engineer Claude E.
Shannon (1916–2001), himself gained reknown for a particular application of boolean algebra.

Shannon completed bachelor degrees in both mathematics and electrical engineering at the Uni-
versity of Michigan in 1936. Two years later, at the age of 22, he completed a master’s thesis in
electrical engineering at the Massachusetts Institute of Technology. The idea which inspired his the-
sis work came from his exposure to symbolic logic in an undergraduate philosophy course. Vannever
Bush (1890–1974), dean of engineering at MIT and inventor an early mechanical computer called
the differential analyser machine, was sufficiently impressed by Shannon’s thesis to sponsor its pub-
lication in an engineering journal. This award-winning paper went on to revolutionize the study of
switches and relays, which in turn form the circuitry behind the binary arithmetic of modern comput-
ers7. Shannon then completed a doctorate in mathematics at MIT with a thesis on the application of
mathematics to genetics, and began his official career as a research mathematician at Bell Laborato-
ries in 1941. His association with Bell Labs, either as full time scientist or as a consultant, continued
until 1971. In 1948, he published yet another ground breaking paper, A Mathematical Theory of
Communication, thereby launching the still flourishing field of information theory. He married in
1949 (he and his wife had four children), and served as a faculty member and researcher at MIT
from 1956 through 1978. His work included important contributions to cryptography, game theory
and computer science; Shannon is also remembered for various mechanical inventions, and for his
successful stock investment strategies. Among his many honors was the first ever Marconi Lifetime
Achievement Award, awarded to him in 2000. By this time, sadly, Shannon suffered significantly
from the effects of Alzheimer’s disease; he died in a nursing home just a year later.

In the 1938 paper based on his master’s thesis, A Symbolic Analysis of Relay and Switching
Circuits, Shannon described the general problem to be solved and his proposed approach to it as
follows [14, p. 713]:

∞∞∞∞∞∞∞∞

In the control and protective circuits of complex electrical systems it is frequently necessary to
make intricate interconnections of relay contacts and switches. Examples of these circuits oc-
cur in automatic telephone exchanges, industrial motor-control equipment, and in almost any
circuits designed to perform complex operations automatically. In this paper a mathematical
analysis of certain of the properties of such networks will be made. . . .

The method of attack on these problems may be described briefly as follows: any circuit is
represented by a set of equations, the terms of the equations corresponding to the various
relays and switches in the circuit. A calculus is developed for manipulating these equations
by simple mathematical processes, most of which are similar to ordinary algebraic algorisms.
This calculus is shown to be exactly analogous to the calculus of propositions used in the
symbolic study of logic.

∞∞∞∞∞∞∞∞
7For more information on the connection of switch/relay circuitry to binary arithmetic, see the project “Arithmetic

Backwards from Shannon to the Chinese Abacus,” Jerry Lodder author.
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On one level, the key to applying symbolic boolean algebra to relay and switching circuits lay
in the fact that there are only two possible states for such circuits, open and closed, a situation
reminiscent of Boole’s special algebra on two symbols, 0 and 1. In fact, the arithmetical version of
Shannon’s postulates for networks as stated in this paper [14, p. 713] is identical to Huntington’s
two-valued model of boolean algebra (see page 2 of this project):

∞∞∞∞∞∞∞∞

Postulates

1. a. 0 · 0 = 0
b. 1 + 1 = 1

2. a. 1 + 0 = 0 + 1 = 1
b. 0 · 1 = 1 · 0 = 0

3. a. 0 + 0 = 0
b. 1 · 1 = 1

4. At any given time either X = 0 or X = 1.

∞∞∞∞∞∞∞∞

In a 1987 interview8 with Omni magazine, Shannon elaborated on the basic underlying analogy
between circuits and boolean algebra in response to the question ‘Was the basic insight that yes/no
can be embodied in on/off switches so trivial? ’ with the following comments [17, p. xxvi]:

∞∞∞∞∞∞∞∞

It’s not so much that a thing is “open” or “closed,” the “yes” or “no” that you mentioned.
The real point is that two things in series are described by the word “and” in logic, so you
would say this “and” this, while two things in parallel are described by the word “or.” The
word “not” connects with the back contact of a relay rather than the front contact. There are
contacts which close when you operate the relay, and there are other contacts which open, so
the word “not” is related to that aspect of relays. All of these things together form a more
complex connection between Boolean algebra, if you like, or symbolic logic, and relay circuits.

