
Algorithms, Recursion and Induction: Euclid
and Fibonacci

Desh Ranjan
Department of Computer Science

Old Dominion University, Norfolk, VA 23529

1 Introduction

The central task in computing is designing of efficient computational meth-
ods, or algorithms, for solving problems. An algorithm is a precise description
of steps to be performed to accomplish a task or solve a problem.

Recursion or recursive thinking is a key concept in solving problems and
designing efficient algorithms to do so.Often when trying to solve a problem,
one encounters a situation where the solution to a larger instance of the
problem can be obtained if an appropriate smaller instance (or several smaller
instances) of the same problem could be solved. Similarly, often one can
define functions where values at “larger” arguments of the function are based
on its own value at “smaller” argument values. In the same vein, sometimes
it is possible to describe how to construct larger objects from smaller objects
of similar type.

However, the obvious question/difficulty here is how does one obtain so-
lution to smaller instances. If one were to think as before (recursively!) this
would require solving further smaller instances (sub-instances) of the same
problem. Solving these sub-instances could lead to requiring solution of sub-
sub-instances, etc. This could all become very confusing and the insight that
the larger problem could have been solved using the solutions to the smaller
problems would be useless if indeed one could not in some systematic way
take advantage of it. Use of proper recursive definitions and notation allows
us to avoid this confusion and harness the power of recursive thinking.

As an example of a recursive method of computation consider the well-
known factorial function (N !). N ! is defined to be N × (N − 1)× (N − 2)×
. . . × 2 × 1. How can one compute the factorial function? One can do that
by multiplying the numbers 1 through N . But an alternative way to think
about solving the problem is the following: If one could compute (N − 1)!,
one could compute N ! by simply multiplying (N −1)! by N . In other words,
N ! = N × (N − 1)!. Interestingly enough, today we can program this very
simply as a computational method.Most high-level programming languages

1



used today allow for use of recursion directly by allowing recursive functions.
Recursion is a very powerful concept in defining objects or designing

methods to solve problems. However, one has to be careful when using
recursion as there is clearly scope for self-reference, cyclic or incomplete def-
initions, and consequently ill-defined objects or methods (which can lead to
infinite loops!).

TASKS:

• The definition of factorial function above is not complete. It does not
tell us when the recursion should “stop”. All proper definitions should
tell us when to stop or what are the base cases. Complete the above
definition and write pseudocode for a recursive function that computes
the factorial function.

• Consider the sum 1 + 2 + 3 + 4 + . . . + N . Let S(N) denote this sum.

– Write an iterative program that that given N as input computes
S(N).

– Give a recursive definition for S and pseudocode for a recursive
program that given N as input computes S(N).

• Explain how one can think of a complete binary tree as a recursive
structure. (Think about how one can construct a complete binary tree
with n + 1 levels using complete binary trees with n levels).

• One can sort a list of N numbers by first sorting the first N−1 numbers
(ignoring the last number) and then inserting the last number in the
appropriate place. Write pseudocode for a recursive algorithm to sort
an array of N numbers that uses the above idea.

There is evidence that recursive thinking has been used by human beings
for problem solving for many centuries. Some philosophers even contend that
ability to think recursively is what separates humans from all other species!
A clear example of recursive definition arises when one tries to formalize
what constitutes a valid sentence in a natural language (say English). This
is because a valid sentence can include within itself another shorter valid
sentence which can contain within itself another shorter valid sentence and
this “nesting” can continue ad infinitum. The grammar for the language

2



specifies rules that allow for determination of validity of a sentence. The
best way to capture these rules require recursive thinking and notation. In
the 1960s Noam Chomsky developed what are now called Chomsky Gram-
mars for defining languages that use recursive rules explicitly. Interestingly
enough, Indian linguist Panini provided the rules of Sanskrit grammar in his
treatise Ashtadhyayi, in a similar way, more than two thousand years before
Chomsky and Chomsky in his work credits him with that. Many mathe-
maticians have used recursive thinking in problem solving over the centuries
explicitly or implicitly. A function that is often referred to as an example of
a recursively defined function is the one that computes the nth number of a
Fibonacci sequence.

