
1

Program Correctness

Hing Leung

Aug 31, 2011

1 Introduction

In this project, we’ll learn how to prove the correctness of a program. We will read
excerpts from the pioneering paper of Robert W. Floyd on “Assigning meanings to
programs” (In Proceedings Symposium on Applied Mathematics, 19, Math. Aspects in
Computer Science, pages 19–32, 1967.).

The topic of program correctness is often covered briefly in textbooks on data structures
and algorithms. For example, program correctness are discussed in “Data Structures
and Algorithms in Java” by M. T. Goodrich and R. Tamassia, John Wiley and Sons,
p. 129-131, 2004, and in “Introduction to Algorithms” by T. Cormen, C. Leiserson, R.
Rivest, and C. Stein, McGraw Hill, p. 17-19, 2003. However, the discussions tend to be
very concise.

Another pioneering paper in program correctness is C. A. R. Hoare’s “An axiomatic
basis for computer programming” (Communications of the ACM, Vol 12, No. 10, pages
576–580, 1969). In advanced textbooks on the topic of program correctness, almost all of
them are based on Hoare’s axiomatic logic treatment in which mathematical axioms and
inference rules are employed. As admitted by Hoare in his CACM paper, ”The formal
treatment of program execution presented it this paper is clearly derived from Floyd.”
(p. 583), and the treatment “is essentially due to Floyd but is applied to texts rather
than flowchart” (p. 577). That is, conceptually Hoare’s method is no different than
Floyd’s. However, Hoare’s axiomatic approach, which is presented with the notations
and terminology of axioms and inference rules, may be quite difficult for an upper level
computer science undergraduate student. In practice, Hoare’s technique, while based
on an axioms and inference rules, is often carried out by annotating a program with
assertions. In the appendix of this project, we give a brief overview of Hoare’s method.

In Floyd’s approach, programs are presented as flowcharts. One may wonder if flowchart
programs are realistic, and whether Floyd’s technique applies to programs that people
write nowadays. In this project, we propose to replace flowchart programs by assembly-
like programs with the use of “goto” statements. Each statement is accompanied by an
assertion.

By adopting assembly-like programs as our preferred programming style, we are able to
present the correctness proof technique in a simple and unified manner without the need

Hing Leung 2

to revise the technique for each new programming language. We assume that a junior
level computer science student is able to convert mechanically a program in a high level
language into a assembly-like program. As the mechanical conversion preserves the same
program execution behavior, we can establish the correctness of the original program in
a high level language by proving the correctness of the derived assembly-like program.

In fact, a complete program correctness proof consists of two parts: a partial correctness
proof and a termination proof. A partial correctness proof shows that a program is
correct when indeed the program halts. However, a partial correctness proof does not
establish that the program must halt. To prove a program always halt, the proof is
called “termination proof”. In this project, we focus on the partial correctness proof.
That is, we are not going to cover the “termination proof”.

Formal proof techniques are not only limited to proving program correctness. In 1994,
when Intel first introduced the Pentium processor, a bug (known as Pentium FDIV bug)
was found with the division operations in the floating point computation unit. Since
then, automated theorem proving techniques have been employed extensively by Intel
and AMD in integrated circuit design of computer processors.

2 Robert W. Floyd

Robert W Floyd 1 (June 8, 1936 – September 25, 2001) was an eminent computer
scientist.

Born in New York, Floyd finished school at age 14. At the University of Chicago, he
received a Bachelor’s degree in liberal arts in 1953 (when still only 17) and a second
Bachelor’s degree in physics in 1958.

Becoming a computer operator in the early 1960s, he began publishing many noteworthy
papers and was appointed an associate professor at Carnegie Mellon University by the
time he was 27 and became a full professor at Stanford University six years later. He
obtained this position without a Ph.D.

His contributions include the design of Floyd’s algorithm, which efficiently finds all
shortest paths in a graph, and work on parsing. In one isolated paper he introduced the
important concept of error diffusion for rendering images, also called Floyd-Steinberg
dithering (though he distinguished dithering from diffusion).