The people who had worked with relay circuits were, of course, aware of how to make these
things. But they didn’t have the mathematical apparatus of the Boolean algebra to work with
them, and to do them efficiently. . . .

They all knew the simple fact that if you had two contacts in series both had to be closed to
make a connection through. Or if they are in parallel, if either one is closed the connection is
made. They knew it in that sense, but they didn’t write down equations with plus and times,
where plus is like a parallel connection and times is like a series connection.9

8In this same interview [17, pp. xxv-xxvi], Shannon described the act of making the connection between Boolean
algebra and a relay circuit as “ not the main thing” and declared that “[t]he more important, harder part was working
out the details, how to interleave the topology of the switching circuits, the way the contacts are connected up and so
on, with the Boolean algebra expressions. Working that out was a lot of fun. I think I had more fun doing that than
anything else in my life, creatively speaking. ”

9In the only two scholarly articles which he published on this subject [14, 16], Shannon focused on ‘hindrance’ or
‘impedance’ at a contact as the central physical characteristic, rather than ‘flow’ across the contact resulting from a
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∞∞∞∞∞∞∞∞

In other words, the application of Boolean algebra to circuits provided an actual physical repre-
sentation for the corresponding symbolic operations. Diagrams depicting the two types of connections
and the corresponding operations are shown in Figure 1 below. An example of how to represent a
more complicated circuit with an algebraic equation, based on an example from Shannon [16, p. 589],
is shown in Figure 2.

Parallel Connection: X + Y

◦X ◦

◦ Y ◦

Series Connection: X · Y

◦X◦ ◦Y◦

Figure 1

◦X◦
◦ Y ◦

◦Z ◦ ◦X ′◦

◦W ◦

Figure 2: Network for W + X · (Y + Z ·X ′)

1. Shannon employed the notation X ′ to represent the ‘negative of X’, or ‘not-X’; thus, the
contact X ′ is closed (connection made between terminal points) whenever the contact X is
open (no connection made between terminal points), and vice versa. Explain why the overall
network in Figure 2 is closed when contact W is closed, regardless of the states of contacts X,
Y and Z. Then determine whether this network is open or closed when contact W is open and
contacts X, Y and Z are closed; explain your conclusion.

2. Represent the network in Figure 3 (adapted from [14, p. 715]) by a Boolean expression, using
+ for parallel connections and · series for connections.

◦W◦
◦W ′◦

◦X ◦ ◦ Y ◦
◦S′◦
◦V ◦ ◦ Y ◦ ◦Z ′◦
◦S ◦ ◦W ′◦ ◦Z◦
◦X ◦ ◦Z ◦

Figure 3: Network for project question 2.

connection being made. Under the impedance interpretation, an open circuit is said to have infinite impedance and a
closed circuit is said to have zero impedance; in this interpretation, ‘plus’ corresponds to a series connection (infinite
impedance when either the first or the second contact have infinite impedance: a+b = 1 iff a = 1 or b = 1), while ‘times’
corresponds to a parallel connection (infinite impedance when the first and the second contact have infinite impedance:
a · b = 1 iff a = 1 and b = 1). Owing to the dual principle of Boolean algebra, either interpretation (hindrance or flow)
can be used with equal ease. In the interest of consistency with current textbook writing, we deviate from Shannon’s
original interpretation and base all exercises in this project on the ‘flow’ interpretation as described in Shannon’s 1987
interview above; examples from Shannon’s earlier papers are modified accordingly.
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3. Sketch the network represented by the Boolean expression X + Y (Z + W ) + X ′Z, again using
+ for parallel connections and · series for connections.