2 Fibonacci and Fibonacci Numbers

Fibonacci (c. 1170 – c. 1250), an Italian mathematician, was born as
Leonardo Pisano. His father Gugliemo was nikcnamed Bonaccio (which
means “good natured” or simple in Italian). Leonardo aquired his nickname
Fibonacci after his death. Leonardo was an enormously talented mathe-
matician. He is best known for the adoption of the Indian numeral system
(the numeration system we use today) in Europe. As a young boy Leonardo
traveled to help his father who directed a trading post in Bugia, a port
east of Algiers. This is where he learned about the Hindu numeral system
and realized that it was a much more efficient system than Roman numer-
als to represent numbers and do calculations with them. He also traveled
throughout the Mediterranean world to study under Arab mathematicians
of the time, returning to Italy in about 1200. In 1202 he published the
book Liber Abaci (Book of Calculations) which introduced the Hindu nu-
meral system to Europe. In Liber Abaci (1202), Fibonacci introduces the
so-called modus Indorum (method of the Indians), today known as Hindu
numerals ([4, 1]). The book advocated numeration with the digits 0–9 and
place value. The book showed the practical importance of the new numeral
system, using lattice multiplication and Egyptian fractions, by applying it to
commercial bookkeeping, conversion of weights and measures, the calculation
of interest, money-changing, and other applications. The book was well re-
ceived throughout educated Europe and had a profound impact on European
thought. Fibonacci also authored other books of which Liber quadratorum
(“The Book of Squares”) is also very well known to mathematicians. He also

3



authored a compendium on geometry and trigonometry called Practica Ge-
ometriae. Some of the works of Leonardo (including a commentary on Book
X of Euclid’s Elements) are assumed to be lost. Later in his life Leonardo
became a friend of Emperor Frederick II of Hohenstaufen who enjoyed math-
ematics and science. In 1240, the Republic of Pisa honored Leonardo by
granting him a salary.

Liber Abaci also posed, and solved, a problem involving the growth of
a hypothetical population of rabbits based on idealized assumptions. The
solution was a sequence of numbers that later came to be known as known as
Fibonacci numbers. The number sequence was known to Indian mathemati-
cians as early as the 6th century [5, 6], but it was Fibonacci’s Liber Abaci
that introduced it to the West. Below, we produce the part of Liber Abaci
(translated by Sigler) [4] that talks about this problem and the solution.

∞∞∞∞∞∞∞∞

How many pairs of rabbits are created by one pair in one year

A certain man had one pair of rabbits together in a certain enclosed place,
and one wishes to know how many are created from one pair in one year when it
is the nature of them in a single month to bear another pair, and in the second
month those born to bear also. Because the abovewritten in the first month
bore, you will double it; there will be two pairs in one month. One of these,
namely the first, bears in second month, and thus there are in the second month
3 pairs; of these in one month two are pregnant, and in the third month 2 pairs
of rabbits are born, and thus there are 5 pairs in the month; in this month 3 pairs
are pregnant, and in the fourth month there are 8 pairs, of which 5 pairs bear
another 5 pairs; these are added to the 8 pairs making 13 pairs in the fifth month;
these 5 pairs that are born in this month do not mate in this month, but another
8 pairs are pregnant, and thus there are in the sixth month 21 pairs;[p284] to
these are added the 13 pairs that are born in the seventh month; there will be 34
pairs in this month; to this are added 21 pairs that are born in the eigth month;
there will be 55 pairs in this month; to these are added 34 pairs that are born in
the ninth month; there will be 89 pairs this month; to these are added 55 pairs
that are born in the tenth month; there will be 144 pairs in this month; to these
are added again the 89 pairs that are born in the eleventh month; there will be
233 pairs in this month. To these are still added the 144 pairs that are born in
the last month; there will be 377 pairs, and these many pairs are produced from
the abovewritten pair in the mentioned place at the end of one year.