A significant achievement was pioneering the field of program verification using logical
assertions with the 1967 paper Assigning Meanings to Programs. This was an important

1The biography is taken from wikipedia. (http://en.wikipedia.org/wiki/Robert W Floyd)

Hing Leung 3

contribution to what later became Hoare logic.

Floyd worked closely with Donald Knuth, in particular as the major reviewer for Knuth’s
seminal book The Art of Computer Programming, and is the person most cited in that
work. He was the co-author, with Richard Beigel, of the textbook The Language of Ma-
chines: an Introduction to Computability and Formal Languages, Freeman Publishing,
1994.

He received the Turing Award in 1978 “for having a clear influence on methodologies
for the creation of efficient and reliable software, and for helping to found the following
important subfields of computer science: the theory of parsing, the semantics of pro-
gramming languages, automatic program verification, automatic program synthesis, and
analysis of algorithms”.

3 Floyd’s method

First, we’ll read the following excerpts from Floyd’s paper:

The basis of our approach is the notion of an interpretation of a program:
that is, an association of a proposition with each connection in the flow of
control through a program, where the proposition is asserted to hold when-
ever that connection is taken. To prevent an interpretation from being chosen
arbitrarily, a condition is imposed on each command of the program. This
condition guarantees that whenever a command is reached by way of a con-
nection whose associated proposition is then true, it will be left (if at all) by
a connection whose associated proposition will be true at that time. Then by
induction on the number of commands executed, one sees that if a program
is entered by a connection whose associated proposition is then true, it will
be left (if at all) by a connection whose associated proposition will be true
at that time. By this means, we may prove certain properties of programs,
particularly properties of the form: “If the initial values of the program vari-
ables satisfy the relation R1, the final values on completion will satisfy the
relation R2.”

DEFINITIONS. A flowchart will be loosely defined as a directed graph with
a command at each vertex, connected by edges (arrows) representing the
possible passages of control between the commands. An edge is said to be
an entrance to (or an exit from) the command c at vertex v if its destination
(or origin) is v. An interpretation I of a flowchart is a mapping of its edges
on propositions. Some, but not necessarily all, of the free variables of these

Hing Leung 5

propositions may be variables manipulated by the program. Figure 1 gives
an example of an interpretation. For any edge e, the associated proposition
I(e) will be called the tag of e. If e is an entrance (or an exit) of a command
c, I(e) is said to be an antecedent (or a consequent) of c.

For any command c with k entrances and l exits, we will designate the en-
trances to c by a1, a2, . . . , ak, and the exits by b1, b2, . . . , bl. We will designate
the tag of ai by Pi (1 ≤ i ≤ k), and that of bi by Qi (1 ≤ i ≤ l). Boldface
letters will designate vectors formed in the natural way from the entities des-
ignated by the corresponding nonboldface letters: for example, P represents
(P1, P2, . . . , Pk).

In general, different executions of the same program on different inputs may give rise to
very different execution paths of varying lengths. To reason that a program is correct
(on all inputs), we need a proof method that covers all the different execution scenarios.

Floyd states that a verification (equivalently, partial correctness proof) of an interpre-
tation of a flowchart needs not be too cumbersome. We only need to check

for each command c of the flowchart, if control should enter the command
by an entrance ai with Pi true, then control must leave the command, if at
all, by an exits bj with Qj true.

Task 1: Suppose it has been established that every command c in the flowchart is
“correct/verified” with respect to the antecedents and consequents. By using a mathe-
matical induction on the number of steps of the execution of a flowchart program, justify
that interpretation of the flowchart program is “correct”, in the sense that the tagged
propositions are always observed.

But, how can we do verification for each command c in a flowchart program? Are we
doing verification in an ad-hoc manner? Or, can there be a mechanical/systematic way
for doing verification for each command type?