Shannon used diagrams such as these not only to represent given circuits, but also to illustrate
Boolean algebra identities. The following excerpt gives his description of the basic Boolean identities
for circuits [14, p. 713-714].

∞∞∞∞∞∞∞∞

X + Y = Y + X (1a)
XY = Y X (1b)
X + (Y + Z) = (Z + Y ) + Z (2a)
X(Y Z) = (XY )Z (2b)
X(Y + Z) = XY + XZ (3a)
X + Y Z = (X + Y )(X + Z) (3b)
1 ·X = X (4a)
0 + X = X (4b)
1 + X = 1 (5a)
0 ·X = 0 (5b)

. . .

Due to the associative laws (2a and 2b) parentheses may be omitted in a sum or product of
several terms without ambiguity. . . .

The distributive law (3a) makes it possible to “multiply out” products and to factor sums.
The dual of this theorem (3b), however, is not true in numerical algebra.

. . . The negative of a hindrance X will be written X ′ and is defined as a variable which is
equal to 1 when X equals 0 and equal to 0 when X equals 1. . . . The definition of the
negative of a hindrance gives the following theorems:

X + X ′ = 1 (6a)
XX ′ = 0 (6b)
0′ = 1 (7a)
1′ = 0 (7b)
(X ′)′ = X (8)

∞∞∞∞∞∞∞∞

Many of the laws listed above by Shannon are familiar from standard algebra. The most unfa-
miliar law, perhaps, is his (3b): X + Y Z = (X + Y )(X + Z). The fact that (logical) addition is
distributive over (logical) multiplication was, however, already a familiar boolean algebra property
to Shannon’s predecessors. The following question examines this law from the perspective of circuits.

4. Figure 4 below (adapted from [16, p. 591]) uses network diagrams to illustrate the distributive
law (3b). Explain why these two circuits are equivalent by discussing what configurations of
open (no connection made) and closed (connection is made) contacts are needed for flow across
the overall network.
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X + Y · Z◦X ◦

◦Y ◦ ◦Z ◦

(X + Y ) · (X + Z) ◦X ◦

◦Y ◦

◦X ◦

◦Z ◦

Figure 4: Network for project question 4.

Now complete the table below to show that the two Boolean expression are equivalent for all
possible values of the variables in the boolean algebra on {0, 1}.

X Y Z Y Z X + Y X + Z X + Y Z (X + Y )(X + Z)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Shannon referred to the proof technique in which all possible cases are directly verified, as is
done in the above table, as the ‘method of perfect induction’ [14, p. 714]. In light of its simplicity,
his 1938 paper included only one proof as an illustration of the technique. As Shannon himself
noted, however, this proof technique is helpful in the context of circuits precisely because ’each
variable is limited to just two values’ [14, p. 714]. Since this is not the case for all boolean algebras,
establishing these identities in general required more sophisticated proof techniques, such as those
used in Huntington’s 1904 paper on the axiomatization of boolean algebra. Because Shannon was
interested in applying the properties of general boolean algebras to the specific two-valued boolean
algebra defined by circuits, he proceeded to show that the two-valued algebra of circuits did, in fact,
satisfy all Huntington’s axioms for a general boolean algebra. As a consequence, any property which
could be proven for a general boolean algebra necessarily held for the specific two-valued algebra of
circuits.

Having established this correspondence, Shannon next listed several other boolean algebra iden-
tities, citing them as immediate consequences of the equivalence between circuits and symbolic logic.
Among the more important of these were the following [14, pp. 714–715]:

∞∞∞∞∞∞∞∞

(X + Y + Z + . . .)′ = X ′ · Y ′ · Z ′ . . . (9a)
(X · Y · Z . . .)′ = X ′ + Y ′ + Z ′ . . . (9b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X = X + X = X + X + X = etc. (14a)
X = X ·X = X ·X ·X = etc. (14b)
X + XY = X (15a)
X(X + Y ) = X (15b)
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∞∞∞∞∞∞∞∞