4



first 2
second 3
third 5
fourth 8
fifth 13
sixth 21
seventh 34
eighth 55
ninth 89
tenth 144
eleventh 233
twelfth 377

You can indeed see in the margin how we operated, namely that we added
the first number to the second, namely the 1 to the 2, and the second to the
third, and the third to the fourth, and the fourth to the fifth, and thus one after
another until we added tenth to the eleventh, namely 144 to the 233, and we
had the abovewritten sum of rabbits, namely 377, and thus you can in order find
it for unending number of months.

∞∞∞∞∞∞∞∞

TASKS:

• Compute the number of rabbit pairs at the the end of the 13th and

14th months. How many rabbit pairs are there after 2 years?

• Fibonacci explains in the second paragraph how “we operated”. Then
at the end of the paragraph, he concludes “..and thus you can in or-
der find it for any unending number of months”. How do you think
Fibonacci would have computed the number of pairs of rabbits after 2
years ? Carry out the computation as you think he would have. Would
you call this a recursive method?

• In his explanation of “how we operated”, Fibonacci talks about adding
the first number to the second, second to the third, third to the fourth
and so on. One can then notice that the twelfth (Fibonacci) number is
obtained by adding the eleventh (Fibonacci number) to the tenth (Fi-
bonacci number), etc. Let F (n) denote the number of rabbit pairs after

5



n months. So, for example, F (1) = 2, F (2) = 3, F (4) = 5, F (12) = 377
etc. Fibonacci’s method also demonstrates how to obtain the value
of F (n) from “previous” values of F . Use this to provide a complete
recursive definition of F .

• [Programming Exercises]

– Develop a computer program based on Fibonacci original calcula-
tion method to compute the nth Fibonacci number. Analyze the
runtime and space requiremrnts for this program.

– Develop a purely recursive computer program RECURSIV EF IB(n)
that given an input n computes the nth Fibonacci number. How
many recursive calls does RECURSIV EF IB(n) make to compute
F (n) ?

– The runtime and the number of recursive calls of RECURSIV EF IB
can be reduced substantially by systematically storing the previ-
ously computed values and using them. Explain how one can write
a recursive program to compute nth Fibonacci number that uses
auxillary storage to avoid re-computation. Analyze the runtime
and space requirements of this program. How do these compare
to that of your other two programs.

– Explain, how you can further reduce the space requirement of your
first program (without increasing the runtime) and implement a
fourth program to compute nth Fibonacci number that makes this
improvement.

• One advantage of defining functions recursively is that it allows easy
use of the method of induction to prove some properties of the function.
Use induction to show that for all n ≥ 1, F (n) ≤ 2n.

• Use induction to show that for all n ≥ 1, F (n) ≥ (3/2)n. What does
this tell you about the runtime of RECURSIV EF IB(n) ?

• [Advanced Work] Find an exact “formula” for F (n).

6



3 Euclid’s Algorithm

As stated in the introduction, the notion of algorithms is central to comput-
ing. One of the very first algorithms introduced in a course on algorithms
is Euclid’s algorithm to compute the greatest common divisor (GCD) of two
numbers. The algorithm was described by Euclid more than two thousand
years ago as Proposition 2 in Book VII of the compendum Elements. While
this algorithm is presented in numerous different ways, Euclid’s original de-
scription can be paraphrased as follows ([2, 3])

Let a and b (a < b) be two numbers that are not prime to each other. If
a divides b then a is the gcd of a and b. Otherwise repeatedly subtract the
lesser number continually from the greater. In this process some number will
be left that will divide the one before it. This will be the GCD of a and b.

There is some ambiguity as to what Euclid meant by “the number left”
and the “one before it” ([3]). Today, we understand the “number left” as the
number left after repeatedly subtracting the smaller number from the larger
number until what remains is less than the smaller number. At this point the
“larger” and the “smaller” number are switched. If the smaller now divides
the larger then the smaller is the GCD, otherwise the process of subtracting
smaller from the larger is repeated.