Next, Floyd introduces the concept of a verification condition on the antecedents and con-
sequents of a command c. Given that a command c has antecedents P = (P1, P2, . . . , Pk)
and consequents Q = (Q1, Q2, . . . , Pl), the verification condition, denoted by Vc(P; Q),
gives the verification needed to establish that

if control should enter the command c by an entrance ai with Pi true, then
control must leave the command, if at all, by an exits bj with Qj true.

It is natural to require that the verification conditions developed satisfy the following:

Hing Leung 6

The verification condition must be so constructed that a proof that the ver-
ification condition is satisfied for the antecedents and consequents of each
command in a flowchart is a verification of the interpreted flowchart.

Floyd developes the verification condition for the assignment statement in a series of
steps. The verification condition2 obtained involves the use of existential quantifier. We
give another formulation of the verification condition for the assignment operator as
follows:

The assignment statement x← f(x,y) is verified for antecedent P1(x,y) and consequent
Q1(x,y) if we can show that

P1(x,y)→ Q1(f(x,y),y)

Task 2: Give an informal justification for the verification condition for assignment
operator.

To compute Q1(f(x,y),y), we substitute every occurrence of x in Q1(x,y) by the ex-
pression f(x,y) given in right hand side of the assignment statement x← f(x,y). The
technique is called back substitution.

The verification conditions for other statement types are quite straight forward.

Consider the branch statement type. Suppose c is the branch (conditional) statement
with antecedent P1, conditional test Φ, consequent Q1 when Φ is true, and consequent
Q2 when Φ is false. The verification condition Vc(P1;Q1, Q2) for the branch statement
is

((P1 ∧ Φ)→ Q1) ∧ ((P1 ∧ ¬Φ)→ Q2)

Task 3: Give an informal justification for the verification condition for branching oper-
ator.

In a flowchart program, there is a possibility that several branches are joining and
merging into one branch. In Figure 1, two branches are joining before the statement
that performs the test of whether i > n; one branch flows down from the statement
S ← 0, with another branch coming from the lower part of the program after the
assignment statement i← i + 1.

We consider the joining statement to be a dummy statement with antecedents P and
consequent Q1. If there are two branches joining, then P = (P1, P2). Floyd gives the

2In Floyd’s paper, in the context of deductive system with axioms and inference rules, the verification
condition is actually given as follows: If P1 has the form R(x,y) and if (∃x0)(x = f(x0,y)∧R(x0,y)) `
Q1, then Vx←f(x,y)(P1, Q1).

Hing Leung 7

verification condition3 Vc(P1, P2;Q1) for the joining statement as

(P1 → Q1) ∧ (P2 → Q1)

Task 4: Give an informal justification for the verification condition for joining operator.

In Figure 1, we see that there are two other special statements. One is the “start”
statement and the other one is the “halt” statement. The tag (proposition) for the edge
after the start statement is given as

n ∈ J+ (J+ is the set of positive integers)

The condition that “n is a positive integer” is assumed to hold for the input. Thus,
the verification condition for the start statement is considered to be true. On the other
hand, the tag (proposition) for the edge before the halt statement is

n ∈ J+ ∧ i = n + 1 ∧ S =
∑i−1

j=1 aj ; i.e., S =
∑n

j=1 aj

The tag before the the halt statement is what the program is supposed to achieve, a goal
that we are not going to dispute. As in the case with the start statement, the verification
condition for the halt statement is again considered to be true.

4 Program Summation

Figure 1 gives an example flowchart program taken from Floyd’s paper for computing
S =

∑n
j=1 aj where n ≥ 0. Corresponding to the flowchart program, we construct an

equivalent while-loop program and an equivalent assembly program4 as follows:

i = 1

S = 0

while (i <= n) {

S = S + a_i

i = i + 1

}

3Actually, Floyd gives the verification condition as (P1 ∨ P2) → Q1, which is equivalent to (P1 →
Q1) ∧ (P2 → Q1) according to mathematical logic.

4For each flowchart program, it is easy to construct an equivalent assembly program. We favor
assembly programs over flowchart programs as we find it easier to give references to the differenct edges
in an assembly program than in a flowchart program.