Notice that, as he had already done with the first three postulates for circuits and with the basic
identities (1) - (7), Shannon arranged these properties as pairs ‘to emphasize a duality relationship
between the operations of addition and multiplication and the quantities zero and one’ [14, pp. 713]. This
principle of duality was also well-known to his predecessors, and served as ‘a characteristic feature of
the algebra’ [10, p. 294]. As noted by Shannon, this principle also ‘gives each theorem a dual theorem,
it being necessary to prove only one to establish the both.’ [14, pp. 713]. Thus, as an immediate
consequence of the Idempotent Law for Multiplication — Boole’s x2 = x and Shannon’s Property
(14b) — we are able to conclude that the Idempotent Law for Addition — Shannon’s Property (14a)
— is also valid. The following question explores the use of Shannon’s method of perfect induction
and the principle of duality within the context of Shannon’s Identities (9ab) and (15ab), known as
DeMorgan’s Laws and Absorption respectively.

5. This question examines the Laws of Absorption, Shannon’s Properties (15ab), in more detail.

(a) First complete the following tables for the two Absorption Laws, and comment on how
they prove the validity of these two properties within the context of circuits.

X Y XY X + XY

0 0
0 1
1 0
1 1

X Y X + Y X(X + Y )
1 1
1 0
0 1
0 0

(b) Now compare these two tables, and comment on how they illustrate the ‘ duality relationship
between the operations of addition and multiplication and the quantities zero and one’.

(c) Recall that in Boole’s logic of classes multiplication corresponds to the operation of set
intersection and addition corresponds to the operation of set union. Use this interpretation
to explain why the Absorption Laws are also valid within this interpretation.

6. This question examines DeMorgan’s Laws [Shannon’s Properties (9ab)] in more detail.

(a) For two variables X and Y , the first of DeMorgan’s Law is the equality: (X +Y )′ = X ′ ·Y ′

Complete the following tables to show that this law holds for circuits by the method of
perfect induction.

X Y X + Y (X + Y )′ X ′ Y ′ X ′ · Y ′

0 0
0 1
1 0
1 1

Then use the principle of duality to explain why the following dual version of DeMorgan’s
Law for two sets is also valid: (X · Y )′ = X ′ + Y ′.

(b) As stated by Shannon, DeMorgan’s Law applied to any number of sets. Shannon also
described this generalization as a (mechanical) method by which “the negative of any
function may be obtained by replacing each variable by its negative and interchanging the +
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and · rules. . . . For example, the negative of X +Y · (Z +WX ′) will be X ′[Y ′ +Z ′(W ′ +X)]
[14, p. 715]. ”
Without Shannon’s method, negation of complicated expressions requires iterative ap-
plications of the basic two-set version of De Morgan’s Laws: (XY )′ = X ′ + Y ′and
(X + Y )′ = X ′Y ′. For example, taking the example considered by Shannon above, we
have:

[X + Y · (Z + WX ′)]′ = X ′ ·
[
Y · (Z + WX ′)

]′︸ ︷︷ ︸
= X ′ ·

[
Y ′ + (Z + WX ′)′︸ ︷︷ ︸

]

= X ′ ·
[
Y ′ + (Z ′ · (WX ′)′︸ ︷︷ ︸)

]
= X ′ · [Y ′ + Z ′ · (W ′ + X ′′)]

= X ′ · [Y ′ + Z ′ · (W ′ + X)]

Re-write each of the following by first using Shannon’s method, and then via the iterative
De Morgan’s Law technique. Which method do you prefer, and why?

(i) [XY ′ + Z]′ (ii) [XW (Y ′ + Z)]′

(c) At one point in his work on general boolean algebras, Huntington showed how De Morgan’s
Laws can be used to define the operation + in terms of the operations · and ′; namely,
X + Y = (X ′ ·Y ′)′. Does this mean that all relay networks can be constructed using only
series connections? Explain.