4 Runtime Analysis of Euclid’s Algorithm

In this section, we analyse the runtime of Euclid’s Algorithm. It turns out
that the the analysis is closely related to the Fibonacci Numbers. It is in-
teresting that the algorithm that is often the first algorithm presented in an
algorithms course and a sequence that is one of the earliest presented when
recursion is typically introduced happen to be so closely related.

TASKS:

• In modern terminology “the number left” is referred to as the remainder
and if we are dividing b by a (a ≤ b) the remainder is denoted by
b mod a. Use this notation to provide an iterative version of Euclid’s
algorithm.

7



• Although Euclid does not state it this way, one can notice that while
computing the GCD of two numbers a and b with a ≤ b, one first checks
if a|b (if so, a is the GCD) and if not the same process is applied to the
numbers a and b mod a. Use this idea to provide a recursive version of
Euclid’s algorithm.

• Compute the GCD of 34 and 21 using Euclid’s (either) method. Com-
pute the GCD of 377 and 233 using Euclid’s method.

• Guess how many mod operations it takes to compute the GCD of Fn

and Fn−1. Prove this using induction.

• Let a and b denote the two numbers (a ≤ b) in Euclid’s algorithm
(either version) at some point in execution. Let n be the smallest
number such that Fn ≥ b. Let a′ and b′ denote the two numbers (a′ <
b′) after Euclid’s algorithm has performed two more mod operations.
Show that b′ ≤ Fn−1.

Hint: Consider the two cases, a ≤ Fn−1 and a > Fn−1 separately.

• Use induction to show that to compute GCD of two numbers a, b with
a < b, Euclid’s algorithm performs no more than 2n mod operations
where n is the smallest number such that Fn ≥ n.

• Show that a pair of consecutive Fibonacci numbers is the worst family
of inputs for Euclid’s algorithm. More precisely, show that among all
inputs a, b where b ≤ Fn, the pair (Fn−1, Fn) requires the maximum
number of mod operations.

• The number of bits required to represent a number, called size(b),
is ⌈log

2
(b + 1)⌉. Combine this fact, with the task on growth rate of

Fibonacci numbers to show that Euclid’s algorithm performs no more
than A×size(b) mod operations for some constant A when computing
the GCD of two numbers, the larger one of which is b.

5 Comments for Instructor

The project provides an opportunity to introduce students to the notion of
algorithms, recursion and induction. It allows them to explore the interre-
lationship between recursion and iteration in a mathematical sense. Simul-

8



taneously, it introduces them to the idea of computational efficieny and rate
of growth of functions. It provides a setting where students can perform
basic efficiency analysis of an algorithm using induction which reinforces the
usefulness of learning the technique. By judiciously selecting the tasks from
the list of all tasks, the project can be used in a sophomore or junior level
discrete mathematics or algorithms course. The instructor should consider
spending more time on tasks in section 1 to ensure that the students feel
comfortable with simple recursive definitions if they are not familiar with
them already.

References

[1] Grimm, R.E. The Autobiography of Leonardo Pisano, Fibonacci
Quarterly, Vol 11(1), pp. 99–104, 1973.

[2] Heath, T.L. Euclid The Thirteen Books of the Elements, Volume 2,
Second Edition, Dover Publications, New York, 1956.

[3] Ranjan, D. Euclid’s Algorithm for the Greatest Common Divisor,
www.cs.nmsu.edu/historical-projects/Projects/EuclidGCD.pdf,
2008.

[4] Sigler, L.E. English translation of Fibonacci’s Liber Abaci, Springer-
Verlag, 2002.

[5] Singh, P. Acharya Hemachandra and the (so called) Fibonacci Num-
bers. Math Ed. Siwan, 20(1):28–30, 1986.

[6] Singh, P. The so-called Fibonacci numbers in ancient and medieval
India,, Historia Mathematica 12(3), 229–244, 1985.

9