Hing Leung 8

1. <P1> i = 1

2. <P2> S = 0

3. <P3>

4. <P4> if (i > n) goto 8

5. <P5> S = S + a_i

6. <P6> i = i + 1

7. <P7> goto 4

8. <P8> Halt

P1 ≡ n ∈ J+ (J+ is the set of positive integers)
P2 ≡ n ∈ J+ ∧ i = 1
P3 ≡ n ∈ J+ ∧ i = 1 ∧ S = 0
P4 ≡ n ∈ J+ ∧ i ∈ J+ ∧ i ≤ n + 1 ∧ S =

∑i−1
j=1 aj

P5 ≡ n ∈ J+ ∧ i ∈ J+ ∧ i ≤ n ∧ S =
∑i−1

j=1 aj

P6 ≡ n ∈ J+ ∧ i ∈ J+ ∧ i ≤ n ∧ S =
∑i

j=1 aj
P7 ≡ n ∈ J+ ∧ i ∈ J+ ∧ 2 ≤ i ≤ n + 1 ∧ S =

∑i−1
j=1 aj

P8 ≡ n ∈ J+ ∧ i = n + 1 ∧ S =
∑i−1

j=1 aj ; i.e., S =
∑n

j=1 aj

The proposition Pi (where 1 ≤ i ≤ 8) is the antecedent of statement/command i.
Note that the propositions considered in the assembly program are the same as the
propositions considered in the flowchart program.

To verify the given interpretation, we need to check to see if the verification condition
is satisfied for every statement in the flowchart/assembly program.

Task 5. What is the verification condition for statement 1? Show that the verifica-
tion condition for statement 1 is satisfied. Hint: the verification condition involves P1,
statement 1 and P2.

Task 6. What is the verification condition for statement 4 when it is considered as a
branch statement with antecedent P4? Show that the verification condition is satisfied.
Hint: the verification condition involves P4, statement 4, P5 and P8.

As condition P4 can be reached from both statements 3 and 7, we can also consider
statement 4 as a dummy joining statement with consequent P4. That is, statement 4 is
a composite statement consisting of a dummy joining statement followed by a branch
statement.

Task 7. What is the verification condition for statement 4 when it is considered as a
dummy joining statement (joining statements 3 and 7) with consequent P4? Show that
the verification condition is satisfied. Hint: the verification condition involves P3, P4
and P7.

Hing Leung 9

Task 8. Note that statement 3 is a dummy statement with antecedent P3 and consequent
P4, while statement 7 is also a dummy statement with antecedent P7 and consequent
P4. In general, given a dummy statement with one antecedent P and one consequent
Q, what should be the verification condition? Show that the verification conditions for
statements 3 and 7 are satisfied.

Observe that the verification performed in Task 7 is equivalent to the verifications per-
formed in Task 8. In fact there is no need to check the verification for statement 4 as a
dummy joining statement when verifications for statements 3 and 7 are performed. Ef-
fectively, we just have to consider statement 4 as a branch statement, but not a dummy
joining statement.

Task 9. What is the verification condition for statement 6? Show that the verifica-
tion condition for statement 6 is satisfied. Hint: the verification condition involves P6,
statement 6, and P7.

Task 10. Verify that the verification conditions for all the rest of the statements are
satisfied.

5 Program Square Root

Consider the following program5 which computes the square root b of a given nonnegative
integer a. Note that b is a nonnegative integer such that b2 ≤ a < (b + 1)2.

b = 0

c = 1

d = 1

while (c <= a) {

b = b+1

d = d+2

c = c+d

}

The assembly codes equivalent are as follows:

5The program is taken from page 4 of the monograph “Lecture on the logic of computer programming”
by Zohar Manna, CBMS-NSF regional conference series in applied mathematics, 1980.