One of Shannon’s goals in applying boolean algebra to the study of circuits was to use algebraic
techniques to simplify complicated systems, as he described in the following excerpt from his 1949
paper The Synthesis of Two-Terminal Switching Circuits [16, p. 590].

∞∞∞∞∞∞∞∞

By means of Boolean Algebra it is possible to find many circuits equivalent in operating
characteristics to a given circuit. The hindrance of the given circuit is written down and
manipulated according to the rules. Each different resulting expression represents a new
circuit equivalent to the given one. In particular, expressions may be manipulated to eliminate
elements which are unnecessary, resulting in simple circuits.

∞∞∞∞∞∞∞∞

For example, the following computation confirms that the element Z can be eliminated from the
network from Figure 2, a fact which careful examination of the network diagram in Figure 2 also
reveals:

W + X · (Y + Z ·X ′) = W + XY + X(ZX ′) = W + XY + (XX ′)Z = W + XY + 0 · Z = W + XY

9



◦W◦

◦X ◦ ◦Y ◦

Figure 5: A network equivalent for W + X(Y + Z ·X ′).

7. Use boolean algebra identities, including the law of absorption (Shannon’s properties 15ab) to
show that the networks in Figure 6 are equivalent.

(a)

◦V ◦ ◦W◦ ◦Y◦

◦X ◦ ◦ Z ◦
◦X ◦ ◦Z ◦

◦ Y ′◦
◦W ′◦
◦V ′◦

(b)

◦X◦ ◦Z◦

Figure 6: Networks for project question 7.

8. Use boolean algebra identities to show that the network represented by the expression W ·
(XY + W ′) · [S′Y Z ′ + V Y Z ′ + SWZ + XZ] is equivalent to the network in Figure 7. Then
sketch the network for the full expression W · (XY + W ′) · [S′Y Z ′ + V Y Z ′ + SWZ + XZ], and
comment on the relative simplicity of the two equivalent networks.

◦W ◦ ◦X◦ ◦Y◦
◦Z ′◦

◦S′◦

◦V◦

◦Z◦

Figure 7: Network for project question 8.

To algebraically simplify very complicated networks, such as that in Figure 3 above, Shannon
employed a method of representing Boolean-valued functions dating back to Boole’s own Laws of
Thought [5]. In fact, this method of representation formed the core of Boole’s technique of logical
deduction via algebraic manipulation. Like Boole, Shannon compared this method to a familiar idea
from calculus [14, p. 715].

∞∞∞∞∞∞∞∞

The notation f(X1, X2, . . . Xn) will be used to represent a function. Thus, we have
F (X, Y, Z) = XY + X ′(Y ′ + Z ′). In infinitesimal calculus it is shown that any function
(providing it is continuous and all derivatives are continuous) may be expanded in a Taylor
series. A somewhat similar expansion is possible in the calculus of propositions. To develop
the series expansion of functions first note the following equations.
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f(X1, X2, . . . Xn) = X1 · f(1, X2, . . . Xn) + X ′
1f(0, X2, . . . Xn) (10a)

f(X1, X2, . . . Xn) = [f(0, X2, . . . Xn) + X1] · [f(1, X2, . . . Xn) + X ′
1] (10b)

These reduce to identities if we let X1 equal either 0 or 1. In these equations the function f
is said to be expanded about X1.

Some other theorems useful in simplifying expressions are given below:
. . .

Xf(X, Y, . . . Z) = Xf(1, Y, . . . Z) (17a)
X + f(X, Y, . . . Z) = X + f(0, Y, . . . Z) (17b)

. . .

All of these theorems may be proved by the method of perfect induction.
. . .

∞∞∞∞∞∞∞∞

9. Verify that Shannon’s identity 10a using his method of perfect induction.
That is, first show that this identity holds in the case X1 = 0, simplifying the right-hand side
as needed, and then verify that this identity holds in the case X1 = 1.

Then provide similar proofs for Shannon’s identities 10b, 17a and 17b.