Hing Leung 10

1. <P1> b = 0

2. <P2> c = 1

3. <P3> d = 1

4. <P4> if (c > a) goto 9

5. <P5> b = b+1

6. <P6> d = d+2

7. <P7> c = c+d

8. <P8> goto 4

9. <P9>

It is given that
P1 ≡ a ≥ 0
P9 ≡ (b ≥ 0) ∧ (b2 ≤ a) ∧ (a < (b + 1)2)
By proving that P9 holds when the program halts, we show that b is the integral part of
the square root of a.

To help you to tackle the correctness proof, the loop invariant P4 is given below:
P4 ≡ (b ≥ 0) ∧ (b2 ≤ a) ∧ (c = (b + 1)2) ∧ (d = 2b + 1).

Task 11. What are P2, P3, P5, P6, P7, P8? Verify that the verification conditions
for all the statements are satisfied. (Hint: First, decide what to choose for P8. Then use
back substitutions to determine other assertions.)

6 Program Chocolate Bars

Suppose we can buy a chocolate bar from the retail store for $1 each. Inside every
chocolate bar, there is a coupon included. With 10 coupons, one can redeem for one
chocolate bar. Again, a coupon is found in the chocolate bar redeemed. The following
program computes the number of chocolate bars that one can consume with n dollars:

// b denotes the number of chocolate bars

// c denotes the number of coupons

b = n

c = n

while (c >= 10) {

c = c-9

b = b+1

}

Hing Leung 11

Interestingly, the final answer for b can be computed by the arithmetic expression n +
bn−19 c where bxc, called the floor of x, denotes the largest integer not greater than x. In
most programming languages, n + bn−19 c can be written simply as n + (n − 1)/9. The
above loop program can be re-written as the following assembly program:

1. <P1> b = n

2. <P2> c = n

3. <P3> if (c < 10) goto 7

4. <P4> c = c-9

5. <P5> b = b+1

6. <P6> goto 3

7. <P7>

It is given that
P1 ≡ n > 0
P7 ≡ b = n + bn−19 c

The loop invariant P3 is given as follows:

P3 ≡
(
b + b c−19 c = n + bn−19 c

)
∧ (c > 0)

Task 12. What are P2, P4, P5, P6 ? Verify that the verification conditions for all
the statements are satisfied. (Hint: First, decide what to choose for P6. Then use back
substitutions to determine other assertions.)

7 Program Partition

In page 146 of textbook “Introduction to Algorithms”, 2nd edition by Cormen, Leiserson,
Rivest and Stein, the codes for the Partition algorithm for Quicksort is given as follows:

Partition(A,p,r)

x = A[r]

i = p-1

for j = p to r-1

if (A[j] <= x) {

i = i+1

exchange A[i] and A[j]

}

exchange A[i+1] and A[r]

return i+1

Hing Leung 12

We can re-write the program into an equivalent assembly program as follows:

1. <P1> x = A[r]

2. <P2> i = p-1

3. <P3> j = p

4. <P4> if (j > r-1) goto 10

5. <P5> if (A[j] > x) goto 8

6. <P6> i = i+1

7. <P7> exchange A[i] and A[j]

8. <P8> j = j+1

9. <P9> goto 4

10. <P10> exchange A[i+1] and A[r]

11. <P11> q = i+1

12. <P12>

It is given that
P1 ≡ p ≤ r
and
P12 ≡ (∀k, (p ≤ k ≤ q−1)→ (A[k] ≤ x))∧(∀k, (q+1 ≤ k ≤ r)→ (A[k] > x))∧(A[q] = x)∧(p ≤ q ≤ r)

Technically, it is not accurate to say that the partition algorithm is correct just by
showing that P12 holds when the program halts. A more careful proof needs to argue
that the resulting array (from index p to index r) is a re-arrangement (or, permutation)
of the original array from the same set of indices. However, one can easily see that this is
true since the program limits itself in performing swapping of array entries from index p
to index r. The fact that we are only swapping array entries between index p and index
r is going to be part of the proof that you are constructing. That is, in P7, we have to
show that p ≤ i ≤ j ≤ r. Similarly, in P10, we also have to show that p ≤ i+ 1 ≤ j ≤ r.

In page 146 of the textbook, a proposition is given for the loop invariant, which translate
to the following proposition for P4:
(∀k, (p ≤ k ≤ i)→ (A[k] ≤ x))∧(∀k, (i+1 ≤ k ≤ j−1)→ (A[k] > x))∧(A[r] = x)∧(p−1 ≤ i < j ≤ r)

Task 13. What are P2, P3, P5, P6, P7, P8, P9, P10, P11 ? Verify that the veri-
fication conditions for all the statements are satisfied.

8 Remarks

In proving the correctness of a program, the most challenging part is to give the assertion
(called the loop invariant) that associates with the while-statement (or, for-statement).

Hing Leung 13

In the four programs considered in this project, with the loop invariants given, the rest
of the assertions can be determined in a rather systematic and mechanical manner.

Appendix (Hoare’s Method)

Floyd’s method considers the verification condition of statement for flowchart/assembly
program. Hoare’s method explains how to verify program properties for high level pro-
gramming languages which statement types include while-statement and if-statement.

Notation: Let S be a block of statements (or, a program). We write

{P} S {Q}

if given the antecedent P , the consequent Q holds after the execution of S.

Assignment Rule

From the verification condition for assignment statement x← f(x,y) of Floyd’s method,
it is clear that the following holds

{Q(f(x,y),y)} x← f(x,y) {Q(x,y)}

If Rule

Consider the if-statement
if (c) then S1 else S2

Suppose we want to establish

{P} if (c) then S1 else S2 {Q}

where P is the antecedent and Q is the consequent. Given that P is the antecedent
condition for the if-statement, both P and c hold when the program starts executing
S1. Similarly, P and ¬c hold when the program begins executing S2. In order the
consequent Q holds for the if-statement, it is required that both

{P ∧ c} S1 {Q}

and
{P ∧ ¬c} S2 {Q}

Hing Leung 14

are true. To summarize, given that

{P ∧ c} S1 {Q}, {P ∧ ¬c} S2 {Q}

it follows that
{P} if (c) then S1 else S2 {Q}

As a special case when S2 is a dummy statement, given that

{P ∧ c} S1 {Q}, (P ∧ ¬c)→ Q

the following holds:
{P} if (c) then S1 {Q}

While Rule

Consider the while-statement
while (c) S

where c is the condition and S is the body of the loop. Suppose I is the proposed loop
invariant. The antecedent condition for S is I∧c as both I and c holds when the program
starts executing S. In order that the loop invariant holds again after the execution of S,
it is necessary that I is the consequent of S. Thus,

{I ∧ c} S {I}

By picking the antecedent for the while statement as I, and given that {I ∧ c} S {I}
holds, the loop invariant I holds and the consequent for the while-statement is thus
I ∧ ¬c. To summarize, given that

{I ∧ c} S {I}

is verified, the following holds about the while-statement:

{I} while (c) S {I ∧ ¬c}

Consequence Rule

It should be clear that given

{P} S {Q}, P ′ → P, Q→ Q′

then the following holds
{P ′} S {Q′}

Hing Leung 15

Composition Rule

It should be clear that given

{P} S1 {Q}, {Q} S2 {R}

then the following holds
{P} S1; S2 {R}

Task 14. Using Hoare’s method for while-loop programs, re-do the partial correctness
proofs for Program Square Root, Program Chocolate Bars and Program Partition. Hint:
Program Partition needs to be re-written using while-loop instead of for-loop.

9 Notes to the Instructor

The project is designed to focus on the key ideas in program correctness, rather than on
the formal aspects of the theory. Terminologies like axioms, inferences, and deductive
systems are deliberately avoided. Emphasis is placed on the practice of proving the
partial correctness of interesting programs. It is the author’s belief that the students
will appreciate better the power of program correctness through the analysis of seemingly
simple and yet non-trivial programs.

The correctness proof of Program Partition (Section 7) is very challenging. It may be
skipped if time is not permitted, or if the students are finding it too difficult.