10. In his work on the logic of classes, Boole represented x′ by the expression 1 − x (i.e., the
universal set ‘1’ with the set ‘x’ removed). Writing f(x) = ax + b(1−x), he was therefore able
to algebraically solve for the coefficients a and b simply by letting x = 0 and x = 1 respectively
[5, p. 72]. Verify that this gives the expansion f(x) = f(1)x + f(0)(1 − x), and compare this
expression to Shannon’s identity 10a.

We will consider Shannon’s expansion of a function about two or more variables in Section 3 of
this project. First, we look at how he used the expansion about one variable given in identity 17b
to simplify circuits [14, p. 715]10.

∞∞∞∞∞∞∞∞

The hindrance function Xab for this circuit will be:

Xab = W + W ′(X + Y ) + (X + Z)(S + W ′ + Z)(Z ′ + Y + S′V )
= W + X + Y + (X + Z)(S + 1 + Z)(Z ′ + Y + S′V )
= W + X + Y + Z · (Z ′ + Y + S′V )

These reductions were made with 17b using first W , then X and Y as the “X” of 17b. Now
multiplying out

Xab = W + X + Y + ZZ ′ + ZY + ZS′V
= W + X + Y + ZS′V

10Note that this expression is the dual of the expression for the circuit shown in Figure 3 above.
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∞∞∞∞∞∞∞∞

11. This question provides a slightly different derivation of Shannon’s simplified form for Xab from
the preceding excerpt.

Begin by letting

f(W,X, Y, Z, S, V ) = W ′(X + Y ) + (X + Z)(S + W ′ + Z)(Z ′ + Y + S′V ),

so that Xab = W + f(W,X, Y, Z, S, V ).

Explain why

f(0, X, Y, Z, S, V ) = X + Y + (X + Z)(S + 1 + Z)(Z ′ + Y + S′V ).

Why can we replace this by last expression by X + Y + (X + Z)(Z ′ + Y + S′V )?

Using this latter value for f(0, X, Y, Z, S, V ) in identity 17b, conclude that

Xab = W + f(W,X, Y, Z, S, V ) = W + X + Y + (X + Z)(Z ′ + Y + S′V ).

(Up to this point, our derivation corresponds essentially Shannon’s first step.)

Next, let g(X, Y, Z, S, V ) = Y +(X+Z)(Z ′+Y +S′V ), so that Xab = W +[X+g(X, Y, Z, S, V )].
Explain why g(0, Y, Z, S, V ) = Y + Y X ′V , then use this value in identity 17b to conclude that

Xab = W + X + Y + ZS′V

12. The derivation outlined in project question 11, as well as Shannon’s derivation of that same
simplified form, both made use of Shannon’s identity 17b. Try to obtain this same simplified
form by instead using the more standard algebraic process of expansion (i.e., using distributivity
of multiplication over addition), beginning with the original expression W +W ′(X +Y )+(X +
Z)(S + W ′ + Z)(Z ′ + Y + S′V ). Comment on the efficiency of these different approaches to
simplification.

3 Boolean Functions and Synthesis of Circuits

In 1892, a supporter of Boole’s approach to logic, W. E. Johnson, wrote [11, p. 3]:

As a material machine is an instrument for economising the exertion of force, so a symbolic
calculus is an instrument for economising the exertion of intelligence. And, employing
the same analogy, the more perfect the calculus, the smaller would be the amount of
intelligence applied as compared with the results produced. . . . It will appear that the
logical calculus stands in a unique relation to intelligence; for it aims at exhibiting, in
a non-intelligent form those same intelligent principles that are actually required for
working it.

The circuits used in modern computing technology also serve as an economizing instrument for the
exertion of both force and intelligence, with Boole’s logical calculus providing the necessary non-
intelligent, mechanical mode for making them work in required ways. In this closing section of this
project, we consider the problem of “synthesis” for circuits: given a specific set of desired inputs and
outputs, construct a network of series and parallel connections corresponding to those values.
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The mathematical ideas needed to solve this problem were, in fact, developed by Boole in connec-
tion with problems in logic. Boole’s goal was to take a logical expression that involved any number
of logical variables and represent it as a particular kind of sum. For a logical expression f(x) of just
one variable, the desired sum had the form f(x) = ax + b(1 − x). Boole referred to this process as
“developing f(x)”. The following excerpt shows how Boole developed a method for computing the
coefficients a and b in this sum [5, p. 74].

∞∞∞∞∞∞∞∞

Assume then,

f(x) = ax + b(1− x),

and making x = 1, we have

f(1) = a.

Again, in the same equation making x = 0, we have

f(0) = b.

Hence, the values of a and b are determined, and substituting them in the first equation, we
have

f(x) = f(1)x + f(0)(1− x);
as the development sought11.

∞∞∞∞∞∞∞∞

Using Shannon’s notation x′ to denote the expression 1 − x, note that this equation can be
re-written as:

f(x) = f(1)x + f(0)x′.

Before looking at a specific example, read Boole’s description of how to develop a function f(x, y) of
two variables [5, p. 74]:

∞∞∞∞∞∞∞∞

. . . we have

f(x, y) = f(1, 1)xy + f(1, 0)x(1− y) + f(0, 1)(1− x)y + f(0, 0)(1− x)(1− y),

for the expansion required. Here f(1, 1) represents what f(x, y) becomes when we make
therein x = 1, y = 1; f(1, 0) represents what f(x, y) becomes when we make therein x = 1,
y = 0, and so on for the rest.

∞∞∞∞∞∞∞∞

11Boole included a footnote at this point in which he showed how to derive this same equation by substituting xn = x
into the Taylor’s series expansion of a function f(x) and manipulating the result algebraically.
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13. Using Shannon’s notation of x′ for 1− x, Boole’s expansion of f(x, y) can be written as

f(x, y) = f(1, 1)xy + f(1, 0)xy′ + f(0, 1)x′y + f(0, 0)x′y′.

Use this expansion to verify that the following table of function values defines the function
represented by f(x, y) = xy + x′y.

x y f(x, y)
0 0 0
0 1 1
1 0 0
1 1 1

14. Use Boole’s notation to write out the eight terms of the expansion for a function of three
variables, f(x, y, z); then translate this into Shannon’s notation.

Shannon also considered this type of expansion for a function f(x1, x2, . . . , xn) of n variables. In
both [14, 16], he noted that the expansion will include 2n terms, where each of these term will have
the form ’Cy1y2y3 . . . yn’ with the coefficient C equal to either 0 or 1 and each yi equal to either xi

or x′
i. Today, this form of expansion is referred to as the disjunctive normal form of the function.
As an example, note that the function f(x, y, z) = x′y + y′z′ + xyz is NOT in disjunctive normal

form as it is currently written, since the variable z is missing from the first term, while the variable
x is missing from the second term. However, we can re-write this function in disjunctive normal
form as follows: f(x, y, z) = x′yz + x′yz′ + xy′z′ + x′y′z′ + xyz. Notice that some of the terms in the
disjunctive normal form have zero coefficients, and therefore do not need to be written.

The next project question illustrates two methods for finding the disjunctive normal form of any
function, given the function as a boolean expression.

15. Consider the function f(x, y, z) = yz + xy′.

(a) Calculate the values of f(x, y, z) for all possible values of x, y, z, and use these values in
your expansion from project question 14 to find the disjunctive normal form of f . (You
should find four non-zero terms.)

(b) Now use the facts that x + x′ = 1 and z + z′ = 1 to find the disjunctive normal form by
expanding f(x, y, z) = 1 · (yz) + 1 · (xy′).

(c) Which method do you prefer, and why?

The remaining project question illustrate the use of the disjunctive normal form to find a boolean
expression of any function, given the function as a table of values.
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16. Suppose we wish to build a circuit which corresponds to the following table of values for an
unknown function f(x, y, z) given below.

x y z f(x, y, z)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Use your expansion from project question 14 to find the disjunctive normal form of f , and
simplify your result to show that f(x, y, z) = y + xz′. Then sketch the network corresponding
to y + xz′. How easy would it have been to determine this circuit directly from the table of
values, rather than from its Boolean expression?

17. Find the disjunctive normal form of the function f represented by the following table, and use
it to sketch the corresponding network.

x y z f(x, y, z)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

18. Find the disjunctive normal form of the function f represented by the following table, and use
it to sketch the corresponding network.

x y z f(x, y, z)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

19. Describe a general method for finding the disjunctive normal form of a Boolean function f
from its table of values.

20. How would you define the conjunctive normal form of a Boolean function? Give an example,
and discuss possible method(s) for finding this form for a given function in disjunctive normal
form and/or from a table of values.
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4 Notes to the Instructor

This project is designed for an introductory or intermediate course in discrete or finite mathematics
that considers boolean algebra from either a mathematical or computer science perspective. The
project does assume some (very minimal) familiarity with the set operations of union and intersection.
This pre-requisite material may be gained by completing the companion (Boole) project described
below, through reading a standard textbook treatment of elementary set operations, or via a short
class discussion/lecture.

Based on a award-winning paper by Claude Shannon, A Symbolic Analysis of Relay and Switching
Circuits, this project begins with a concise overview of two historical antecedents to Shannon’s work.
The first of these is George Boole’s original work on ‘the logic of classes,’ included in part to provide
students with a connection to another concrete example of a boolean algebra on which they can
draw; the second of these is Edward Huntington’s work on the axiomatization of boolean algebras,
included in part to emphasize to students the relationship between abstract axiomatic structures and
concrete models as examples of those structures. Section 2 of the project introduces and develops
the use of boolean expressions to represent parallel and series circuits. Within the concrete context
of the 2-valued boolean algebra associated with these circuits, the standard properties of a boolean
algebra are developed in this section; specific project questions in this section also provide students
with practice in using these identities to simplify and manipulate boolean expressions. In Section
3, the concept of a ‘disjunctive normal form’ for boolean expressions is introduced in the context of
circuit design.

Two other projects on boolean algebra are available as companions to this project, either or both
of which could also be used independently of this project. The first companion project “Origins of
Boolean Algebra in the Logic of Classes: George Boole, John Venn and C. S. Peirce,” is suitable as
a preliminary to either the Huntington project or to the Shannon project. Without explicitly intro-
ducing modern notation for operations on sets (until the concluding section), that project develops
a modern understanding of these operations and their basic properties within the context of early
efforts to develop a symbolic algebra for logic. By steadily increasing the level of abstraction, that
project also lays the ground work for a more abstract discussion of boolean algebra as a discrete
structure, and explores a variety of other mathematical themes, including the notion of an inverse
operation, issues related to mathematical notation, and standards of rigor and proof.

The second companion project “Boolean Algebra as an Abstract Structure: Edward V. Hunting-
ton and Axiomatization” could be used either as a preliminary to or as a follow-up to the Shannon
project on circuit design. That project explores the early axiomatization of boolean algebra as an
abstract structure, based on Huntington’s 1904 paper Sets of Independent Postulates for the Algebra
of Logic. In addition to introducing the now standard axioms for the boolean algebra structure, the
project illustrates how to use these postulates to prove some basic properties of boolean algebras.
Specific project questions also provide students with practice in using symbolic notation, and en-
courage them to analyze the logical structure of quantified statements. The project also examines
Huntington’s use of the two-valued Boolean algebra on K = {0, 1} — first studied by George Boole
in his work on the logic of classes — as a model to establish the independence and consistency of one
of his postulate sets. The final section of the project discusses modern (undergraduate) notation and
axioms for boolean algebras, and provides several practice exercises to reinforce the ideas developed
in the earlier sections.

Implementation with students of any of these projects may be accomplished through individually
assigned work, small group work and/or whole class discussion; a combination of these instructional
strategies is recommended in order to take advantage of the variety of questions included in the
project.
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